Skip to main content
University of Nebraska Omaha logo University of Nebraska Omaha
APPLY MY UNO DIRECTORY

University of Nebraska Omaha logo
College of Information Science & Technology NLPKR Lab
APPLY MY UNO DIRECTORY
  • Research Backback to Main menu
    • Research Projects
    • Optimizations in ASP
  • Publications
  • Software Backback to Main menu
    • AspCCGtk
    • Cmodels
    • Cmodels-Diff
    • DualGrounder
    • EZSMT
    • Lesk Implementations
    • PPattach
    • PREDICTOR
    • PROJECTOR
    • Sup
    • Text2ALM
    • Text2Drs
  • Members

Research

  1. UNO
  2. NLPKR Lab
  3. Research Projects & Publications

Research Projects in Knowledge Representation and Reasoning

Automated Optimization of Programs and Processing Tools in Answer Set Programming

Declarative programming tools developed in knowledge representation and reasoning are successfully used in numerous knowledge-intense scientific and industrial applications. Nevertheless, computational knowledge representation is far from realizing its full potential. Even experts in declarative programming expend substantial effort fine-tuning encodings and reasoning tools before acceptable performance is obtained for the domain of interest. Principled performance evaluation and code optimization have been proven essential to imperative programming and software engineering. We are interested in exploring the means for automated optimizations in the realm of computational knowledge representation. One obstacle that we face is that there is no clear basis to explain the relationship between a declarative specification of a problem, its specific instance, and the efficiency of available reasoning tools. Nevertheless, the advances in portfolio solving as well as automatic configuration fields suggest directions for overcoming this obstacle. Applying automatic configuration tools in refining methodology of code optimization in declarative programming is our first step towards an ultimate goal of defining principal methods for automated optimization in declarative constraint programming.

Home

Modularity For Modeling And Solving In Declarative Programming

Declarative programming serves as the computational paradigm in qualitative knowledge representation. However, while modularity has long been recognized as one of the key techniques in software development, the research on modular declarative programming formalisms is at an early stage. We are interested in advancing understanding of fundamental issues of declarative programming for modeling and reasoning with multi-logics, formalisms for modular and multi-context knowledge representation, and integrating diverse languages and reasoning tools tailored for problems in large-scale applications in modular knowledge representation settings are the overarching objectives of our project.

Publications

Answer Set Programming And Solving

Answer Set Programming is a novel declarative constraint programming paradigm inspired by ideas from knowledge representation, logic programming, and non-monotonic reasoning. It found its applications in many computationally intensive tasks including scheduling, planning, difficult search problems in bioinformatics and software verification that require elaboration tolerant solutions. Answer set solving technology extends computational methods of propositional satisfiability in the following way. As a declarative programming paradigm, it provides a rich, simple modeling language that, among other features, incorporates recursive definitions. Answer set programming languages use variables; software tools called grounders are used as front ends of answer set solvers to eliminate variables, whereas SAT-like procedures form their back-ends. Exploiting SAT-based techniques in creating novel solving procedures for answer set programming as well as understanding the landscape of modern answer set solving methods is one of the research questions that we address. Answer set solvers Cmodels(DIFF), Cmodels and Sup are the in-house software systems.

Publications | Cmodels(DIFF) | Cmodels | Sup

Constraint Answer Set Programming

Constraint Answer Set Programming is a novel, promising direction of research whose roots go back to propositional satisfiability. Satisfiability solvers are efficient tools for solving boolean constraint satisfaction problems that arise in different areas of computer science, including software and hardware verification. Some constraints are more naturally expressed by non-boolean constructs. Satisfiability modulo theories extends boolean satisfiability by the integration of non-boolean symbols defined by a background theory in another formalism, such as a constraint processing language. Answer set programming extends computational methods of satisfiability in yet another way. Constraint Answer Set Programming draws on both of these extensions of SAT technology: it integrates Answer Set Programming with constraint processing. We are interested in establishing new computational methods, modeling language dialects for Constraint Answer Set Programming, and studying and comparing existing approaches.

Publications | Ezsmt | Ezcsp

Research Projects in Natural Language Understanding

What Lexical Wide Coverage Resources Can Do For Parsing and Information Extraction

With the availability of open online ontologies (such as VerbNet and WordNet) describing the use, meaning and functions of words, an opportunity exists to enhance parser technology. We look to bring automated reasoning built on semantic understanding to the processing of language.

Publications | PPAttach | Text2Drs | Text2ALM

Textual Inference

In the problem of recognizing textual entailment, the goal is to decide, given a text and a hypothesis expressed in a natural language, whether a human reasoner would call the hypothesis a consequence of the text. One approach to this problem is to use a first-order reasoning tool to check whether the hypothesis can be derived from the text conjoined with relevant background knowledge, after expressing all of them by first-order formulas. Another possibility is to express the hypothesis, the text, and the background knowledge in a logic programming language, and use a logic programming system. We explore the relation of these methods to each other as well as new possibilities for applying symbolic based methods for the task of textual inference.

Publications

Causality In Natural Language Understanding

Choice of Plausible Alternatives (COPA) is a commonsense causal reasoning challenge proposed in 2011. Given an utterance (a) The shirt shrunk. Decide whether an utterance I poured bleach on it or I put in the dryer. is the cause for (a). This challenge targets two areas of research in Artificial Intelligence: natural language processing and knowledge representation and reasoning. We are interested in exploiting knowledge representation and reasoning techniques in identifying solution to this challenge.

Syntactic Parsing By Means Of Declarative Programming

Combinatory categorical grammar is one of the grammar formalisms used for natural language parsing. This grammar assigns structured lexical categories to words and uses combinatory rules to combine these categories to parse a sentence. We explore a new approach to parsing that relies on a prominent knowledge representation formalism, answer set programming -- a declarative programming paradigm. Compared to other approaches, there is no need to implement a specific parsing algorithm using such a declarative method. Rather, a programmer encodes the specifications about the combinators of the grammar. This approach is implemented in a parsing tool kit called AspCcgTk that is a wide-coverage natural language parser.

Project Home | Publications | Software

Coreference Resolution: Winograd Schema Challenge

The Winograd Schema Challenge is composed of instances of coreference resolution problems that prove to be difficult for modern natural language processing methods. Ability to perform commonsense inference seems to be the key in tackling this challenge. An approach that takes commonsense reasoning into account is the focus of this project.

Publications

Contact Us

  • Yuliya Lierler: ylierler@unomaha.edu

College of Information Science & Technology

  • Contact Us
  • College of Information Science & Technology
  • 172 Peter Kiewit Institute
  • 1110 South 67th Street
  • Omaha, NE 68182  map this location
  • 402.554.2380
  • Contact Us
  • College Resources
  • Advising
  • Jobs and Internships
  • Research Clusters
  • News and Events
  • IS&T Grants Office
  • IS&T Technology Systems and Facilities
Peter Kiewit Institute
  • Next Steps
  • Visit UNO
  • Request Information
  • Apply for Admission
  • The UNO Advantage
  • Our City (Omaha)
  • Just For You
  • Future Students
  • Current Students
  • Work at UNO
  • Faculty and Staff
  • A-Z List
  • Popular Services and Resources
  • my.unomaha.edu
  • Academic Calendar
  • Campus Buildings & Maps
  • Library
  • Pay Your Bill
  • Course Catalogs
  • Internships & Career Development
  • Bookstore
  • MavCARD Services
  • Military-Connected Resource Center
  • Speech Center
  • Writing Center
  • Human Resources
  • Center for Faculty Excellence
  • Affiliates
  • University of Nebraska System
  • NU Foundation
  • Buffett Early Childhood Institute
  • Daugherty Water for Food Institute
  • National Strategic Research Institute
  • Peter Kiewit Institute
  • Rural Prosperity Nebraska
  1. University Policies
  2. Privacy Statement
  3. Accessibility
  1. 402.554.2800

University of Nebraska Omaha
University of Nebraska Omaha, 6001 Dodge Street, Omaha, NE, 68182
  • © 2023  
  • Emergency Information Alert
  • Report an Incident or Concern

Omaha Skyline

Our Campus. Otherwise Known as Omaha.

The University of Nebraska does not discriminate based on race, color, ethnicity, national origin, sex, pregnancy, sexual orientation, gender identity, religion, disability, age, genetic information, veteran status, marital status, and/or political affiliation in its education programs or activities, including admissions and employment. The University prohibits any form of retaliation taken against anyone for reporting discrimination, harassment, or retaliation for otherwise engaging in protected activity. Read the full statement.

scroll to top of page