Skip to main content
University of Nebraska Omaha logo University of Nebraska Omaha
APPLY MY UNO DIRECTORY

Students Faculty Staff Community
University of Nebraska Omaha logo
International Programs Center for Afghanistan and Regional Studies
APPLY MY UNO DIRECTORY
Students Faculty Staff Community
  • About Us Backback to Main menu
    • Meet Our Team
    • The Center Today, History, and Mission
    • Products
    • International Programs at UNO
    • Contact Us
    • Support Us
  • Research Backback to Main menu
    • Afghanistan Transboundary Water Resources
    • Afghanistan Geography and Geology
    • Arthur Paul Collection
  • National Impacts Backback to Main menu
    • Afghan Refugee School Impact
    • Immersion Seminars
  • International Impacts Backback to Main menu
    • Young South Asian Leaders Initiative (YSALI)
    • Partnership 2020 (India)
    • Pakistan Teaching Excellence and Achievement (TEA)
    • Facilitating Connections Between Universities in Uzbekistan
    • Next Generation of Female Environmentalists (Pakistan)
    • Universities Linkages Project (Pakistan)
    • Women in University Administration (South Asia)
  • Afghanistan Projects Backback to Main menu
    • American University of Afghanistan Partnership
    • Kabul Polytechnic University (Workforce Development Partnership)
    • Kabul University-Balkh University Partnership for Communication Departments
    • Journalism Partnership with Kabul University
    • Teacher Training
  • News Backback to Main menu
    • Celebrating 50 Years
    • CASA Celebration Week
    • News and Updates
  • Alumni Stories Backback to Main menu
    • Pakistani Alumna Leading Sustainability in Local Community
    • Pakistani Teachers Return Home Making a Difference in Their Communities

Distance Learning Module 8

  1. UNO
  2. Center for Afghanistan and Regional Studies

Distance Learning Module 8 - Floods and Natural Hazard Management

DEALING WITH WATER-RELATED NATURAL HAZARDS

• Too much water in a short time produces floods (Figure 8.1A&B) – too little water produces droughts Figure 8.2).

fig8.1a2Figure 8.1A. Flooding on the Helmand River (USAID).



fig8.1bFigure 8.1B. Heavy rains in Kabul, 2 April 2014 (Voice of America News).



fig8.2Figure 8.2. Drought conditions in Afghanistan in 2006 (After UNHCR and Albawaba).


• Floods come from rapid snow-melt, and rain storms from the monsoon from Pakistan, or from Westerly Winds all the way from the Mediterranean and Atlantic Ocean.

• Some water floods can be predicted statistically or by computer analysis, especially if good large-scale topographic maps are available.

• Computer cellular automata and high resolution digital topographic data for the whole of Afghanistan were used by scientists from the University of Nebraska at Omaha and from NATO (ISAF) to produce detailed flood hazard maps for the whole of Afghanistan (Figures 8.3 & 8.4).



fig8.3Figure 8.3. Orthophotograph image (a); of lower Kunar River showing the AFG-FHM cellular overlay with about an 8.7 m flood depth (b). These flood maps were made for all of Afghanistan to see where certain depths of waters would go, and what they would cover when the water was raised higher and higher by computer. This work was done on very high resolution kinds of maps that were only available to ISAF to work with but attempts are being made to have this methodology be released to the Afghan government.



fig8.4Figure 8.4. Flood hazard map of Afghanistan derived from the Afghanistan flood hazard map (AFG-FHM) of Hagen et al. (2010) The map on line is capable of considerable enlargement, although the original could generally be accurately enlarged to 1:100,000. Red indicates high flood hazard and dark blue is moderate flood hazard.


• Droughts come in several different types that add together and cause major problems (Figure 8.5 & 8.6).



fig8.5Figure 8.5. Graphic of interrelationships between initial meteorological drought, followed by the cascade of successive agricultural, hydrological, and socio-economic and political forms of drought (After National Drought Mitigation Center, University of Nebraska – Lincoln, USA, in WMO, 2006).


fig8.6Figure 8.6. Systems diagram showing sequence of drought occurrence and impacts for the most commonly accepted drought types. All droughts actually originate from the initial deficiency in precipitation, which is known as meteorological drought. The other forms of drought and the resulting impacts cascade through time from the initial deficiency (after National Drought Mitigation Center, University of Nebraska – Lincoln, USA, in WMO, 2006).

• Water causes landslides for many different reasons (Table 8.1).

table8.1

• Water is very heavy and when added in large quantities to mountain slopes it can run off in concentrated wet masses of mud and rocks (rapid wet debris flows; Figures 8.7 & 8.8), or it can cause widespread areas of hillslopes to collapse under the increased weight into different kinds of landslides (loess flow, hillside slump; Figures 8.9 & 8.10), or it can come down as snow, which slides off in huge masses called snow avalanches (Figure 8.11) .



fig8.7-2Figure 8.7. Diagram of various sediment concentrations mixed with water plotted against mean velocity showing the range of debris flows (after Pierson and Costa, 1987, and Shroder 2014). A continuum exists of different kinds of hazardous mixtures of sediment particles and water, depending upon the percentages of sediment and water.



fig8.8-2Figure 8.8. Diagram of a debris-flow surge with a boulder front (after Hungr, 2005). These mixtures of sediment particles and water move at different speeds as they flow down mountain valleys.



fig8.9Figure 8.9. Cross section of loess-sediment blanketed over crystalline bedrock, which is very similar to the situation of the Ak Barak loess-flow where the crystalline bedrock is exposed at the bottom of the loess hill where the village was located. The high loess hill on the other side had been showing with cracks and wrinkle ridges that it was ready to fail and come down to cover the village but no one noticed that this would happen (after Shroder et al., 2011b; Shroder, 2014).




fig8.10Figure 8.10. Low-altitude oblique aerial photograph of Ab Barak loess flow in southern Badakhshan Province that occurred on 2 May 2014; view to south to southwest. The village in the front below is built of hard crystalline bedrock that is gray. Across to the other side, the silty loess is composed of wind-blown silt deposits known as loess. The main slope failure of loess has moved to the east, upstream, as well as to the west downstream, in two successive but different directions of movement, with the east (upstream to the left) motion being first, and the west (downstream to the right) being second. A marked basin of ‘profound concavity’ (Shroder, 1976) occurs on the upper right of the hilltop that marks a basin or earlier strong erosion that was probably also a loess flow (after Wakhil Kohsar/Getty Images; On line by The Atlantic; Ask for permission).



fig8.11Figure 8.11. Snow avalanche at Salang Pass in 2010 showing wrecked cars downhill from snow sheds built by Soviet engineers to protect against avalanches; clearly the sheds were not built long enough, or did not cover enough of the road to protect against these serious hazards.



• Forewarnings or prediction of some landslides are possible by professional scientists who have experience (Figure 8.12).



fig8.12Figure 8.12. Pre-failure scene from Google Earth™ showing approximately the same view direction as Figure 8.10, but the scene was acquired prior to the loess-flow failure. A number of what appear to be incipient ground cracks, turf rolls or wrinkle ridges, and eroded gullies occur in the middle of the slope and give an indication of coming slope-failure problems, as well as evidence that the hazard was looming in the future, and could have been predicted as a possible hazard zone, had anyone had appropriate knowledge and experience. Landslide experts can predict this kind of serious hazard, and this should be done in future for many places in Afghanistan.



• Extensive unstable, landslide areas of Afghanistan have been mapped for hazardous areas of the country by personnel from the University of Nebraska at Omaha (Figure 8.13).



fig8.13Figure 8.13. Vertical-downward view of Kuchnay Makhay slope-failure complex that crosses the Chaman Fault zone. The red bar in the upper left is 1 km in length. North is up. This landslide appears to be the result of a torrential rainstorm, but it is possible that a strong earthquake shock also could have produced the landslide on the Chaman – Quetta fault that passes through here on its way to Kabul and on north to the Panshir Valley and Badakhshan.



REFERENCES

Shroder, J.F., Jr., 1989. Slope failure: extent and economic significance in Afghanistan and Pakistan. In: Landslides: extent and economic significance in the world. eds. E.E. Brabb and B.L. Harrod, A.A. Balkema, Rotterdam, Netherlands, p. 325-341.

Shroder, J.F.,Jr. B.J. Weihs, 2010. Geomorphology of the Lake Shewa landslide dam, Badakshan, Afghanistan, using remote sensing data. Geografiska Annaler 92A (4): 471-486.

Shroder, J.F., Jr., B. Weihs, and M. Schettler, 2011. Mass movement in northeast Afghanistan. Journal of Physics and Chemistry of the Earth; 36:1267-1286; doi:10.1016/j.pce.2011.03.003

Shroder, J.F., Schettler, M.J., Weihs, B.J., 2011. Loess failure in northeast Afghanistan. Journal of Physics and Chemistry of the Earth, 36:1287-1293;doi:10.1016/j.pce.2011.03.001



Distance Learning Module #8 Sample Questions (click here)

Contact Us

  • The Center for Afghanistan and Regional Studies
  • Phone: 402.554.2375
  • Email: unoafghanstudies@unomaha.edu

International Programs

Contact Us
  • International Programs
  • 241 Arts and Sciences Hall
  • 222 University Drive East
  • Omaha, NE 68182   map
  • 402.554.2293
  • world@unomaha.edu
Social media
Program Resources
  • Admissions
  • International Student Advising
  • International Studies Major
  • ILUNO Intensive English
  • International Professional Development (IPD)
  • Education Abroad
  • Center for Afghanistan and Regional Studies
Arts and Sciences Hall

Next Steps

  • Visit UNO
  • Request Information
  • Apply for Admission
  • The UNO Advantage
  • Our City (Omaha)

Just For You

  • Future Students
  • Current Students
  • Work at UNO
  • Faculty and Staff
  • A-Z List

Popular Services and Resources

  • my.unomaha.edu
  • Academic Calendar
  • Campus Buildings & Maps
  • Library
  • Pay Your Bill
  • Course Catalogs
  • Internships & Career Development
  • The Maverick Store
  • MavCARD Services
  • Military-Connected Resource Center
  • Speech Center
  • Writing Center
  • Human Resources
  • Center for Faculty Excellence

Affiliates

  • University of Nebraska System
  • NU Foundation
  • Buffett Early Childhood Institute
  • Daugherty Water for Food Institute
  • National Strategic Research Institute
  • Peter Kiewit Institute
  • Rural Prosperity Nebraska
  1. University Policies
  2. Privacy Statement
  3. Accessibility
  1. 402.554.2800

University of Nebraska Omaha
University of Nebraska Omaha, 6001 Dodge Street, Omaha, NE, 68182
  • ©  
  • Emergency Information Alert
  • MavsReport

Social Media


Omaha Skyline

Our Campus. Otherwise Known as Omaha.

The University of Nebraska does not discriminate based on race, color, ethnicity, national origin, sex, pregnancy, sexual orientation, gender identity, religion, disability, age, genetic information, veteran status, marital status, and/or political affiliation in its education programs or activities, including admissions and employment. The University prohibits any form of retaliation taken against anyone for reporting discrimination, harassment, or retaliation for otherwise engaging in protected activity. Read the full statement.