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ABSTRACT 

In our work for software watermarking, we have been examining 
the possibility of executable steganography, hiding intel/AMD 
x86-64 instructions within the operands of other instructions. 
Early thoughts about this concept revolved around creating a 
database of sorts to reflect which x86-64 instructions had large 
enough operand fields to hold the hidden payload. It was assumed 
that this database would be easily constructed, but it turns out to 
be a surprisingly difficult endeavor. Even the question of “how 
many are there?” is challenging to answer. Different CPUs 
support different instruction sets, different instruction decoders or 
reverse assemblers give different results for the same combination 
of bytes, and even the number of distinct mnemonics for 
instructions is blurry. In the process of attempting to construct the 
x86-64 database we encountered several stumbling blocks along 
the way and we report on the stumbling blocks here. This white 
paper is not a traditional research paper, with background, other 
relevant prior work. Rather, it describes our attempts to answer 
what we thought was a fairly simple question: for various 
numbers of bytes, just how many legal x86-64 instructions exist? 

CCS Concepts 
• Computer systems organization à Architectures à Serial 
architectures à Complex instruction set computing 
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1. INTRODUCTION 
In the process of working on our executable steganography efforts 
[1] we desired to construct a database of x86-64 instructions and 
what we called their “cover numbers”. Our intent is to hide short 
executable instructions inside the operands of longer x86-64 
instructions in such a way that there would be a hidden payload 
or watermark inside the code, and that this watermark not be 
visible normally by reverse engineering tools. The “cover 
number” of an instruction was defined as the number of bytes that 
the instruction is capable of hiding. For instance, an x86-64 
instruction with a 64-bit operand would be capable of secretly 
encoding eight bytes in the operand, so it’s cover number would 
be eight. Our early thoughts for the project included some kind of 
searchable database, where, if I need an instruction with a cover 
number of at least three, the database will tell me all potential 
instructions.  

Later it was determined that this database of cover numbers is not 
as useful as a database of which instructions are available for 
various numbers of bytes; rather than looking up an instruction to 
see what it might be capable of hiding, the better approach is to 
determine what operations require only one byte, or two, or three, 
… In this way the author of the code which will be hidden can 
select operations based on the number of opcode bytes. 

Although the intel/AMD 64-bit instruction set is large, it would 
seem that there would be a relatively simple / programmatically 
easy way to generate all of the instructions and from there, or in 
the process, to determine the number of bytes for each. Come to 
find out this task is surprisingly difficult. Even as recently as 2016 
one could assume that “a formal semantics of the current 64-bit 
x86 ISA … would be readily available, but one would be wrong. 
In fact, the only published description of the x86-64 ISA is the 
Intel manual with over 3,800 pages written in an ad-hoc 
combination of English and pseudo-code” [2]. 

So of course, when the assumption is that something should be 
simple, often it is not, and this is only discovered after “jumping 
in head first”. A result of this “jumping in” is reported here. Our 
paper is less of a research tome and more of a running 
commentary on how we approached the problem and what results 
we had (or did not have!) along the way.  

Section two presents terminology and states the problem in more 
detail. Section three describes our approach to exhaustively 
searching a list of x86 instructions. Are the results correct? 
Surprisingly this is not an easy question to answer. The reasons 
are given in section four, as well as some thoughts about future 
changes which could be made to shed some illumination on the 
answer. 

2. THE PROBLEM 
In a nutshell our question is: how many valid byte combinations 
correspond to legal x86-64 architecture instructions of a certain 
length? Can they be enumerated, and if so how? Specifically, due 
to our steganography work we are interested in instructions whose 
size is six or fewer bytes.  

2.1 Considerations 
On the surface the issue of constructing our valid instruction list 
seems an easy problem. But consider: 

• The number of potential x86-64 instructions is huge, as the 
hardware limit is the number of bytes that the CPU is willing 
to fetch for one instruction. On x86-64 this is 15 bytes [3] 
(pp 208) and as a result there are 215*8 potential instructions. 

• Certain prefix bytes can be added in advance of the 
instruction, some of them causing extended behavior and 
some of them having no effect whatsoever. As a result, a 
simple instruction such as an addition of two registers can 
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have many variations in the byte encoding and yet all 
perform an identical function. 

• Some CPUs include additional features such as Multimedia 
Extensions (MMX) and some do not. The number of valid 
instructions is thus CPU model dependent. When we say 
“legal instructions” this needs to be accommodated. 

To clarify, when we refer to “instructions” we are describing all 
possible forms of the instruction. For example, “MOV” is one 
operation mnemonic but there are many potential encodings, 
depending on the desired source, destination, and size of the 
operands. We thus need to be clear that when we use the term 
“instructions” we are describing byte sequences and not 
mnemonics. When we refer to “MOV instructions” or just 
“instructions” we are referring to all possible “MOV” operations, 
or all operations in general, respectively. 

In the above issues list, the instruction prefixes in particular make 
this a thorny issue. To explain why the instruction set is so 
complex requires a bit of x86 history and an overview of the 
resulting layout of instructions.  

2.2 x86 History 
Why is the x86-64 instruction set so hard to describe? For 
historical reasons. Intel (and AMD) have long attempted to 
maintain backwards compatibility, stretching back as far as 1978. 
In the process, the various warts and blemishes continue to be 
replicated over the years. The original 8086 and 8088 16-bit 
CPUs were follow-ons to the popular 8-bit CPUs developed by 
intel, the 8080 and the almost identical 8085 [4]. When the 32-bit 
architecture was created the attempt was to make it compatible 
with the 16-bit 8086, which was in turn mostly designed to be a 
better version of the original 8080. This compatibility has caused 
aspects of the modern day x86-64 to reflect items from 40 years 
ago, including, for instance, the ability to access bits 8-15 of 
certain general-purpose registers.  
What follows is a very abridged version of the history of the x86 
CPU. The descriptions include direct excerpts from [5] (pp 2.1-
2.6) except where italicized. Briefly: 
1978 – The 8086 has 16-bit registers and a 16-bit external data 
bus, with 20-bit addressing giving a 1-MByte address space. The 
8086/8088 introduced segmentation to the IA-32 architecture. 
1982 – The Intel 286 processor introduced protected mode 
operation into the IA-32 architecture. Protected mode uses the 
segment register content as selectors or pointers into descriptor 
tables.  
1985 – The Intel386 processor was the first 32-bit processor in 
the IA-32 architecture family. It introduced 32-bit registers for 
use both to hold operands and for addressing. The lower half of 
each 32-bit Intel386 register retains the properties of the 16-bit 
registers of earlier generations, permitting backward 
compatibility. 
1989 – The Intel486™ processor added more parallel execution 
capability by expanding the Intel386 processor’s instruction 
decode and execution units into five pipelined stages. 
1993 – The introduction of the Intel Pentium processor added a 
second execution pipeline … A subsequent stepping of the 
Pentium family introduced Intel MMX technology … uses the 
single-instruction, multiple-data (SIMD) execution model to 
perform parallel computations on packed integer data contained 
in 64-bit registers. 

1995-1999 – The P6 family of processors … includes the Pentium 
Pro, Pentium II and Pentium II Xeon, Celeron, Pentium III and 
Pentium III Xeon. (Most of the changes in this period are internal 
architecture enhancements, but the P-III introduces the SSE 
instructions.)  
2000-2007 – The Intel Pentium 4 processor introduced Streaming 
SIMD Extensions 2 (SSE2) … The Intel Pentium 4 processor 3.40 
GHz, supporting Hyper-Threading Technology introduced 
Streaming SIMD Extensions 3 (SSE3). The 64-bit Intel Xeon 
processor 3.60 GHz … was used to introduce Intel 64 
architecture. The Intel Xeon processor 5200, 5400, and 7400 
series … improves the performance of Intel® Advanced Digital 
Media Boost and SSE4. 
2008 – The first generation of Intel Atom processors … Support 
for instruction set extensions up to and including Supplemental 
Streaming SIMD Extensions 3 (SSSE3). The Intel Core i7 
processor 900 series support for SSE4.2 and SSE4.1 instruction 
sets. 
2010 – Intel Core processor family spans Intel Core i7, i5 and i3 
processors … Range of instruction set support up to AESNI, 
PCLMULQDQ, SSE4.2 and SSE4.1. 
2013 – Intel Atom Processor C2xxx, E3xxx, S1xxx series … 
supports instruction set extensions up to and including SSE4.2, 
AESNI, and PCLMULQDQ. 
Today – Beginning with the Pentium II and Pentium with Intel 
MMX technology processor families, six extensions have been 
introduced into the Intel 64 and IA-32 architectures to perform 
single-instruction multiple-data (SIMD) operations. These 
extensions include the MMX technology, SSE extensions, SSE2 
extensions, SSE3 extensions, Supplemental Streaming SIMD 
Extensions 3, and SSE4. Each of these extensions provides a 
group of instructions that perform SIMD operations on packed 
integer and/or packed floating-point data elements. 
The point to take away from this historical perspective is that 
starting in 1978, intel has attempted to maintain backwards 
compatibility from generation to generation starting from the 
8086 CPU, which in turn was designed as an upgrade from the 
8080 and 80805 8-bit CPUs. Along the way, we see the 
introduction of 32- and then 64-bit instructions as well as six 
SIMD instruction sets, all of which need to be “bolted on” to the 
set of operation codes from 1978. To put this in perspective, the 
next section provides an indication of the current state of x86-64 
instruction mnemonics.  

2.3 What Do the Doc’s Say? 
In general, our problem statement is to list valid sequences of 
bytes and the instructions that each sequence corresponds to. But 
to get a general idea of the magnitude of the problem, it is worth 
digressing for a moment to discuss the number of valid 
mnemonics for the instructions instead of the byte sequences. 
This will serve to demonstrate that the number of sequences is 
dependent on the CPU model and which features are supported.  
As a starting point, Table 1 corresponds to the number of 
instruction mnemonics, by category. For each table row, the 
presence of a set of numbers corresponds to the different sub-
groups of instructions within the major category. For example, the 
“General Purpose” instructions include 32 “Data Transfer”, 14 
“Binary Arithmetic”, and so on. The total in the group is 
displayed. All instruction counts in this table are for intel and are 
from [5] (pp 5.1-5.36).  



 3 

In addition to those in Table 1, CPUs after about 2010 include the 
Advanced Vector Extensions, with about 243 instructions. We 
say “about” because quite a number of these are the same as 
previous SIMD instructions but with new 256-bit equivalents. 
The encoding of an instruction prefix (of course), VEX, uses 
either two or three bytes prior to the operation code. This prefix 
provides a compressed representation of the REX prefix, as well 
as various other operation prefixes, and expands the addressing 
mode, register number, and operand size and width. 
 
Newer CPUs may also include Fused Multiply Add: “FMA 
extensions provide 36 256-bit floating-point instructions to 
perform computation on 256-bit vectors and additional 128-bit 
and scalar FMA instructions. FMA extensions also provide 60 
128-bit floating-point instructions to process 128-bit vector and 
scalar data. The arithmetic operations cover fused multiply-add, 
fused multiply-subtract, signed-reversed multiply on fused 
multiply-add and multiply-subtract.” [5] (pp 5.3-5.35). 
 

Table 1. x86-64 Mnemonics by name 
Group Mnemonics 

General Purpose 
32, 14, 6, 4, 9, 25, 31, 181, 8, 2, 11, 5, 10, 5, 2, 
15 

197 

X87 FPU  
17, 26, 14, 8, 7, 20 92 

X87 FPU and SIMD State Management 2 
MMX 
2, 9, 17, 6, 4, 8, 1 47 

SSE 
8, 18, 4, 4, 3, 6, 2, 12, 5 62 

SSE2 
6, 14, 4, 4, 3, 13, 3, 14, 8 69 

SSE3 
1, 1, 2, 4, 3, 2 13 

SSSE3 
12, 6, 2, 2, 2, 6, 2 32 

SSE4.1 
2, 2, 1, 6, 8, 4, 7, 12, 1, 1, 1, 1, 1 47 

SSE4.2 72 
AESNI and PCLMULQDQ 7 
16-bit Floating Point Conversion 2 
Transactional Synchronization 6 
SHA Extensions 7 
Advanced Vector Extensions 512 (AVX 512) 
64, 18, 17, 3, 13, 6, 8 129 

System 463 
64-bit Mode Instructions 10 
Virtual Machine Support 13 
Safer Mode Extensions (SMX) 8 
Memory Protection Extensions 8 
Security Guard Extensions 18 

 

 
1 The string instruction mnemonics listed include “REP”, 

“REPE/REPZ”, and “REPNE/REPNZ” which are not 
instruction mnemonics but operation code prefixes. 

2  The documentation refers to “seven new instructions” but lists 
five in the description. 

3 There again is some overlap here and even the intel 
documentation is sometimes not correct. For example, “MOV” 

For AVX2, most of the SSE/SSE2/SSE3/SSSE3/SSE4 
instructions are supported for 256-bit operands in addition to the 
128-bit operands. This is handled by the VEX prefix encoding. 
An additional 29 “New Primitive AVX2 Instructions” are 
available as well [6]. 
 
The EVEX prefix is a four-byte instruction prefix which always 
starts with 0x62. The second byte (byte one) has some bit settings 
in common with REX. The two remaining bytes specify a source 
operand, the vector length (e.g. 256-bits), operand size prefixes 
which replace the usual 0x66 prefix, additional bits to expand the 
register number to 32, and other settings [7]. 
 
Based on the breakout in Table 1, culled from the intel instruction 
set reference, we add up 822 instruction mnemonics. But Heule 
et. al. states that the current x86-64 design “contains 981 unique 
mnemonics and a total of 3,684 instruction variants” [2]. 
However they do not specify which features are included in their 
count.  

2.4 General Instruction Layout 
There are numerous references, both online and from intel and 
AMD which describe the x86-32 and x86-64 instruction formats, 
and there is no need to duplicate all of this information here. 
However, an overview of one x86 feature is worth exploring 
before we discuss our approaches. This feature is the instruction 
prefix, which includes “legacy” prefixes – a holdover from 
previous instruction sets – and current prefixes which include 
REX, VEX, and others needed for advanced features. 

2.4.1 Legacy Prefixes 
The instruction decoding as outlined in Figure 1 (at end of 
document) indicates the presence of so-called legacy prefixes. 
These are holdovers from the early x86 days as described 
previously and include four types:  

Group 1: LOCK (0xF0) was used for atomic memory accesses, 
REPNE (0xF2) and REPE (0xF3) are prefixes used to repeat 
string operations. Under certain CPUs, 0xF2 is used instead for 
the BOUND prefix. In theory, the repeat prefixes are only allowed 
for MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS. 

Group 2: Segment overrides (0x2E, 0x36, 0x3E, 0x26, 0x64, 
0x65) and branch hints (0x2E, 0x3E). These prefixes are ignored 
for x86-64 but permissible for backwards compatibility.  

Group 3: Operand size override (0x66). This allows x86-64 to use 
a different data type than is normally accessed by the operation.  
The intel documentation also includes this ominous warning: 
“Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions 
using a three-byte sequence of primary opcode bytes may use 66H 
as a mandatory prefix to express distinct functionality”. 

Group 4: Address size override (0x67). Similarly, this indicates 
that the address size is other than the default for this instruction.  

is listed as a system instruction twice, since one might be 
moving data into a control register or into a debug register. 
“LOCK” is listed as an instruction but is not an instruction but 
an instruction prefix.  
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2.4.2 Current Prefixes 
When the CPU is executing in 64-bit mode, the size overrides 
0x66 and 0x67 behave in a similar manner, selecting something 
other than the default operand or address size. And again, 
repeated size prefixes do nothing other than waste space. For 
example, repeating override 0x66 many times just serves to use 
additional bytes in the instruction.  

The more important prefix for x86-64 is REX – the register 
extension byte. This byte has values from 0x40 through 0x4F and 
the corresponding instructions in 32-bit mode are no longer 
available; these were the “INC” and “DEC” instructions, and 
different instructions with the same effect are available in 64-bit 
mode. The REX prefix adds an additional bit to select registers, 
so that 16 are available instead of eight, it contains a flag to alter 
the operand length which works in conjunction with the size 
overrides, and it allows for additional addressing modes to be 
selected. 

Additional prefixes for VEX and XOP instructions are also 
possible but were not considered in our study. Their use generally 
makes instructions longer than what we wish to consider. 

2.4.3 The Impact 
In our case both the legacy prefixes and the current prefixes have 
a direct impact on our quest to list all instructions.  

First, since the legacy prefixes are ignored in 64-bit mode, one 
can simply add them on the front of the instruction and it makes 
no difference4. Also, for an instruction using more than one 
legacy prefix, the order is unimportant, but an interesting side 
effect is the expected behavior when more than one legacy prefix 
of the same group is used. The documentation from intel does not 
prohibit this, it simply says: “For each instruction, it is only useful 
to include up to one prefix code from each of the four groups” [3] 
(pp 2.1). “Only useful” is not the same as “it will crash”. Different 
CPU models operating in 32-bit mode handle this differently, 
with some honoring the first prefix and ignoring subsequent 
prefixes, and others honoring only the last prefix encountered [7]. 
In 64-bit mode, since they are ignored, the order is immaterial. 

For our research question this causes an issue, since an instruction 
requiring, say, five bytes actually has a 5-byte version, several 6-
byte versions that contain one byte of legacy prefix, a 7-byte 
version with two bytes from the possibilities and in either order, 
and so on. Since multiple prefixes are ignored, we can fill the 
instruction to the 15-byte limit. This (non)restriction on prefixes 
allows a programmer to create any longer length just by adding 
superfluous prefixes in 64-bit mode. While detrimental for us, 
since for steganography we prefer short instructions, this can 
actually be useful in aligning code on boundaries, as for example 
executing one instruction that does nothing is faster than 
executing many instructions that do nothing [8].  

In terms of the REX prefix, there are at least two issues. First, “the 
use of multiple REX prefixes is undefined, although processors 
seem to use only the last REX prefix” [7]. If one knows the 
expected result on this particular CPU model, leading with (or 
trailing with) the appropriate REX instruction is possible. Or to 
simplify things, a programmer can make the first of many REX 
bytes and the last of many REX bytes both have the correct value 
for the instruction. Again, creating longer instructions that contain 
this prefix is simple. Secondly, another quirk worth mentioning is 

 
4  One legacy prefix, “LOCK” can only be combined with certain 

instructions. See [6]. 

that this prefix is required to be immediately preceding the 
opcode. According to intel, “Other placements are ignored” [3] 
(pp 2.8). Inserting a REX prefix before a legacy prefix wastes a 
byte and has no impact.  

3. ENUMERATING WITH EXHAUSTIVE 
SEARCH 
To create our data files, we utilized a C language library called 
Udis86 [9]. This library contains functionality to decode 
instructions and present a string representation of the original 
mnemonic. In the process it invokes a callback function supplied 
by the user to present the next byte in the decoding. We modified 
this library in the following ways: 

• Internally to the instruction decoding we differentiated 
between bytes used as a part of the operation code versus 
bytes used as operands. Table 2 below will describe this in 
greater detail.  

• The number of allowed prefix bytes can be limited 
programmatically when the library is initialized. This can be 
used to limit the number of legacy prefix bytes, for example. 
The library was modified so that if the number is exceeded 
for a certain type of prefix the instruction is considered 
invalid. 

• We added a string representation of the incoming bytes 
which is constructed as they are used by the decoder, and 
made this string available for our exhaustive search method 
outlined below. 

Once the library is modified to track opcode bytes versus operand 
bytes, it is possible to construct instruction strings which indicate 
which is byte is which function. We use the following characters 
to indicate operands: 

Table 2. Byte Indicators for Operands 
I Position of a 1-byte immediate value 
J Position of a 2-byte immediate value 
K 4-byte immediate value 
L 8-byte immediate value 
W Position of a 1-byte relative offset 
X Position of a 2-byte relative offset 
Y 4-byte relative offset 
Z 8-byte relative offset 

 
For example, if our supplied callback function provides, a byte at 
a time, 0x00, 0x5C, 0x28, 0x00 the result is: 

005C28WW  add [rax+rbp+0xWW], bl 
 
where the “WW” indicates a one-byte relative offset in the 
instruction. The modifications we have made to the decode library 
provide us a means of knowing which part of the instruction (and 
original hex) are operands. Similarly: 

664105JJJJ add ax, 0xJJJJ 
 
includes a size override (0x66 shifts to a 16-bit addition), and the 
instruction has a 16-bit constant built into the operation. Third, 

4067C2JJJJ a32 ret 0xJJJJ 
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is an example of a technically incorrect decoding; the 0x40 REX 
prefix is before the 0x67 address size override, and the latter 
serves no purpose since there is no address in the instruction. One 
last example is: 
 

0F0F4424WW0C pi2fw mm0, [rsp+0xWW] 
 
This is a 3Dnow instruction and we include this so that the reader 
will notice one fact: generally the immediate operands or 
addresses are at the end of the instruction, but when the 3Dnow 
operations were added to the mix by AMD they opted to include 
a byte of operation code after the operand.  

Our approach, since we are concerned with shorter instructions, 
is to perform a limited exhaustive search based on the number of 
bytes desired. Consider the case where we wish to create a list of 
all single bye instructions. Ask to decode the next instruction and 
when our callback is invoked, provide the decode library with 
0x00. If it invokes our callback function again the implication is 
that 0x00 is not a valid one-byte instruction but might be a valid 
prefix for something longer. But, as we are concerned only with 
one-byte instructions, we inform the decoder that we have 
encountered the end of the file, reset the library, and start the 
process again with 0x01. When we get to 0x50 the decoder will 
actually yield an instruction (push rax), the first of the one-
byte instructions, and this is added to the file.  

In this way generating all one-byte instructions is simple and we 
can expand the method to do all instructions that are two bytes 
and so on. However we need to be somewhat intelligent in order 
to cut down on the workload. We say our approach is “limited 
exhaustive search” due to instructions such as one mentioned 
above: 

0F0F4424WW0C pi2fw mm0, [rsp+0xWW] 
 

The next instructions to test after this are: 

0F0F4424000D pi2fd mm0, [rsp+0xWW] 
0F0F4424000E (not valid) 
… 
0F0F442400FF (not valid) 
0F0F44250000 (not valid) 

 

In other words, we need to intelligently skip over that portion of 
the byte stream that contains any of the immediate constants or 
addresses which are irrelevant. In the example we are skipping 
ahead 256 attempts, but clearly this is increasingly important as 
the constants get larger. For example: 

05KKKKKKKK add eax, 0xKKKKKKKK 
 
will send us down a blind alley of 232 useless attempts, all of 
which decode to the same thing.  

The search method uses an intelligent addition which looks at the 
previous string representation that was attempted, skips over 
bytes that are part of the constants outlined in Table 2, and 
increments “in the right place” for the next attempt. It also 
properly carries into the next (previous) byte. 

Finally, note that in the process of producing all instructions 
which are – for example – five bytes long, we will encounter all 
of the four-byte instructions along the way, but discard them as 
too short. A command line switch can be used to include all 

shorter byte sequences at the same time. We have opted to keep 
the files separate since for longer instructions the results are large.  

4. BUT IS IT CORRECT? 
Different tools decode instructions differently, which does not 
help our efforts. The online disassemblers in particular are each 
slightly different. We tested several byte strings against different 
tools to provide a flavor if the difficulty of “getting a straight 
answer”. Specifically we used the Online Disassembler [10],  
Shell-Storm [11], Udis86 library [9] in its original form (without 
our modifications), IdaPro [12], and the Linux tool “objdump” 
with the intel syntax. The results are in Table 4 (at the end of the 
document).  
Several quirks are apparent.  

• Different tools interpret superfluous size overrides 
differently. For example Udis86 will add “a32” or “o16” to 
prefixes that are not actually used, whereas Shell-Storm does 
not care, and IdaPro assumes it is an extra byte unrelated to 
the instruction. 

• But on the other hand Udis86 will quietly and correctly allow 
but ignore a REX prefix that is not immediately in front of 
the opcode, but without adding anything to the string that is 
generated.  

• Udis86 does not seem to always properly synchronize after 
what it considers an invalid opcode. The example in Table 4 
(at end) starting with 0x2E, 0x3E shows this. The Online 
Disassembler has the correct interpretation. 

• Objdump includes the mysterious nonexistent register RIZ 
[8]. 

 
So after all of this, what do we have? We created several files in 
the process, one for each instruction length from one through six. 
In the case of five- and six-byte instructions the files are split (e.g. 
a file of the five-byte instructions starting with 00-7F, …) so that 
they are not too large. Each contains what the Udis86 library 
considers as a valid decoded x86 instruction for the corresponding 
bytes, in the format above. For example: 
 

6641014CA0WW add [r8+0xWW], cx 
 
where the “WW” indicates the one-byte relative offset included 
in the operation code as described in Table 2. At the same time, 
this instruction is also included: 
  

4166014CA0WW add [rax+0xWW], cx 
 
This is one of the cases described previously, where the REX 
prefix is “too soon”. However, the intel documentation indicates 
that this is a valid instruction but with the prefix ignored. Testing 
on an intel Core i5 verifies that this is correct, and as a result we 
have left these instructions in the list as well. 
And our final results? Using the Udis86 library, Table 3 shows 
the numbers for each instruction length. 
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Table 3. Instruction Counts for Opcode Lengths 
Bytes Instruction 

Count 
1 64 
2 7,535 
3 243,697 
4 4,213,695 
5 67,964,490 
6 923,392,709 

 
These files are available for review should the reader wish to 
contact us. In terms of potential future work, we are considering, 
our limited exhaustive search with Udis86 seems to work, but the 
occasional duplications are worrisome. On the one hand, an 
extraneous prefix is, according to the documentation, ignored. 
But in terms of creating all instructions, should we consider them 
valid or invalid? Also, a different approach might be to use the 
newer XED project [13] which claims to provide “a more detailed 
internal format describing all resources read and written”, which 
may help to illuminate some of the dark corners of x86-64.  
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Table 4. Comparing Different Disassembly Tools 
Hex Instruction Tool Result 

66 67 05 11 11 

Online Disassembler a32 add ax, 0x1111 
Shell-Storm add ax, 0x1111 
udis86 a32 add ax, 0x1111 

IdaPro db 67h 
add ax, 1111h 

objdump -M intel  addr32 add ax, 0x1111 

40 66 05 11 11 

Online Disassembler rex add ax, 0x1111 
Shell-Storm add ax, 0x1111 
udis86 add ax, 0x1111 
IdaPro add ax, 1111h 

objdump -M intel  rex 
add ax, 0x1111 

2E 3E 26 64 65 36 F0 F3 66 05 
11 11 

Online Disassembler cs ds es fs gs ss lock repz add ax, 
0x1111 

Shell-Storm add ax, 0x1111 

udis86 Invalid 
adc [rcx], edx 

IdaPro db 2Eh, 3Eh, 26h, 64h, 65h, 36h 
lock rep add ax, 1111h 

objdump -M intel  cs ds es fs gs ss lock repz add ax, 
0x1111 

66 89 C0 / 66 8B C0 

Online Disassembler mov ax, ax / mov ax, ax 
Shell-Storm Invalid opcode(s) / Invalid opcode(s) 
udis86 mov ax, ax / mov ax, ax 
IdaPro mov ax, ax / mov ax, ax 
objdump -M intel  mov ax, ax / mov ax, ax 

66 0f 19 34 60 

Online Disassembler nop WORD PTR [rax+riz*2] 
Shell-Storm nop word ptr [rax] 
udis86 o16 nop [rax] 
IdaPro nop word ptr [rax] 
objdump -M intel  nop WORD PTR [rax+riz*2] 

 
 

 
Figure 1: Partial Overview of x86-64 Decoding 


