
 1

Enumerating x86-64 – It’s Not as Easy as Counting
William Mahoney J. Todd McDonald

University of Nebraska at Omaha
PKI 281-E

6001 Dodge Street
Omaha, Nebraska 68182

wmahoney@unomaha.edu

University of South Alabama
1121 Shelby Hall
150 Jaguar Drive
Mobile, AL 36688

jtmcdonald@southalabama.edu

ABSTRACT

In our work for software watermarking, we have been examining
the possibility of executable steganography, hiding intel/AMD
x86-64 instructions within the operands of other instructions.
Early thoughts about this concept revolved around creating a
database of sorts to reflect which x86-64 instructions had large
enough operand fields to hold the hidden payload. It was assumed
that this database would be easily constructed, but it turns out to
be a surprisingly difficult endeavor. Even the question of “how
many are there?” is challenging to answer. Different CPUs
support different instruction sets, different instruction decoders or
reverse assemblers give different results for the same combination
of bytes, and even the number of distinct mnemonics for
instructions is blurry. In the process of attempting to construct the
x86-64 database we encountered several stumbling blocks along
the way and we report on the stumbling blocks here. This white
paper is not a traditional research paper, with background, other
relevant prior work. Rather, it describes our attempts to answer
what we thought was a fairly simple question: for various
numbers of bytes, just how many legal x86-64 instructions exist?

CCS Concepts
• Computer systems organization à Architectures à Serial
architectures à Complex instruction set computing

Keywords
Instruction set, instruction decoding, mnemonics

1. INTRODUCTION
In the process of working on our executable steganography efforts
[1] we desired to construct a database of x86-64 instructions and
what we called their “cover numbers”. Our intent is to hide short
executable instructions inside the operands of longer x86-64
instructions in such a way that there would be a hidden payload
or watermark inside the code, and that this watermark not be
visible normally by reverse engineering tools. The “cover
number” of an instruction was defined as the number of bytes that
the instruction is capable of hiding. For instance, an x86-64
instruction with a 64-bit operand would be capable of secretly
encoding eight bytes in the operand, so it’s cover number would
be eight. Our early thoughts for the project included some kind of
searchable database, where, if I need an instruction with a cover
number of at least three, the database will tell me all potential
instructions.

Later it was determined that this database of cover numbers is not
as useful as a database of which instructions are available for
various numbers of bytes; rather than looking up an instruction to
see what it might be capable of hiding, the better approach is to
determine what operations require only one byte, or two, or three,
… In this way the author of the code which will be hidden can
select operations based on the number of opcode bytes.

Although the intel/AMD 64-bit instruction set is large, it would
seem that there would be a relatively simple / programmatically
easy way to generate all of the instructions and from there, or in
the process, to determine the number of bytes for each. Come to
find out this task is surprisingly difficult. Even as recently as 2016
one could assume that “a formal semantics of the current 64-bit
x86 ISA … would be readily available, but one would be wrong.
In fact, the only published description of the x86-64 ISA is the
Intel manual with over 3,800 pages written in an ad-hoc
combination of English and pseudo-code” [2].

So of course, when the assumption is that something should be
simple, often it is not, and this is only discovered after “jumping
in head first”. A result of this “jumping in” is reported here. Our
paper is less of a research tome and more of a running
commentary on how we approached the problem and what results
we had (or did not have!) along the way.

Section two presents terminology and states the problem in more
detail. Section three describes our approach to exhaustively
searching a list of x86 instructions. Are the results correct?
Surprisingly this is not an easy question to answer. The reasons
are given in section four, as well as some thoughts about future
changes which could be made to shed some illumination on the
answer.

2. THE PROBLEM
In a nutshell our question is: how many valid byte combinations
correspond to legal x86-64 architecture instructions of a certain
length? Can they be enumerated, and if so how? Specifically, due
to our steganography work we are interested in instructions whose
size is six or fewer bytes.

2.1 Considerations
On the surface the issue of constructing our valid instruction list
seems an easy problem. But consider:

• The number of potential x86-64 instructions is huge, as the
hardware limit is the number of bytes that the CPU is willing
to fetch for one instruction. On x86-64 this is 15 bytes [3]
(pp 208) and as a result there are 215*8 potential instructions.

• Certain prefix bytes can be added in advance of the
instruction, some of them causing extended behavior and
some of them having no effect whatsoever. As a result, a
simple instruction such as an addition of two registers can

This research is supported by the National Science
Foundation under the Secure and Trusted Computing
(SaTC) grants CNS-1811560 and 1811578. The project
is a collaborative effort between the University of
Nebraska at Omaha (UNO) and the University of South
Alabama (USA).

 2

have many variations in the byte encoding and yet all
perform an identical function.

• Some CPUs include additional features such as Multimedia
Extensions (MMX) and some do not. The number of valid
instructions is thus CPU model dependent. When we say
“legal instructions” this needs to be accommodated.

To clarify, when we refer to “instructions” we are describing all
possible forms of the instruction. For example, “MOV” is one
operation mnemonic but there are many potential encodings,
depending on the desired source, destination, and size of the
operands. We thus need to be clear that when we use the term
“instructions” we are describing byte sequences and not
mnemonics. When we refer to “MOV instructions” or just
“instructions” we are referring to all possible “MOV” operations,
or all operations in general, respectively.

In the above issues list, the instruction prefixes in particular make
this a thorny issue. To explain why the instruction set is so
complex requires a bit of x86 history and an overview of the
resulting layout of instructions.

2.2 x86 History
Why is the x86-64 instruction set so hard to describe? For
historical reasons. Intel (and AMD) have long attempted to
maintain backwards compatibility, stretching back as far as 1978.
In the process, the various warts and blemishes continue to be
replicated over the years. The original 8086 and 8088 16-bit
CPUs were follow-ons to the popular 8-bit CPUs developed by
intel, the 8080 and the almost identical 8085 [4]. When the 32-bit
architecture was created the attempt was to make it compatible
with the 16-bit 8086, which was in turn mostly designed to be a
better version of the original 8080. This compatibility has caused
aspects of the modern day x86-64 to reflect items from 40 years
ago, including, for instance, the ability to access bits 8-15 of
certain general-purpose registers.
What follows is a very abridged version of the history of the x86
CPU. The descriptions include direct excerpts from [5] (pp 2.1-
2.6) except where italicized. Briefly:
1978 – The 8086 has 16-bit registers and a 16-bit external data
bus, with 20-bit addressing giving a 1-MByte address space. The
8086/8088 introduced segmentation to the IA-32 architecture.
1982 – The Intel 286 processor introduced protected mode
operation into the IA-32 architecture. Protected mode uses the
segment register content as selectors or pointers into descriptor
tables.
1985 – The Intel386 processor was the first 32-bit processor in
the IA-32 architecture family. It introduced 32-bit registers for
use both to hold operands and for addressing. The lower half of
each 32-bit Intel386 register retains the properties of the 16-bit
registers of earlier generations, permitting backward
compatibility.
1989 – The Intel486™ processor added more parallel execution
capability by expanding the Intel386 processor’s instruction
decode and execution units into five pipelined stages.
1993 – The introduction of the Intel Pentium processor added a
second execution pipeline … A subsequent stepping of the
Pentium family introduced Intel MMX technology … uses the
single-instruction, multiple-data (SIMD) execution model to
perform parallel computations on packed integer data contained
in 64-bit registers.

1995-1999 – The P6 family of processors … includes the Pentium
Pro, Pentium II and Pentium II Xeon, Celeron, Pentium III and
Pentium III Xeon. (Most of the changes in this period are internal
architecture enhancements, but the P-III introduces the SSE
instructions.)
2000-2007 – The Intel Pentium 4 processor introduced Streaming
SIMD Extensions 2 (SSE2) … The Intel Pentium 4 processor 3.40
GHz, supporting Hyper-Threading Technology introduced
Streaming SIMD Extensions 3 (SSE3). The 64-bit Intel Xeon
processor 3.60 GHz … was used to introduce Intel 64
architecture. The Intel Xeon processor 5200, 5400, and 7400
series … improves the performance of Intel® Advanced Digital
Media Boost and SSE4.
2008 – The first generation of Intel Atom processors … Support
for instruction set extensions up to and including Supplemental
Streaming SIMD Extensions 3 (SSSE3). The Intel Core i7
processor 900 series support for SSE4.2 and SSE4.1 instruction
sets.
2010 – Intel Core processor family spans Intel Core i7, i5 and i3
processors … Range of instruction set support up to AESNI,
PCLMULQDQ, SSE4.2 and SSE4.1.
2013 – Intel Atom Processor C2xxx, E3xxx, S1xxx series …
supports instruction set extensions up to and including SSE4.2,
AESNI, and PCLMULQDQ.
Today – Beginning with the Pentium II and Pentium with Intel
MMX technology processor families, six extensions have been
introduced into the Intel 64 and IA-32 architectures to perform
single-instruction multiple-data (SIMD) operations. These
extensions include the MMX technology, SSE extensions, SSE2
extensions, SSE3 extensions, Supplemental Streaming SIMD
Extensions 3, and SSE4. Each of these extensions provides a
group of instructions that perform SIMD operations on packed
integer and/or packed floating-point data elements.
The point to take away from this historical perspective is that
starting in 1978, intel has attempted to maintain backwards
compatibility from generation to generation starting from the
8086 CPU, which in turn was designed as an upgrade from the
8080 and 80805 8-bit CPUs. Along the way, we see the
introduction of 32- and then 64-bit instructions as well as six
SIMD instruction sets, all of which need to be “bolted on” to the
set of operation codes from 1978. To put this in perspective, the
next section provides an indication of the current state of x86-64
instruction mnemonics.

2.3 What Do the Doc’s Say?
In general, our problem statement is to list valid sequences of
bytes and the instructions that each sequence corresponds to. But
to get a general idea of the magnitude of the problem, it is worth
digressing for a moment to discuss the number of valid
mnemonics for the instructions instead of the byte sequences.
This will serve to demonstrate that the number of sequences is
dependent on the CPU model and which features are supported.
As a starting point, Table 1 corresponds to the number of
instruction mnemonics, by category. For each table row, the
presence of a set of numbers corresponds to the different sub-
groups of instructions within the major category. For example, the
“General Purpose” instructions include 32 “Data Transfer”, 14
“Binary Arithmetic”, and so on. The total in the group is
displayed. All instruction counts in this table are for intel and are
from [5] (pp 5.1-5.36).

 3

In addition to those in Table 1, CPUs after about 2010 include the
Advanced Vector Extensions, with about 243 instructions. We
say “about” because quite a number of these are the same as
previous SIMD instructions but with new 256-bit equivalents.
The encoding of an instruction prefix (of course), VEX, uses
either two or three bytes prior to the operation code. This prefix
provides a compressed representation of the REX prefix, as well
as various other operation prefixes, and expands the addressing
mode, register number, and operand size and width.

Newer CPUs may also include Fused Multiply Add: “FMA
extensions provide 36 256-bit floating-point instructions to
perform computation on 256-bit vectors and additional 128-bit
and scalar FMA instructions. FMA extensions also provide 60
128-bit floating-point instructions to process 128-bit vector and
scalar data. The arithmetic operations cover fused multiply-add,
fused multiply-subtract, signed-reversed multiply on fused
multiply-add and multiply-subtract.” [5] (pp 5.3-5.35).

Table 1. x86-64 Mnemonics by name
Group Mnemonics

General Purpose
32, 14, 6, 4, 9, 25, 31, 181, 8, 2, 11, 5, 10, 5, 2,
15

197

X87 FPU
17, 26, 14, 8, 7, 20 92

X87 FPU and SIMD State Management 2
MMX
2, 9, 17, 6, 4, 8, 1 47

SSE
8, 18, 4, 4, 3, 6, 2, 12, 5 62

SSE2
6, 14, 4, 4, 3, 13, 3, 14, 8 69

SSE3
1, 1, 2, 4, 3, 2 13

SSSE3
12, 6, 2, 2, 2, 6, 2 32

SSE4.1
2, 2, 1, 6, 8, 4, 7, 12, 1, 1, 1, 1, 1 47

SSE4.2 72
AESNI and PCLMULQDQ 7
16-bit Floating Point Conversion 2
Transactional Synchronization 6
SHA Extensions 7
Advanced Vector Extensions 512 (AVX 512)
64, 18, 17, 3, 13, 6, 8 129

System 463
64-bit Mode Instructions 10
Virtual Machine Support 13
Safer Mode Extensions (SMX) 8
Memory Protection Extensions 8
Security Guard Extensions 18

1 The string instruction mnemonics listed include “REP”,

“REPE/REPZ”, and “REPNE/REPNZ” which are not
instruction mnemonics but operation code prefixes.

2 The documentation refers to “seven new instructions” but lists
five in the description.

3 There again is some overlap here and even the intel
documentation is sometimes not correct. For example, “MOV”

For AVX2, most of the SSE/SSE2/SSE3/SSSE3/SSE4
instructions are supported for 256-bit operands in addition to the
128-bit operands. This is handled by the VEX prefix encoding.
An additional 29 “New Primitive AVX2 Instructions” are
available as well [6].

The EVEX prefix is a four-byte instruction prefix which always
starts with 0x62. The second byte (byte one) has some bit settings
in common with REX. The two remaining bytes specify a source
operand, the vector length (e.g. 256-bits), operand size prefixes
which replace the usual 0x66 prefix, additional bits to expand the
register number to 32, and other settings [7].

Based on the breakout in Table 1, culled from the intel instruction
set reference, we add up 822 instruction mnemonics. But Heule
et. al. states that the current x86-64 design “contains 981 unique
mnemonics and a total of 3,684 instruction variants” [2].
However they do not specify which features are included in their
count.

2.4 General Instruction Layout
There are numerous references, both online and from intel and
AMD which describe the x86-32 and x86-64 instruction formats,
and there is no need to duplicate all of this information here.
However, an overview of one x86 feature is worth exploring
before we discuss our approaches. This feature is the instruction
prefix, which includes “legacy” prefixes – a holdover from
previous instruction sets – and current prefixes which include
REX, VEX, and others needed for advanced features.

2.4.1 Legacy Prefixes
The instruction decoding as outlined in Figure 1 (at end of
document) indicates the presence of so-called legacy prefixes.
These are holdovers from the early x86 days as described
previously and include four types:

Group 1: LOCK (0xF0) was used for atomic memory accesses,
REPNE (0xF2) and REPE (0xF3) are prefixes used to repeat
string operations. Under certain CPUs, 0xF2 is used instead for
the BOUND prefix. In theory, the repeat prefixes are only allowed
for MOVS, CMPS, SCAS, LODS, STOS, INS, and OUTS.

Group 2: Segment overrides (0x2E, 0x36, 0x3E, 0x26, 0x64,
0x65) and branch hints (0x2E, 0x3E). These prefixes are ignored
for x86-64 but permissible for backwards compatibility.

Group 3: Operand size override (0x66). This allows x86-64 to use
a different data type than is normally accessed by the operation.
The intel documentation also includes this ominous warning:
“Some SSE2/SSE3/SSSE3/SSE4 instructions and instructions
using a three-byte sequence of primary opcode bytes may use 66H
as a mandatory prefix to express distinct functionality”.

Group 4: Address size override (0x67). Similarly, this indicates
that the address size is other than the default for this instruction.

is listed as a system instruction twice, since one might be
moving data into a control register or into a debug register.
“LOCK” is listed as an instruction but is not an instruction but
an instruction prefix.

 4

2.4.2 Current Prefixes
When the CPU is executing in 64-bit mode, the size overrides
0x66 and 0x67 behave in a similar manner, selecting something
other than the default operand or address size. And again,
repeated size prefixes do nothing other than waste space. For
example, repeating override 0x66 many times just serves to use
additional bytes in the instruction.

The more important prefix for x86-64 is REX – the register
extension byte. This byte has values from 0x40 through 0x4F and
the corresponding instructions in 32-bit mode are no longer
available; these were the “INC” and “DEC” instructions, and
different instructions with the same effect are available in 64-bit
mode. The REX prefix adds an additional bit to select registers,
so that 16 are available instead of eight, it contains a flag to alter
the operand length which works in conjunction with the size
overrides, and it allows for additional addressing modes to be
selected.

Additional prefixes for VEX and XOP instructions are also
possible but were not considered in our study. Their use generally
makes instructions longer than what we wish to consider.

2.4.3 The Impact
In our case both the legacy prefixes and the current prefixes have
a direct impact on our quest to list all instructions.

First, since the legacy prefixes are ignored in 64-bit mode, one
can simply add them on the front of the instruction and it makes
no difference4. Also, for an instruction using more than one
legacy prefix, the order is unimportant, but an interesting side
effect is the expected behavior when more than one legacy prefix
of the same group is used. The documentation from intel does not
prohibit this, it simply says: “For each instruction, it is only useful
to include up to one prefix code from each of the four groups” [3]
(pp 2.1). “Only useful” is not the same as “it will crash”. Different
CPU models operating in 32-bit mode handle this differently,
with some honoring the first prefix and ignoring subsequent
prefixes, and others honoring only the last prefix encountered [7].
In 64-bit mode, since they are ignored, the order is immaterial.

For our research question this causes an issue, since an instruction
requiring, say, five bytes actually has a 5-byte version, several 6-
byte versions that contain one byte of legacy prefix, a 7-byte
version with two bytes from the possibilities and in either order,
and so on. Since multiple prefixes are ignored, we can fill the
instruction to the 15-byte limit. This (non)restriction on prefixes
allows a programmer to create any longer length just by adding
superfluous prefixes in 64-bit mode. While detrimental for us,
since for steganography we prefer short instructions, this can
actually be useful in aligning code on boundaries, as for example
executing one instruction that does nothing is faster than
executing many instructions that do nothing [8].

In terms of the REX prefix, there are at least two issues. First, “the
use of multiple REX prefixes is undefined, although processors
seem to use only the last REX prefix” [7]. If one knows the
expected result on this particular CPU model, leading with (or
trailing with) the appropriate REX instruction is possible. Or to
simplify things, a programmer can make the first of many REX
bytes and the last of many REX bytes both have the correct value
for the instruction. Again, creating longer instructions that contain
this prefix is simple. Secondly, another quirk worth mentioning is

4 One legacy prefix, “LOCK” can only be combined with certain

instructions. See [6].

that this prefix is required to be immediately preceding the
opcode. According to intel, “Other placements are ignored” [3]
(pp 2.8). Inserting a REX prefix before a legacy prefix wastes a
byte and has no impact.

3. ENUMERATING WITH EXHAUSTIVE
SEARCH
To create our data files, we utilized a C language library called
Udis86 [9]. This library contains functionality to decode
instructions and present a string representation of the original
mnemonic. In the process it invokes a callback function supplied
by the user to present the next byte in the decoding. We modified
this library in the following ways:

• Internally to the instruction decoding we differentiated
between bytes used as a part of the operation code versus
bytes used as operands. Table 2 below will describe this in
greater detail.

• The number of allowed prefix bytes can be limited
programmatically when the library is initialized. This can be
used to limit the number of legacy prefix bytes, for example.
The library was modified so that if the number is exceeded
for a certain type of prefix the instruction is considered
invalid.

• We added a string representation of the incoming bytes
which is constructed as they are used by the decoder, and
made this string available for our exhaustive search method
outlined below.

Once the library is modified to track opcode bytes versus operand
bytes, it is possible to construct instruction strings which indicate
which is byte is which function. We use the following characters
to indicate operands:

Table 2. Byte Indicators for Operands
I Position of a 1-byte immediate value
J Position of a 2-byte immediate value
K 4-byte immediate value
L 8-byte immediate value
W Position of a 1-byte relative offset
X Position of a 2-byte relative offset
Y 4-byte relative offset
Z 8-byte relative offset

For example, if our supplied callback function provides, a byte at
a time, 0x00, 0x5C, 0x28, 0x00 the result is:

005C28WW add [rax+rbp+0xWW], bl

where the “WW” indicates a one-byte relative offset in the
instruction. The modifications we have made to the decode library
provide us a means of knowing which part of the instruction (and
original hex) are operands. Similarly:

664105JJJJ add ax, 0xJJJJ

includes a size override (0x66 shifts to a 16-bit addition), and the
instruction has a 16-bit constant built into the operation. Third,

4067C2JJJJ a32 ret 0xJJJJ

 5

is an example of a technically incorrect decoding; the 0x40 REX
prefix is before the 0x67 address size override, and the latter
serves no purpose since there is no address in the instruction. One
last example is:

0F0F4424WW0C pi2fw mm0, [rsp+0xWW]

This is a 3Dnow instruction and we include this so that the reader
will notice one fact: generally the immediate operands or
addresses are at the end of the instruction, but when the 3Dnow
operations were added to the mix by AMD they opted to include
a byte of operation code after the operand.

Our approach, since we are concerned with shorter instructions,
is to perform a limited exhaustive search based on the number of
bytes desired. Consider the case where we wish to create a list of
all single bye instructions. Ask to decode the next instruction and
when our callback is invoked, provide the decode library with
0x00. If it invokes our callback function again the implication is
that 0x00 is not a valid one-byte instruction but might be a valid
prefix for something longer. But, as we are concerned only with
one-byte instructions, we inform the decoder that we have
encountered the end of the file, reset the library, and start the
process again with 0x01. When we get to 0x50 the decoder will
actually yield an instruction (push rax), the first of the one-
byte instructions, and this is added to the file.

In this way generating all one-byte instructions is simple and we
can expand the method to do all instructions that are two bytes
and so on. However we need to be somewhat intelligent in order
to cut down on the workload. We say our approach is “limited
exhaustive search” due to instructions such as one mentioned
above:

0F0F4424WW0C pi2fw mm0, [rsp+0xWW]

The next instructions to test after this are:

0F0F4424000D pi2fd mm0, [rsp+0xWW]
0F0F4424000E (not valid)
…
0F0F442400FF (not valid)
0F0F44250000 (not valid)

In other words, we need to intelligently skip over that portion of
the byte stream that contains any of the immediate constants or
addresses which are irrelevant. In the example we are skipping
ahead 256 attempts, but clearly this is increasingly important as
the constants get larger. For example:

05KKKKKKKK add eax, 0xKKKKKKKK

will send us down a blind alley of 232 useless attempts, all of
which decode to the same thing.

The search method uses an intelligent addition which looks at the
previous string representation that was attempted, skips over
bytes that are part of the constants outlined in Table 2, and
increments “in the right place” for the next attempt. It also
properly carries into the next (previous) byte.

Finally, note that in the process of producing all instructions
which are – for example – five bytes long, we will encounter all
of the four-byte instructions along the way, but discard them as
too short. A command line switch can be used to include all

shorter byte sequences at the same time. We have opted to keep
the files separate since for longer instructions the results are large.

4. BUT IS IT CORRECT?
Different tools decode instructions differently, which does not
help our efforts. The online disassemblers in particular are each
slightly different. We tested several byte strings against different
tools to provide a flavor if the difficulty of “getting a straight
answer”. Specifically we used the Online Disassembler [10],
Shell-Storm [11], Udis86 library [9] in its original form (without
our modifications), IdaPro [12], and the Linux tool “objdump”
with the intel syntax. The results are in Table 4 (at the end of the
document).
Several quirks are apparent.

• Different tools interpret superfluous size overrides
differently. For example Udis86 will add “a32” or “o16” to
prefixes that are not actually used, whereas Shell-Storm does
not care, and IdaPro assumes it is an extra byte unrelated to
the instruction.

• But on the other hand Udis86 will quietly and correctly allow
but ignore a REX prefix that is not immediately in front of
the opcode, but without adding anything to the string that is
generated.

• Udis86 does not seem to always properly synchronize after
what it considers an invalid opcode. The example in Table 4
(at end) starting with 0x2E, 0x3E shows this. The Online
Disassembler has the correct interpretation.

• Objdump includes the mysterious nonexistent register RIZ
[8].

So after all of this, what do we have? We created several files in
the process, one for each instruction length from one through six.
In the case of five- and six-byte instructions the files are split (e.g.
a file of the five-byte instructions starting with 00-7F, …) so that
they are not too large. Each contains what the Udis86 library
considers as a valid decoded x86 instruction for the corresponding
bytes, in the format above. For example:

6641014CA0WW add [r8+0xWW], cx

where the “WW” indicates the one-byte relative offset included
in the operation code as described in Table 2. At the same time,
this instruction is also included:

4166014CA0WW add [rax+0xWW], cx

This is one of the cases described previously, where the REX
prefix is “too soon”. However, the intel documentation indicates
that this is a valid instruction but with the prefix ignored. Testing
on an intel Core i5 verifies that this is correct, and as a result we
have left these instructions in the list as well.
And our final results? Using the Udis86 library, Table 3 shows
the numbers for each instruction length.

 6

Table 3. Instruction Counts for Opcode Lengths
Bytes Instruction

Count
1 64
2 7,535
3 243,697
4 4,213,695
5 67,964,490
6 923,392,709

These files are available for review should the reader wish to
contact us. In terms of potential future work, we are considering,
our limited exhaustive search with Udis86 seems to work, but the
occasional duplications are worrisome. On the one hand, an
extraneous prefix is, according to the documentation, ignored.
But in terms of creating all instructions, should we consider them
valid or invalid? Also, a different approach might be to use the
newer XED project [13] which claims to provide “a more detailed
internal format describing all resources read and written”, which
may help to illuminate some of the dark corners of x86-64.

5. REFERENCES
[1] W. Mahoney, J. Franco, G. Hoff and J. T. McDonald,

"Leave it to Weaver," in SSPREW, San Juan, Puerto Rico,
2018.

[2] S. Heule, E. Schkufza, R. Sharma and A. Aiken, "Stratified
Synthesis: Automatically Learning the x86-64 Instruction
Set," in Programming Language Design and
Implementation (PLDI), Santa Barbara, 2016.

[3] intel, Intel® 64 and IA-32 Architectures Software
Developer’s Manual Volume 2 (2A, 2B, 2C & 2D):
Instruction Set Reference, A-Z, intel, 2016.

[4] intel, "intel 8080 Microcomputer Systems User's Manual,"
September 1975. [Online]. Available:
http://www.nj7p.info/Manuals/PDFs/Intel/9800153B.pdf.
[Accessed 12 December 2018].

[5] intel, Intel® 64 and IA-32 Architectures Software

Developer’s Manual Volume 1: Basic Architecture, intel,
2016.

[6] P. Gepner, "Using AVX2 Instruction Set to Increase
Performance of High Performance Computing Code,"
Computing and Informatics, vol. 36, pp. 1001-1018, 2017.

 [7] OSDev.org, "X86-64 Instruction Encoding," [Online].
Available: https://wiki.osdev.org/X86-
64_Instruction_Encoding. [Accessed 13 December 2918].

[8] Answiz, "What is register %eiz?," [Online]. Available:
https://www.answiz.com/questions/18663/what-is-register-
eiz. [Accessed 13 December 2018].

[9] Udis86, [Online]. Available: http://udis86.sourceforge.net.
[Accessed 1 December 2018].

[10] "Online Disassembler," [Online]. Available:
https://onlinedisassembler.com/static/home/index.html.
[Accessed 12 December 2018].

[11] "Online Assembler and Disassembler," [Online]. Available:
http://shell-storm.org/online/Online-Assembler-and-
Disassembler/. [Accessed 12 December 2018].

[12] "IDA: About," [Online]. Available: https://www.hex-
rays.com/products/ida/. [Accessed 12 December 2018].

[13] M. Charney, "X86 Encoder Decoder," [Online]. Available:
https://intelxed.github.io/ref-manual/index.html. [Accessed
3 January 2019].

 7

Table 4. Comparing Different Disassembly Tools
Hex Instruction Tool Result

66 67 05 11 11

Online Disassembler a32 add ax, 0x1111
Shell-Storm add ax, 0x1111
udis86 a32 add ax, 0x1111

IdaPro db 67h
add ax, 1111h

objdump -M intel addr32 add ax, 0x1111

40 66 05 11 11

Online Disassembler rex add ax, 0x1111
Shell-Storm add ax, 0x1111
udis86 add ax, 0x1111
IdaPro add ax, 1111h

objdump -M intel rex
add ax, 0x1111

2E 3E 26 64 65 36 F0 F3 66 05
11 11

Online Disassembler cs ds es fs gs ss lock repz add ax,
0x1111

Shell-Storm add ax, 0x1111

udis86 Invalid
adc [rcx], edx

IdaPro db 2Eh, 3Eh, 26h, 64h, 65h, 36h
lock rep add ax, 1111h

objdump -M intel cs ds es fs gs ss lock repz add ax,
0x1111

66 89 C0 / 66 8B C0

Online Disassembler mov ax, ax / mov ax, ax
Shell-Storm Invalid opcode(s) / Invalid opcode(s)
udis86 mov ax, ax / mov ax, ax
IdaPro mov ax, ax / mov ax, ax
objdump -M intel mov ax, ax / mov ax, ax

66 0f 19 34 60

Online Disassembler nop WORD PTR [rax+riz*2]
Shell-Storm nop word ptr [rax]
udis86 o16 nop [rax]
IdaPro nop word ptr [rax]
objdump -M intel nop WORD PTR [rax+riz*2]

Figure 1: Partial Overview of x86-64 Decoding

