
Discrete Mathematics in a Nutshell

or Theoretical Foundations of Computer Science

Yuliya Lierler
University of Nebraska at Omaha

Dedicated to
my teacher Vladimir Lifschitz

Preface

This textbook has been largely inspired by the style of teaching practiced by Vladimir Lifschitz during my
years at the University of Texas at Austin. It was Spring 1999 when I took CS 336 titled ”Analysis of
Programs” and devoted to proofs of program correctness. Vladimir Lifschitz class surveyed mathematical
techniques useful in the analysis and verification of programs. In his teaching, Dr. Lifschitz relied on a set
of concise lecture notes consisting of mathematical definitions and problem statements. The students were
tasked to study the definitions, and use these to tackle the given problems at home. Then, a lecture hall
would turn into an interactive classroom, where students would present their solutions on a blackboard. This
style of teaching mathematics is attributed to Robert Lee Moore, a topologist who practiced this art at the
University of Pennsylvania when he began teaching in 1911.

This textbook is meant to assist the instructors in introducing elements of Moore’s style of teaching into
their classroom. It can also be used in a more traditional settings, where the content of the textbook serves
the basis for classical lectures while the students can be tasked from time to time with the exercises sprinkled
across the text. As a textbook it not only lists the definitions but also illustrates these on examples and
provides solutions to some of the stated problems. This text attempts to present material as concisely as
possible. In addition, each section contains exercises. These are meant to be solved by students. The content
of the book should be all that the students need to tackle these problems. As such the text can be used for
the self study of the material. The conciseness of the text should not allude that the material presented is
of great simplicity, rather the students are invited to experience the beauty and complexity of the material
by putting their thoughts and effort into solving exercises.

In my lectures, I follow the material of the textbook almost verbatim. Often, I invite students during
the class time or home to tackle the relevant exercises individually for a while, and then group the students
together to check on their joint understanding of a problem and solutions they propose. At last a solution
is requested to be shared with the whole class on the blackboard.

This textbook is the result of conversion of lecture notes for the course titled ”Theoretical Foundations
of Computer Science” at the University of Nebraska Omaha, where I have been teaching this course for
over a decade. Some of the material was inspired by the lecture notes on mathematical logic by Vladimir
Lifschitz posted at http://www.cs.utexas.edu/~vl/teaching/388Lnotes.pdf as well as his lecture notes
for University of Texas at Austin CS 311 by the same author.

Conventions Across the textbook, the italics font is utilized primarily to mark the concepts that are being
defined. Hence if you are looking for a definition of a concept look for this term being written in italics.

http://www.cs.utexas.edu/~vl/teaching/388Lnotes.pdf

Contents

1 Basic Structures: Sets, Functions, Sequences, Sums 4
1.1 Sets Basics . 4
1.2 Sets Operations . 6
1.3 Functions . 8
1.4 Sequences and Summations . 11

2 Elements of Mathematical Logic and Proofs 15
2.1 Syntax and Semantics of Propositional Formulas . 16
2.2 Tautologies, Equivalence, Satisfiability and Entailment . 19
2.3 Inference . 22
2.4 Elements of Predicate Logic . 28
2.5 Predicate Logic, Formally . 31
2.6 Elements of Mathematical Proofs . 36

3 Growth of Functions 38
3.1 Calculus Notion of Function Growth Rate . 38
3.2 Big-O Notation . 39

4 Elements on Algorithms and their Complexity 42
4.1 Algorithms and their Properties . 42
4.2 Time Complexity of Algorithms . 43

5 Induction and Recursive Definitions 45
5.1 Proofs by Induction . 45
5.2 Strong and Structural Induction . 47

6 Recursive Definitions 51

7 Counting 54
7.1 The Product Rule . 54
7.2 The Sum Rule . 55
7.3 The Pigeonhole Principle . 55
7.4 Permutations and Combinations . 56

8 Relations 58
8.1 Relations and their Kinds: Reflexive, Symmetric, Transitive 58
8.2 Equivalence Relations and Partitions . 59

9 Graphs 61
9.1 Undirected Graphs . 61
9.2 Directed Graphs . 62

10 Elements on Proving Partial Correctness of Programs 63

3

1 Basic Structures: Sets, Functions, Sequences, Sums

1.1 Sets Basics

We will study “naive set theory”, which is defined in natural language (unlike axiomatic set theories defined
using formal logic). A set is an unordered collection of “objects”. The objects in a set are called the elements,
or members, of the set. A set is said to contain its elements.

The membership question is the primary operation on a set. That is, given a set A and an element x, we
would like to know if x is a member of A. The set membership operator is the symbol ∈ and we write x ∈ A,
when x is a member of A; and x ̸∈ A, when x is not a member of A.

Specifying Sets A set can be specified in several ways:

• exhaustive enumeration: {3, 5, 7, 9, 11, 13}. Note how curly brackets are used to mark the fact that
we are speaking about a set. In this example, the set containing exactly six elements is considered,
namely, 3, 5, 7, 9, 11, and 13 (which happened to be all odd numbers between 2 and 14).

• ellipsis . . . : {3, 5, 7, . . . , 14}. Note that . . . hide the details of how elements of a set are “generated”.
Ellipsis can be used in good faith when the function for generating the next element in a set is simple
(understood by the audience). For instance, in this case we specified the same set as in the previous
bullet.

• Set builder notation: {x | x is odd and 2 < x < 14}. To the right of the |-symbol we list a condition
so that whenever an element satisfies this condition it is considered to be a member of the specified
set. It is easy to see that the set specified in this bullet coincides with the set specified above.

Some common sets and their “names“:

N def
= {0, 1, 2, . . . } the set of natural numbers

Z
def
= {. . . ,−2,−1, 0, 1, 2, . . . } the set of integers

Z+ def
= {1, 2, . . . } the set of positive integers

Q
def
= {p/q | p ∈ Z and q ∈ Z and q ̸= 0} the set of rational number

R the set of real numbers

By symbol ∅ we denote the set that contains no elements. We say that a set is a singleton if it consists
of exactly one element. For instance, set {∅} is a singleton set, whose only member is an empty set.

Relational Operators Two sets are equal if and only if they have the same elements; or, in other words,
sets A and B are equal, denoted A = B, when for any object x, the following holds x ∈ A if and only
if x ∈ B. For example, sets {1, 2, 2, 3} = {2, 1, 3} = {1, 2, 3}.

In the sequel, we often separate elements of the sets by empty spaces in place of commas so that we can
write {1, 2} and {1 2} to denote the same set consisting of two elements 1 and 2.

Exercise 1. Which of the following pairs of sets are equal:

• {a b c} and {b a c}

• {a b c} and {b b a c}

• {a b c} and {a {b} c}

• {a b c} and {a b c ∅}

We say that set A is a subset of set B, denoted A ⊆ B, when for every object x if x ∈ A then x ∈ B. We
say that set A is a proper (strict) subset of set B, denoted A ⊂ B, when A ⊆ B and there exists an element x
in B such that it is not an element of A. For instance, {1} ⊆ {1, 2} ⊆ {1, 2}, while {1} ⊂ {1, 2} ̸⊂ {1, 2}.

It is easy to see that for every set A, ∅ ⊆ A and A ⊆ A.

4

Exercise 2. Which of the following statements hold:

• a ∈ {a b c}

• {a b} ∈ {a b c}

• {a b} ∈
{
{a b} c

}
• ∅ ⊆

{
{a b} c

}
• {a b} ⊂ {a b c}

• {a b} ⊂ {a b}

• {a b} ⊆ {a b}

Two Primitive Operations: Cardinality and Powerset For a finite set A, the cardinality of A,
denoted |A|, is the number of (distinct) elements in A. For a set A, we call the set of all its subsets the
powerset of A, denoted P(A). For example,

|{1}| = |
{
{a b}

}
| = |{∅}| = 1,

|∅| = 0,

P
(
{1 2}

)
=

{
∅ {1} {2} {1, 2}

}
.

Exercise 3. Compute the cardinalities of the following sets

• {a b c}

• {a b 5}

•
{
a b {Γ Θ}

}
•
{{
{a b c}

}}
• P

(
{a b}

)
Cartesian Products The order of elements in a collection is often important. To capture order we
introduce a new concept called an ordered tuple. The ordered n-tuple (a1, a2, . . . , an) is the ordered collection
that has a1 as its first element, a2 as its second element, . . . , and an as its nth element.

For ordered tuples (a1, . . . an) and (b1, . . . bm) we say that they are equal, written (a1, . . . an) = (b1, . . . bm),
when

• n = m and

• for every i, 1 ≤ i ≤ n, it holds that ai = bi.

For instance, (1, 2) = (1, 2), (1, 2) ̸= (1, 2, 3), and (1, 2) ̸= (2, 1).
For sets A and B, the Cartesian product of A and B, denoted by A × B, is the set of all ordered pairs

(a, b), where a ∈ A and b ∈ B. For instance, let A be {1, 2} and B be {3, 4, 5} then

A×B =
{
(1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5)

}
.

The Cartesian product of the sets A1, A2, . . . , An, denoted A1 ×A2 × · · · ×An, is the set

{(a1, a2, . . . , an) | for every i so that (1 ≤ i ≤ n) , ai ∈ Ai}.

For a set A, An denotes a Cartesian product A× · · · ×A of n elements. For instance,

{1, 2}3 = {1, 2} × {1, 2} × {1, 2} = {(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2)}.

5

A

B

A

B

A

B

Figure 1: Venn diagrams for A ∪B, A ∩B, and A \B, respectively.

1.2 Sets Operations

For sets A and B, the union of the sets A and B, denoted by A ∪B, is the set that contains these elements
that are either in A or in B, or in both. For sets A and B, the intersection of the sets A and B, denoted by
A ∩ B, is the set that contains these elements that are in both A and B. For sets A and B, the difference
between A and B, denoted by A \B, is the set that contains these elements that are in A but not in B.

Exercise 4. Which of the following pairs of of sets are equal

• {a b c} ∩ {a b c} and {b a c} ∪ {b a c}

• {a b c} ∩ {a b} and {b b a c} ∩ {b a}

• {a b c} ∩ {a b} and {a {b} c} ∩ {a b}

• {b c} ∪ {a b} and {a c} ∪ {a b}

• {a b ∅} ∩ {∅} and ∅ ∩ {∅}

Venn diagrams can be used to graphically illustrate the semantics of set operations. Figure 1 presents
Venn diagrams for A∪B, A∩B, and A \B, respectively. The results of these operations is marked in blue.

Principle of inclusion-exclusion: The cardinality of the union of two arbitrary sets A and B respects the
following condition:

|A ∪B| = |A|+ |B| − |A ∩B|.

Set Identities The following identities hold and summarize some interesting properties about set opera-
tions, where A, B, and C stand for arbitrary sets:

A ∪ ∅ = A
A ∩ ∅ = ∅
A ∪A = A
A ∩A = A
A ∪B = B ∪A
A ∩B = B ∩A
(A ∪B) ∪ C = A ∪ (B ∪ C)
(A ∩B) ∩ C = A ∩ (B ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (A ∩B) = A
A ∩ (A ∪B) = A

You may find Venn diagrams instrumental in analyzing the listed identities.

6

Exercise 5. Which of the following statements hold:

• (A ∪B) ∩ ∅ = A ∪B

• (A ∪B) ∪ ∅ = A ∪B

• (B ∩ C) ∪A = (A ∪B) ∪ (A ∪ C)

• (A \B) ∪ (A ∩B) = A

Generalized Unions and Intersections Given n sets, A1, . . . , An we may utilize big-
⋃

and big-
⋂

notation to denote the union and the intersection of all of these sets, respectively:

n⋃
i=1

Ai = A1 ∪A2 ∪ · · · ∪An

and

n⋂
i=1

Ai = A1 ∩A2 ∩ · · · ∩An.

As an example, consider that for any natural number i, we define the set Ni as follows {0, 1, 2, 3, . . . , i}. As
a result, N0 = {0}, N1 = {0, 1}, N2 = {0, 1, 2},. . . . Then,

n⋃
i=0

Ni = {0, 1, 2, 3, . . . n} = Nn,

∞⋃
i=n

Ni = {0, 1, 2, 3, . . . } = N.

Exercise 6. What is the cardinality of the set

∞⋂
i=0

Ni?

Exercise 7. Is it the case that for any k < n, the following equality holds

n⋃
i=k

Ni =

n⋃
i=k+1

Ni

7

1.3 Functions

For nonempty sets A and B, a (total) function f from A to B, denoted f : A → B, is an assign-
ment/mapping/transformation of exactly one element of B to each element of A. We often drop word
total when referring to a total function. Let f denote a function from A to B. We say that A is the domain
of f and B is the codomain of f ; also, we say that f maps A to B. We write f(a) = b if b is the unique
element of B assigned by the function f to the element a of A. If f(a) = b, we say that

• b is the image of a and

• a is the preimage of b.

For instance, let f : Z → Z denote the function f(x) = x2. In this example, set Z of integers plays a role of
both domain and codomain of this function.

To proceed with the presentation we define the concepts of a string and its prefix. A string is a sequence
of symbols s1 . . . sn (it may be an empty sequence in which case we call it an empty string, denoted ϵ). For
a string s1 . . . sn, a string of the form s1 . . . si so that 0 ≤ i ≤ n is called a prefix. For instance, all possible
prefixes of bit string 001 are ϵ, 0, 00, 001.

The presented definition of a function is general because it does not assume that the domain and the
codomain consist of numbers. In the following examples, the domain of each function is the set S of all bit
strings, namely,

S = {ϵ, 0, 1, 00, 01, 10, 11, 000, 001, . . . }.

1. Function l from S to N: l(x) is the length of x. For instance, l(00110) = 5.

2. Function z from S to N: z(x) is the number of occurrences of zeros in x. For instance, z(00110) = 3.

3. Function n from S\{ϵ} to N: n(x) is the number represented by x in binary notation. For instance,
n(00110) = 6.

4. Function e from S to S: e(x) is the string 1x. For instance, e(00110) = 100110.

5. Function r from S to S: r(x) is the string x reversed. For instance, r(00110) = 01100.

6. Function p from S to P(S): p(x) is the set of prefixes of x. For instance,

p(00110) = {ϵ, 0, 00, 001, 0011, 00110}.

The graph of a function f is the set of all ordered pairs of the form ⟨x, f(x)⟩. For instance, consider the
function f from N to N defined by the formula f(n) = 2n+ 1. The graph of this function is the set

{⟨0, 1⟩, ⟨1, 3⟩, ⟨2, 5⟩, ⟨3, 7⟩, . . . }.

It is clear that the graph of any function from A to B is a subset of the Cartesian product A×B.
It is sometimes convenient to talk about a function and its graph as if it were the same thing. For

instance, instead of writing f(n) = 2n+ 1, we can write:

f = {⟨0, 1⟩, ⟨1, 3⟩, ⟨2, 5⟩, ⟨3, 7⟩, . . . }.

This convention allows us to give yet another definition of a function, one that refers to sets of pairs: For
any sets A and B, a function from A to B is a set f ⊆ A×B such that for every element x of A there exists
a unique element y of B for which ⟨x, y⟩ ∈ f ; that element is denoted by f(x).

Figure 2 presents graphs of three functions visually. These functions are from the set of real numbers to
the set of real numbers defined as follows f(x) = 2x + 1 (in red), f(x) = x2 (in blue), and f(x) = x3 (in
green). Such graphical representation often helps the analysis of properties of functions.

8

x

y is f(x)

Figure 2: Function graphs: f(x) = 2x+ 1 (in red), f(x) = x2 (in blue), and f(x) = x3 (in green)

One-to-One, Onto Functions, Composition and Inverse A function f is one-to-one, or injective,
if and only if f(a) = f(b) implies that a = b for all a and b in the domain of f . For instance, function
f : Z → Z where f(n) = n3 is one-to-one; whereas function f : Z → Z where f(n) = n2 is not one-to-one
(indeed, consider the fact that f(−1) = f(1) = 1).

Exercise 8. Let set A1 be {α, β} and set B1 be {1, 2}. A table below defines two functions
f1 : A1 → B1 and f2 : A1 → B1:

x f1(x) f2(x)
α 1 1
β 2 1

Is function f1 one-to-one? Is function f2 one-to-one. Explain why?

A function f from A to B is called onto, or surjective, if and only if for every element y ∈ B there is an
element x ∈ A with f(x) = y. For instance, function f : R → R where f(n) = n3 is onto; whereas function
f : R→ R where f(n) = n2 is not onto.

Exercise 9. Consider functions f1 and f2 defined in Exercise 8. Is function f1 onto? Is function f2 onto.
Explain why?

A function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto. Function
f : R→ R where f(n) = n3 is a bijection.

Exercise 10. Consider functions f1 and f2 defined in Exercise 8. Is function f1 a bijection? Is function f2
a bijection. Explain why?

If f is a function from A to B, and g is a function from B to C, then the composition of these functions
is the function h from A to C defined by the formula h(x) = g(f(x)). This function is denoted by g ◦ f .

If f is a bijection from A to B then the inverse of f is the function g from B to A such that, for
every x ∈ A, g(f(x)) = x. This function is denoted by f−1.

Exercise 11. Consider function f1 defined in Exercise 8. Compute f−
1 .

Increasing/decreasing Functions A function f : A→ B where A ⊆ R and B ⊆ R is called

increasing when for every x and y in A, if x < y then f(x) ≤ f(y)
strictly increasing when for every x and y in A, if x < y then f(x) < f(y)

decreasing when for every x and y in A, if x < y then f(x) ≥ f(y)
strictly decreasing when for every x and y in A, if x < y then f(x) > f(y)

9

Notice that if a function is strictly increasing/decreasing then it must be one-to-one. For instance,
function f : Z → Z where f(n) = n3 is strictly increasing, whereas function f : Z → Z where f(n) = n2 is
neither increasing nor decreasing. Function f(n) = 1 is an example of a function that is both increasing and
decreasing but neither strictly increasing nor strictly decreasing.

Partial Functions A partial function f from a set A to a set B is an assignment to each element x in a
subset of A, called the domain of definition of f , of a unique element in y in B. We say that f is undefined
for elements in A that are not in the domain of definition of f . For example, function f : R → R where
f(n) = 1/n is partial. This function is undefined for 0.

Definitions By Cases A function can be defined by cases, when several formulas are used for calculating
the value of the function for various arguments, for instance, below several functions are defined from R
to R:

f(x) =

{
x2, if x ≥ 0,

0, otherwise;

g(x) =

{
1, if x ≥ 0,

0, otherwise;

|x| =

{
x, if x ≥ 0,

−x, otherwise;

sgn(x) =

−1, if x < 0,

0, if x = 0,

1, if x > 0.

10

1.4 Sequences and Summations

A sequence is a function from a subset of the set of integers (e.g., usually the natural numbers or the positive
integers) to a set.

Definitions by cases can be used also for defining sequences. For instance, the sequence

n 1 2 3 4 5 6 . . .
An 2 5 2 5 2 5 . . .

can be defined by the formulas

An =

{
2, if n is odd,

5, otherwise.
(1)

The sequence An can be defined also by a single formula:

An =
7 + 3(−1)n

2
. (2)

We now construct a formal argument to illustrate that formula (2) indeed captures the definition (1) of
the sequence An. Consider two cases. Case 1: n is odd. Then

An = 2 per definition;
7 + 3(−1)n

2
=

7 + 3 · (−1)
2

=
4

2
= 2.

Case 2: n is even. Then

An = 5 per definition;
7 + 3(−1)n

2
=

7 + 3 · 1
2

=
10

2
= 5.

So formula (2) holds in both cases. This argument is an illustration of proof by cases.

Summation For a sequence a0, . . . , an of numbers and a range l..u (0 ≤ l ≤ u ≤ n), a summation/
∑

is a
compact notation for representing the sum of some terms in a sequence so that

u∑
j=l

aj = al + al+1 + · · ·+ au.

Notational variations are possible, say,
∑

l≤j≤u

aj . The variable j is called the index of summation (it can be

renamed if desired), say,
u∑

j=l

aj =

u∑
i=l

ai =

u∑
k=l

ak.

In many cases, the lower bound l is 0 or 1. However, this is not required. This notation may have reminded
you the big-

⋃
and big-

⋂
notation used earlier.

The index of summation need not be a subscript; it can be used to identify a term that participates in

the summation. For example, we can write

5∑
j=1

j2; this expression evaluates to

5∑
j=1

j2 = 12 + 22 + 32 + 42 + 52 = 55.

Exercise 12. What the value of the following summation

3∑
j=1

3.

Exercise 13. Do the following statements hold:

11

Figure 3: Triangular numbers visually: T1 . . . T6.

•
5∑

j=1

j2 =

4∑
k=0

(k + 1)2

•
5∑

j=1

j2 = 12 +

5∑
j=2

j2 = (

4∑
j=1

j2) + 52

Double Summation
∑

-notation can be used in complex nested expressions. In such cases the rule is to
evaluate the most inner expression first. For example,

4∑
i=1

3∑
j=1

j · i =
4∑

i=1

(1 · i+ 2 · i+ 3 · i) =
4∑

i=1

6 · i = 6 · 1 + 6 · 2 + 6 · 3 + 6 · 4 = 60

Summation Over Sets One can also specify a sum over the elements of a set using the following notation:

∑
x∈A

f(x)

where f is a function from elements in set A to numbers. For instance,∑
x∈{0,2,4}

x = 0 + 2 + 4.

Exercise 14. What the value of the following summation
∑

x∈{0,2,4}

3.

Triangular Numbers and Their Relatives In the definitions below, n is a nonnegative integer.
The triangular number Tn is the sum of all integers from 1 to n:

Tn =

n∑
i=1

i = 1 + 2 + · · ·+ n.

For instance, T4 = 1 + 2 + 3 + 4 = 10. As we chose n to be nonnegative integer, value 0 is a valid choice
for n; T0 amounts to the summation of no terms and hence evaluates to 0. It turns out that a triangular
number is a number that can be represented by a pattern of dots arranged in an equilateral triangle with
the same number of dots on each side. Figure 3 presents this visualization for T1, T2, . . . , T6.

By Bn we denote the number of ways to choose two elements out of n. For instance, if we take 5 elements
a, b, c, d, e, then there will be 10 ways to choose two:

a, b; a, c; a, d; a, e; b, c; b, d; b, e; c, d; c, e; d, e.

We conclude that B5 = 10.
By Sn we denote the sum of the squares of all integers from 1 to n:

Sn =

n∑
i=1

i2 = 12 + 22 + · · ·+ n2.

12

For instance, S4 = 12 + 22 + 32 + 42 = 30.
By Cn we denote the sum of the cubes of all integers from 1 to n:

Cn =

n∑
i=1

i3 = 13 + 23 + · · ·+ n3.

For instance, C4 = 13 + 23 + 33 + 43 = 100.
The harmonic number Hn is defined by the formula

Hn =

n∑
i=1

1

i
=

1

1
+

1

2
+ · · ·+ 1

n
.

For instance, H3 = 1
1 + 1

2 + 1
3 = 11

6 .
The factorial of n is the product of all integers from 1 to n:

n! =

n∏
i=1

i = 1 · 2 · · · · · n

(
∏

stands for product, similarly as
∑

stands for sum). For instance, 4! = 1 · 2 · 3 · 4 = 24. Note that 0! = 1.
Triangular numbers can be calculated using the formula

Tn =
n(n+ 1)

2
.

To prove this claim, we start with two expressions for Tn:

Tn = 1 + 2 + 3 + · · · + (n− 2) + (n− 1) + n
Tn = n + (n− 1) + (n− 2) + · · · + 3 + 2 + 1.

If we add them column by column, we’ll get:

2Tn = (n+ 1) + (n+ 1) + (n+ 1) + · · · + (n+ 1) + (n+ 1) + (n+ 1)
= n(n+ 1),

and it remains to divide both sides by 2.
There are also other ways to prove the formula for Tn. Consider these identities:

(1 + 1)2 = 12 + 2 · 1 · 1 + 12,
(2 + 1)2 = 22 + 2 · 2 · 1 + 12,
(3 + 1)2 = 32 + 2 · 3 · 1 + 12,

. . .
(n+ 1)2 = n2 + 2 · n · 1 + 12.

If we add them column by column, we’ll get:

22 + 32 + 42 + · · ·+ (n+ 1)2 = 12 + 22 + 32 + · · ·+ n2 + 2Tn + n.

Subtract 22 + 32 + · · ·+ n2 from both sides:

(n+ 1)2 = 12 + 2Tn + n.

Expand the left-hand side and subtract n+ 1 from both sides:

n2 + n = 2Tn.

It remains to divide both sides by 2. Later, we will see yet another way to prove this claim using the proof
method called induction.

13

The relationship between the number Bn and triangular numbers is described by the formula

Bn = Tn−1 (n ≥ 1)

It follows that

Bn =
(n− 1)n

2
.

Exercise 15. Take 6 elements a, b, c, d, e, f . How many ways are there to choose two distinct elements of
these?

There is a simple formula for Cn:

Cn = (Tn)
2 =

n2(n+ 1)2

4
.

There are no simple precise formulas found for harmonic numbers and factorials.

14

2 Elements of Mathematical Logic and Proofs

Kenneth H. Rosen textbook on Discrete Mathematics and its Applications starts its presentation with the
following paragraphs

The rules of logic specify the meaning of mathematical statements. For instance, these rules help
us understand and reason with statements such as “There exists an integer that is not the sum of
two squares” and “For every positive integer n, the sum of the positive integers not exceeding n is
n(n+1)/2”. Logic is the basis of all mathematical reasoning, and of all automated reasoning. It
has practical applications to the design of computing machines, to the specification of systems, to
artificial intelligence, to computer programming, to programming languages, and to other areas
of computer science, as well as to many other fields of study.

To understand mathematics, we must understand what makes up a correct mathematical argu-
ment, that is, a proof. Once we prove a mathematical statement is true, we call it a theorem.
A collection of theorems on a topic organize what we know about this topic. To learn a math-
ematical topic, a person needs to actively construct mathematical arguments on this topic, and
not just read exposition. Moreover, knowing the proof of a theorem often makes it possible to
modify the result to fit new situations.

Logic can be used in programming, and it can be applied to the analysis and automation of reasoning
about software and hardware. This is why it is sometimes considered a part of theoretical computer science.
Since reasoning plays an important role in intelligent behavior, logic is closely related to artificial intelligence.

The short book by the German philosopher Gottlob Frege (1848–1925) with the long title Ideography, a
Formula Language, Modeled upon that of Arithmetic, for Pure Thought (1879), introduced notation that is
somewhat similar to what is now called first-order formulas. Frege wrote:

I believe that I can best make the relation of my ideography to ordinary language clear if I
compare it to that which the microscope has to the eye. Because of the range of its possible
uses and the versatility with which it can adapt to the most diverse circumstances, the eye is
far superior to the microscope. . . But, as soon as scientific goals demand great sharpness of
resolution, the eye proves to be insufficient.

. . . I am confident that my ideography can be successfully used wherever special value must
be placed on the validity of proofs, as for example when the foundations of the differential and
integral calculus are established.

In logic and in linguistics, we distinguish between two languages: the one that is the object of study
and the one that we use to talk about that object. The former is called the object language; the latter
is the metalanguage. Below, the object language is the formal language of propositional formulas. The
metalanguage is the usual informal language of mathematics and theoretical computer science, which is a
mixture of the English language and mathematical notation. The importance of distinguishing between the
object language and the metalanguage was emphasized by the mathematician and logician Alfred Tarski
(1902–1983), who taught logic at Berkeley since 1942.

To summarize, logic is the study of reasoning. The British mathematician and philosopher George Boole
(1815–1864) is the man who made logic mathematical. His book The Mathematical Analysis of Logic was
published in 1847. Mathematical logic has been inspired by the search of formal system to distinguish
between a correct and incorrect mathematical argument. One of the goals in this class is to learn what
makes a mathematical argument correct. We start this inquiry by learning basics about propositional and
first-order logic.

Preliminaries Let us review a notion of a recursive or inductive definition.
We use a recursive definition to define the elements in a set in terms of other elements in the set. For

instance, we can define a set of Natural numbers as follows:

Base case : 0 is a Natural number
Inductive case : a successor of n is a natural number, if n is a Natural number

15

A recursive definition of a function defines values of the functions for some inputs in terms of the values
of the same function for other inputs. For example, the factorial function n! is defined as follows:

0! = 1.
(n+ 1)! = (n+ 1) · n!.

The definition may also be thought of as giving a procedure describing how to construct the function n!,
starting from n = 0 and proceeding onwards with n = 1, n = 2, n = 3 etc..

Exercise 16. Compute 3!. Compute 5!.

2.1 Syntax and Semantics of Propositional Formulas

A proposition is a declarative sentence (i.e., a sentence that declares a fact) that is either true or false, but
not both.

Sample propositions:

• Swimming at the New Jersey shore is allowed.

• The moon is made of green cheese.

• Kids are home.

• It is evening.

• Mom is happy.

Sample non-propositions:

• How old are you?

• x+ 2x = 3

• Go straight!

Propositional Formulas A propositional signature is a set of symbols called atoms or propositional
variables. (In examples, we will assume that p, q, r are atoms.) Atoms, or propositional symbols are used
to encode propositions.

The symbols

∧ ∨ → ↔ ¬ ⊥ ⊤

are called propositional connectives. Among them, the symbols

• ∧ (conjunction), ∨ (disjunction), → (implication) and ↔ (equivalence) are called 2-place, or binary
connectives;

• ¬ (negation) is a 1-place, or unary connective;

• ⊥ (false) and ⊤ (true) are 0-place.

In K. Rosen textbook symbol ⊤ is denoted by letter T and symbol ⊥ is denoted by letter F .
Take a propositional signature σ which contains neither the propositional connectives nor the parenthe-

ses (,). The alphabet of propositional logic consists of the atoms from σ, the propositional connectives, and
the parentheses. By a string we understand a finite string of symbols in this alphabet. We define when a
string is a (propositional) formula (or, compound proposition by K. Rosen textbook) recursively, as follows:

• every atom is a formula,

• both 0-place connectives are formulas,

16

• if F is a formula then ¬F is a formula,

• for any binary connective ⊙, if F and G are formulas then (F ⊙G) is a formula.

For instance,
¬(p→ q)

and
(¬p→ q) (3)

are formulas; the string
¬p→ q (4)

is not a formula. But we now introduce a convention according to which (4) can be used as an abbreviation
for (46). We will abbreviate formulas of the form (F ⊙G) by dropping the outermost parentheses in them.
We will also agree that ↔ has a lower binding power than the other binary connectives. For instance,

p ∨ q ↔ p→ r

will be viewed as shorthand for
((p ∨ q)↔ (p→ r)).

Finally, for any formulas F1, F2, . . . , Fn (n > 2),

F1 ∧ F2 ∧ · · · ∧ Fn

will stand for
(· · · (F1 ∧ F2) ∧ · · · ∧ Fn).

The abbreviation F1 ∨ F2 ∨ · · · ∨ Fn will be understood in a similar way.

Semantics of Propositional Formulas The symbols f and t are called truth values. An interpretation
of a propositional signature σ is a function from σ into {f, t}. If σ is finite then an interpretation can be
defined by the table of its values, for instance:

p q r
f f t

(5)

The semantics of propositional formulas that we are going to introduce defines which truth value is
assigned to a formula F by an interpretation I.

As a preliminary step, we need to associate functions with all unary and binary connectives: a function
from {f, t} into {f, t} with the unary connective ¬, and a function from {f, t} × {f, t} into {f, t} with each of
the binary connectives. These functions are denoted by the same symbols as the corresponding connectives,
and defined by the following tables:

x ¬(x)
f t
t f

x y ∧(x, y) ∨(x, y) → (x, y) ↔ (x, y)
f f f f t t
f t f t t f
t f f t f f
t t t t t t

For any formula F and any interpretation I, the truth value F I that is assigned to F by I is defined
recursively, as follows:

17

• for any atom F , F I = I(F),

• ⊥I = f, ⊤I = t,

• (¬F)I = ¬(F I),

• (F ⊙G)I = ⊙(F I , GI) for every binary connective ⊙.

If F I = t then we say that the interpretation I satisfies F (symbolically, I |= F).
Consider an exercise: Find a formula F of the signature {p, q, r} such that (5) is the only interpretation

satisfying F . One such formula is (¬p ∧ ¬q) ∧ r. Indeed, let us denote (5) by I1. Then,

((¬p ∧ ¬q) ∧ r)I1 =
∧((¬p ∧ ¬q)I1 , rI1) =
∧(∧((¬p)I1 , (¬q)I1), t) =
∧(∧(¬(pI1),¬(qI1)), t) =
∧(∧(¬(f),¬(f), t) =
∧(∧(t, t), t) =
∧(t, t) = t

If the underlying signature is finite then the set of interpretations is finite also, and the values of F I

for all interpretations I can be represented by a finite table. This table is called the truth table of F . For
instance, the exercise above can be stated as follows: Find a formula with the truth table

p q r F
f f f f
f f t t
f t f f
f t t f
t f f f
t f t f
t t f f
t t t f

where first three truth values of each raw represent a possible interpretation of the signature {p, q, r}, and
the last column shows respective truth values assigned to a formula by a respective interpretation.

Propositional formulas and truth tables were introduced in 1921 by the American mathematician and
logician Emil Post (1897–1954). Post is known, along with Alan Turing, as one of the creators of theoretical
computer science.

18

2.2 Tautologies, Equivalence, Satisfiability and Entailment

Tautologies A propositional formula F is a tautology if every interpretation satisfies F . It is easy to
check, for instance, that each of the formulas

(p→ ⊥)↔ ¬p,
(p→ q) ∨ (q → p),
((p→ q)→ p)→ p,

(p→ (q → r))→ ((p→ q)→ (p→ r))

(6)

is a tautology. Here we illustrate this fact for the case of the formula

(p→ ⊥)↔ ¬p. (7)

Consider a truth table for this formula

p ¬p ⊥ p→ ⊥ (p→ ⊥)↔ ¬p
f t f t t
t f f f t

(8)

It shows that for every possible interpretation of the signature {p} of this formula, the truth value that is
assigned to (p→ ⊥)↔ ¬p is t.

Exercise 17. Show that the last three formulas in (6) are tautologies. Construct truth tables in your
argument.

A propositional formula F is a contradiction if there is no interpretation that satisfies F .

Exercise 18. Does statement

for any tautology F , formula ¬F is a contradiction

hold?

Equivalent Formulas A formula F is equivalent to a formula G (symbolically, F ≡ G) if, for every
interpretation I, F I = GI . In other words, the metalanguage expression F ≡ G means that formula F ↔ G
is a tautology. For instance,

(p→ ⊥) ≡ ¬p. (9)

Recall that we used truth table (8) to illustrate that a formula (7) is a tautology. Obviously, the same
truth table can be used to illustrate that two formulas in (9) are equivalent. Truth table (8) enumerates all
possible cases. It is a form of what mathematicians call reasoning by cases. Below we provide a narrative
exemplifying reasoning by cases for arguing that equivalence (9) holds. This argument bypasses the explicit
reference to truth table (8) (but it is easy to reconstruct this truth table by studying the argument):

Consider any interpretation I. Case 1: pI = t. Then

(p→ ⊥)I =→ (pI ,⊥I) =→ (t, f) = f
=
(¬p)I = ¬(pI) = ¬(t) = f

Case 2: pI = f. Then
(p→ ⊥)I =→ (pI ,⊥I) =→ (f, f) = t
=
(¬p)I = ¬(pI) = ¬(f) = t

19

Also, it is easy to see that the following equivalence holds

¬⊥ ≡ ⊤ (10)

Indeed, given any interpretation I,

(¬⊥)I = ¬(⊥I) = ¬(f) = t = ⊤I.

Similarly, following equivalence holds
F ∧ ¬F ≡ ⊥, (11)

where F is an arbitrary formula. Indeed, consider any interpretation I. Case 1: F I = t. Then

(F ∧ ¬F)I = ∧(F I ,¬(F I)) = ∧(t,¬(t)) = ∧(t, f) = f = ⊥I.

Case 2: F I = f. Then
(F ∧ ¬F)I = f = ⊥I.

Exercise 19. Prove that
F ∨ ¬F ≡ ⊤ (12)

holds.

Conjunction and disjunction are associative:

(F ∧G) ∧H ≡ F ∧ (G ∧H),
(F ∨G) ∨H ≡ F ∨ (G ∨H).

Exercise 20. Does equivalence connective ↔ have a similar property?

Conjunction distributes over disjunction:

F ∧ (G ∨H) ≡ (F ∧G) ∨ (F ∧H);

disjunction distributes over conjunction:

F ∨ (G ∧H) ≡ (F ∨G) ∧ (F ∨H).

Exercise 21. Do these connectives distribute over equivalence connective ↔?

De Morgan’s laws follow
¬(F ∧G) ≡ ¬F ∨ ¬G,
¬(F ∨G) ≡ ¬F ∧ ¬G

Implication distributes over conjunction:

F → (G ∧H) ≡ (F → G) ∧ (F → H).

Exercise 22. To simplify a formula means to find an equivalent formula that is shorter. Simplify the
following formulas:

(i) F ↔ ¬F

(ii) F ∨ (F ∧G),

(iii) F ∧ (F ∨G),

(iv) F ∨ (¬F ∧G).

20

(v) F ∧ (¬F ∨G).

Exercise 23. For each of the formulas

p ∧ q, p ∨ q, p↔ q, ¬p,⊤

find an equivalent formula that contains no connectives other than → and ⊥.

Exercise 24. For each of the formulas
p→ q, p ∧ q

find an equivalent formula that contains no connectives other than ↔ and ∨.

A subformula of a formula F is a substring of F such that this substring is also a formula. For instance,
(p→ ⊥) is a subformula of p ∧ (p→ ⊥) . Obviously, formula F is a subformula of itself.

It turns out that for any equivalent formulas G and G′, substituting G′ for subformula G in formula F
results in an equivalent formula to F . For instance, substituting ¬p for (p→ ⊥) in

p ∧ (p→ ⊥) (13)

results in a formula p ∧ ¬p which is equivalent to (13).
This observation gives us additional method for demonstrating that formulas are equivalent. We can

show that formula F is equivalent to formula G by applying a sequence of equivalent transformations on its
subformulas. For instance, by (9), (10), and (11) it follows that

¬(p ∧ (p→ ⊥)) ≡ ⊤.

Indeed,
¬(p ∧ (p→ ⊥)) ≡ ¬(p ∧ ¬p) ≡ ¬(⊥) ≡ ⊤.

Satisfiability and Entailment A set Γ of formulas is satisfiable if there exists an interpretation that
satisfies all formulas in Γ, and unsatisfiable otherwise. It is easy to check that a non-empty finite set
{F1, . . . , Fn} is unsatisfiable iff the negation of the conjunction of its elements, i.e., a formula ¬(F1∧· · ·∧Fn),
is a tautology.

For any atom A, the literals A, ¬A are said to be complementary to each other.
A set Γ of formulas entails a formula F (symbolically, Γ |= F), if every interpretation that satisfies all

formulas in Γ satisfies F also. Note that the notation for entailment uses the same symbol as the notation
for satisfaction introduced earlier, the difference being that the expression on the left is an interpretation
(I) in one case and a set of formulas (Γ) in the other. The formulas entailed by Γ are also called the logical
consequences of Γ.

Exercise 25. Prove that F1, . . . , Fn |= G iff (F1 ∧ · · · ∧ Fn) → G is a tautology. (In the first of these
expressions, we dropped the braces { } around F1, . . . , Fn.)

It is easy to check that for any set Γ of formulas and any formula F , Γ |= F iff the set Γ ∪ {¬F} is
unsatisfiable.

Exercise 26. Show that for any set Γ of formulas and any formula F , Γ |= F iff the set Γ ∪ {¬F} is
unsatisfiable.

21

2.3 Inference

Representing English Sentences by Propositional Formulas Before we continue the study of propo-
sitional logic, we will attempt translating some declarative sentences from English into the language of propo-
sitional formulas. The translation exercises below are not precisely stated mathematical questions: there is
no way to prove, in the mathematical sense, that a translation is adequate. For example, natural language
expressions are often ambiguous and their interpretation may depend on subtle details of a context that may
go beyond elements (concepts) captured by the expressions themselves. Expressions in propositional logic
are unambiguous.

In these translation exercises, the underlying signature is

{p, q, r}, (14)

where we take each propositional symbol to represent following English expressions

p Kids are home
q It is evening
r Mom is happy

(15)

The table below provides sample translations of some English sentences given propositional logic connec-
tives and the propositional signature (14).

It is evening and kids are not home q ∧ ¬p
It is evening but kids are not home q ∧ ¬p
It is either evening or mom is not happy q ∨ ¬r
If kids are home then mom is happy p→ r
Mom is happy only if kids are home r → p

(16)

Notice how the first two sentences are mapped into the same expression in propositional logic. This is an
illustration of how a translation from a natural language to a formal language is typically a “lossy” process.
There is no connective in propositional logic that is able to reflect all the information carried by the natural
language connective but.

In the third sentence, either, or connective can be read in two ways – “exclusive” or “non-exclusive”.
Our translation binds us to a single “non-exclusive” reading.

Translation of “if then” and “ only if” natural language conditional connectives is captured by the
implication connective of propositional logic. The implication connective may not at all times reflect our
intuitions about if-then statements and how we interpret these. For example, statement If a moons is made
of green cheese then Earth is square does not seem to carry a truth-conditional meaning, i.e., it seems
“gibberish”. Yet if we take propositional symbols p and q to denote “a moons is made of green cheese” and
“ Earth is square” respectively then p→ q is a statement that is evaluated to t given that p is f.

Despite the outlined issues with the mapping from natural language statements into a formal language
of propositional logic, capturing English expressions as formal language statements allows us (i) to present
these in unambiguous way and (ii) to apply formal notions of interpretation and inference to them. In the
next section we will speak of a validity of a natural language argument by grounding this question into a
notion of a validity of inference in propositional logic. We then discuss how tradition of mathematical proofs
builds on these notions.

Argument and Argument Form A (natural language) argument is a sequence of statements

s1, s2, . . . , sn.

The last statement sn is called a conclusion. The statements s1, . . . sn are called premises. For instance,

If kids are home then mom is happy
Kids are home

∴ Mom is happy
(17)

22

is an argument. Note that we list each statement of this argument in a separate line and separate its
conclusion from its premises by a vertical bar. In the sequel, we will often present arguments (as well as
argument forms that we introduce next) in such format.

In a valid argument the conclusion of the argument must follow from the truth of argument’s premises:
an argument is valid if and only if it is impossible for all the premises to be true and the conclusion to be
false. In previous section we illustrated how we can translate (ground) natural language statements into
corresponding propositional formulas. We will now show how grounding natural language statements of an
argument into propositional formulas allows us to turn an analysis of a validity of an argument into a formal
question about semantic properties of these formulas. We start by introducing a notion of an argument
form and defining in precise mathematical terms its validity. We then show how argument forms are used
as mathematical abstractions of natural language arguments. Thus, establishing the validity of an argument
form immediately translates into the fact that its natural language argument counterpart is valid.

An argument form is a sequence of propositional formulas

F1, F2, . . . , Fn.

Intuitively, formula Fn is called a conclusion and F1, . . . , Fn−1 are called premises.
An argument form

F1

· · ·
Fn−1

∴ Fn

(18)

is valid when for every interpretation I that satisfies F1, . . . , Fn−1 (i.e., F I
1 = · · · = F I

n−1 = t), I satisfies
Fn also (i.e., F I

n = t.) In other words, an argument form (18) is valid if its premises F1, . . . Fn−1 entail its
conclusion Fn (symbolically, F1, . . . Fn−1 |= Fn). It turns out that

F1, . . . Fn−1 |= Fn if and only if (F1 ∧ · · · ∧ Fn−1)→ Fn is a tautology.

Consequently, an argument form (18) is valid when (F1 ∧ · · · ∧ Fn−1)→ Fn is a tautology.

Exercise 27. Show that given formulas F1, . . . Fn−1 |= Fn,

F1, . . . Fn−1 |= Fn if and only if (F1 ∧ · · · ∧ Fn−1)→ Fn is a tautology.

The validity of an argument form can be demonstrated by use of a truth table. For instance, consider an
argument form

F
F → G

∴ G
(19)

Its truth table follows
F G F → G
t t t
t f f
f t t
f f t

(20)

Let I be any interpretation that evaluates both premises of argument form (19) to true. The first raw of
truth table (20) represents this case. Interpretation I evaluates conclusion G of (19) to true also. Indeed,
GI = t. By the definition of validity, argument form (19) is valid.

A Deduction System and Valid Argument Forms We can always use truth tables to establish a
validity of an argument form. Yet, for complex argument forms this approach may be intractable. Alterna-
tively, “deductive systems” – collections of inference rules and axioms – can be used to illustrate the validity
of an argument form. A “derivation“ in a deductive system shows how a formula (a conclusion) can be
derived from a set of other formulas (premises), often called hypothesis, using the postulates (inference rules

23

Valid Argument Form Name
F

∴ ¬¬F Double negation introduction

¬¬F
∴ F

Double negation elimination

F
F → G

∴ G
Modus ponens (the law of detachment)

¬G
F → G

∴ ¬F
Modus tollens

F → G
G → H

∴ F → H
Hypothetical syllogism

F ∨G
¬F

∴ G
Disjunctive syllogism

F
∴ F ∨G

Addition

F ∧G
∴ F

Simplification

F
G

∴ F ∧G
Conjunction

¬G → ¬F
∴ F → G

Contraposition

F ∨G
¬F ∨H

∴ G ∨H
Resolution

Figure 4: Valid argument forms.

and axioms) of the system. Such derivations are called proofs. We introduce a sample deductive system to
show how we can argue the validity of argument forms by means of this deduction system. In this deductive
system valid argument forms presented in Figure 4 constitute inference rules or postulates of the system.
We now make these ideas precise.

Exercise 28. Use truth tables to establish the fact that the argument forms Double negation introduction,
Double negation elimination, Modus ponens, Modus tollens, Hypothetical syllogism, Disjunctive syllogism,
Addition, Simplification, Conjunction, Resolution, Contraposition are valid.

Let Γ be a set of formulas. A valid argument form derivation from Γ (or, vaf-derivation from Γ) is a list
G1, . . . Gm (m ≥ 1) of formulas such that, for every i ≤ m, formula Gi

1. is in Γ, or

2. is of the form F ∨ ¬F or of the form F → F , or

3. is derived by a valid argument form in Figure 4 whose conclusion is Gi and all premises occur in
G1, . . . , Gi−1.

A vaf-derivation whose last formula is G is said to be a vaf-derivation of G.
For instance, let Γ be set {F, F → G} of formulas then three lists

F
F → G, F
F → G, F, G

are among vaf-derivations from Γ. The vaf-derivation F → G, F, G is also a vaf-derivation of G. We now
present this vaf-derivation horizontally annotating its elements:

24

1. F → G an element of Γ (clause 1 of the vaf-derivation definition)
2. F an element of Γ
3. G Modus ponens on 1 and 2 (clause 3 of the vaf-derivation definition)

These annotations make it clear why we call this list of formulas a vaf-derivation from Γ.

Fact For any set Γ of formulas and any formula G, if there is a derivation of G from Γ then

i. Γ entails G,

ii.
∧
F∈Γ

F → G is a tautology, where we understand
∧
F∈Γ

F as a conjunction of elements in Γ, and

iii.
Γ

∴ G
is a valid argument form.

Thus, to argue the validity of an argument form (18) it is sufficient to find a vaf-derivation of conclusion
Fn of (18) from the set {F1, . . . , Fn−1} composed of the premises of (18). It is also worth to note that we
can extend the list of argument forms in Figure 4 by arbitrary valid argument forms and the claims above
would still hold.

Grounding Natural Language Arguments into Argument Forms By following the translation pro-
cess outlined in Section 2.3, we can create argument forms for given arguments. For example, an argument
form

p→ r
p

∴ r
(21)

corresponds to argument (17) if we follow agreement that propositional symbols p, r stand for English
expressions as presented in (15). It is easy to see that there is a vaf-derivation of r from premises of (21).
Indeed, consider sequence:

1. p→ r Premise (Assumption)
2. r Premise
3. r Modus ponens 1 and 2

Consequently, argument form (21) is valid. Under assumption that argument form (21) adequately
captures natural language argument (17) we conclude that (17) is valid.

Similarly, an argument
Kids are home.

∴ Kids are home or mom is not happy.
(22)

corresponds to the following argument form

p
∴ p ∨ ¬r (23)

The vaf-derivation of p ∨ r from p follows:

1. p Premise (Assumption)
2. p ∨ ¬r Addition 1

Consequently, argument form (23) is valid. Under assumption that argument form (23) adequately captures
natural language argument (22) we conclude that (22) is valid.

25

From Arguments to Mathematical Proofs

In Mathematics,

• a conjecture is a statement believed to be true,

• a theorem is a statement that can be shown to be true,

• a proof is an evidence supporting that a statement is true,

• an axiom (postulates) are statements that are assumed to be true.1

Construction of a mathematical proof relies on (i) definitions of concepts in question, (ii) axioms, (iii) valid
argument forms or inference rules.

In a formal proof process, one starts by formulating a conjecture as an argument that is then mapped into
an argument form. Next, one may use truth tables, natural deduction system, or notion of a vaf-derivation
to verify whether an argument form is valid. Such verification process translates into evidence supporting
the conjecture. Thus the conjecture becomes a theorem. Such process is used by formal automated theorem
proving systems.

In English, textbook mathematical proofs many of these steps are implicit. One or another valid argument
form (listed in Figure 4) is often used in producing an English counterpart of vaf-derivation, but no explicit
reference is given. Sometimes, English expressions such as therefore, thus, consequently, we derive, it follows
that indicate the use of a valid argument form in deriving a new statement. Similarly, “well-known” properties
of specific mathematical theories are at times also taken for granted in constructing arguments and are not
mentioned explicitly.

To illustrate the difference between a formal proof process and a typical mathematical proof let us consider
following conjecture:

Given that (i) if kids are home then mom is happy, (ii) it is either not evening or kids are home,
and (iii) it is evening, the statement (iv) mom is happy holds.

Sample formal proof process. Let propositional symbols p, q, r stand for English expressions as presented
in (15). Then the statement (argument) of the conjecture in question corresponds to the following argument
form

p→ r
¬q ∨ p
q

∴ r

The vaf-derivation below illustrates that this argument form is valid (or, in other words, that formula
((p→ r) ∧ (¬q ∨ p) ∧ q)→ r is a tautology):

1For instance, recall Peano’s Axioms http://mathworld.wolfram.com/PeanosAxioms.html – axioms for the natural numbers:

1. Zero – 0 – is a number.

2. If n is a number, the successor of n, denoted by n′ or n+ 1, is a number.

3. Zero is not the successor of a number.

4. Two numbers of which the successors are equal are themselves equal.

5. (induction axiom.) If zero has the property P [Basis], and if the successor of every number with this property P has this
property P also [Induction Step], then all numbers have this property.

26

1. q Premise (Assumption)
2. ¬¬q Double negation introduction 1
3. ¬q ∨ p Premise
4 p Disjunctive syllogism 2,3
5 p→ r Premise
6. r Modus ponens 4,5

Consequently, the conjecture in question holds.

Sample textbook mathematical proof. From the fact that (ii) and (iii) hold, we conclude that kids are
home. From this conclusion and given fact (i) it follows that statement (iv) holds.

27

2.4 Elements of Predicate Logic

Propositional logic is inadequate to express the meaning and support natural inferences for many statements
in mathematics and natural language. For example, recall one of the axioms about integers:

(i) The set of integers Z is closed under the operations of addition and multiplication, that is, the
sum and product of any two integers is an integer.

Consider a statement

(ii) n and m are integers.

What would you conclude from (i) and (ii)? Predicate logic is the field of mathematics that

(1) allows to express the meaning of above statements and

(2) supports the natural inference suggesting that n+m and n ∗m are integers.

Section 2.5 provides a formal account for predicate logic: definitions of its syntax and semantics. In this
section we discuss the intuitions behind the language of predicate logic.

Connectives of propositional logic — ⊤, ⊥, ¬, ∧, ∨, →, ↔ — are also connectives in predicate logic.
Two quantifiers

∀ (“for all”), ∃ (“there exists”)

are important additions to the predicate logic.
The logical formula

∀x
(
(x+ 2)2 = x2 + 4x+ 4

)
expresses that the equality (x+ 2)2 = x2 + 4x+ 4 holds for all values of x. The logical formula

∃x(x2 + 2x+ 3 = 0)

expresses that the equation x2 +2x+3 = 0 has at least one solution. The assertion “there exists a negative
number x such that its square is 2” can be written as

∃x(x < 0 ∧ x2 = 2).

The symbol ∀ is called the universal quantifier; the symbol ∃ is the existential quantifier.
Statements involving variables such as x < 0 or x2 = 2 are neither true nor false when the values of

variables are not specified. Thus they are not propositions. Yet, the quantifiers of predicate logic can be
used to produce propositions from such statements. Indeed, expression

∀x(x < 0) (24)

forms a proposition “for all values of x, x is such that it is less than 0”. If domain (of discourse) or universe
of discourse is such that x can take any value in N (natural numbers), then proposition (24) is false: consider
x = 1.

The statement x < 0 or, in other words,

x is less than 0, (25)

has two parts. The first part is a variable x – the subject of the statement. The second part is the “predicate”:

is less than 0 (26)

that refers to a property that the subject of the statement can have. We can denote statement (25) by P (x),
where P denotes (26). A propositional statement that is parametrized on one or more variables is called a
predicate. The statement P (x) is also called the value of the propositional function P at x. Once a value
is assigned to x, the statement P (x) becomes a proposition and has a truth value. For example, the truth
value of P (1) is false, whereas the truth value of P (−1) is true.

In predicate logic, the truth tables for connectives from propositional logic together with the rules for
interpreting universal and existential quantifiers show how we can determine whether a formula is true.

28

Statement When True?
∀xP (x) P (v) is true for every value v of x (in the considered domain)
∃xP (x) There is a value v of x for which P (v) is true

Statement When False?
∀xP (x) There is a value v of x for which P (v) is false
∃xP (x) P (v) is false for every value v of x

Witnesses and Counterexamples How can we argue that a logical formula beginning with ∃x is true?
This can be done by specifying a value of x that satisfies the given condition. Such a value is called a witness.
For instance, to argue that the assertion

∃x(4 < x2 < 5)

is true, we can use the value x = 2.1 as a witness.
How can we argue that a logical formula beginning with ∀x is false? This can be done by specifying a

value of x that does not satisfy the given condition. Such a value is called a counterexample. For instance,
to argue that the assertion

∀x(x2 ≥ x) (27)

is false, we can use the value x = 1
2 as a counterexample.

The assertion that formula (27) is false can be expressed in two ways: by the negation of formula (27):

¬∀x(x2 ≥ x)

and also by saying that there exists a counterexample:

∃x¬(x2 ≥ x).

This is an instance of a general fact: the combinations of symbols

¬∀x and ∃x¬

have the same meaning. This is one of the two De Morgan’s laws for quantifiers. The table below presents
these laws:

Negation Equivalent Statement When is Negation True
¬∀xP (x) ∃x¬P (x) There is a value v of x for which P (v) is false
¬∃xP (x) ∀x¬P (x) For every value v of x, P (v) is false

Negation Equivalent Statement When is Negation False
¬∀xP (x) ∃x¬P (x) P (v) is true for every value v of x
¬∃xP (x) ∀x¬P (x) There is a value v of x for which P (v) is true

In the following example we use the notation m|n to express that the integer m divides the integer n
with no remainder (or, in other words, that n is a multiple of m, e.g., 4, 6 are multiples of 2). We want to
show that the assertion

∀n(2|n ∨ 3|n)
(“every integer is a multiple of 2 or a multiple of 3”) is false. What value of n can be used as a counterexample?
We want the formula 2|n∨ 3|n to be false. According to the truth table for disjunction, this formula is false
only when both 2|n and 3|n are false. In other words, n should be neither a multiple of 2 nor a multiple
of 3. The simplest counterexample is n = 1.

The formula
∃mn(m2 + n2 = 10)

expresses that 10 can be represented as the sum of two complete squares. It is different from the formulas
with quantifiers that we have seen before in that the existential quantifier is followed here by two variables,
not one. To give a witness justifying this claim, we need to find a pair of values m, n such that m2+n2 = 10.
For instance, the pair of values m = 3, n = 1 provides a witness.

29

Free and Bound Variables When a formula begins with ∀x or ∃x, we say that the variable x is bound in
it. If a quantifier is followed by several variables then all of them are bound. When a variable is not bound
then we say that it is free in the formula. For instance, in the formula

∃i(j = i2) (28)

the variable i is bound, and the variable j is free. In the formula

∃ij(j2 + j2 = 29) (29)

both i and j are bound.
The difference between free and bound variables is important because the truth value of a formula depends

on the values of its free variables, but doesn’t depend on the values of its bound variables. For instance,
formula (28) expresses that j is a complete square; whether or not it is true depends on the value of its free
variable j. Formula (29) expresses that 29 can be represented as the sum of two squares; we don’t need to
specify the values of any variables before we ask whether this formula is true.

Replacing a bound variable by a different variable doesn’t change the meaning of a formula. For instance,
the formula ∃k(j = k2) has the same meaning as (28): it says that j is a complete square.

Quantifiers are not the only mathematical symbols that bind variables. One other example is Sigma
notation for sums of numbers. For instance, the sum of the squares of the numbers from 1 to n can be
written as

n∑
i=1

i2.

Here n is a free variable, and i is a bound variable. The value of this expression depends on n, but not on i.

30

2.5 Predicate Logic, Formally

Predicate Formulas “Predicate formulas” generalize the concept of a propositional formula defined ear-
lier.

A predicate signature is a set of symbols of two kinds—object constants and predicate constants—with
a nonnegative integer, called the arity, assigned to every predicate constant. A predicate constant is said
to be propositional if its arity is 0. Propositional constants are similar to atoms in propositional logic. A
predicate constant is unary if its arity is 1, and binary if its arity is 2. For instance, we can define a predicate
signature

{a, P,Q} (30)

by saying that a is an object constant, P is a unary predicate constant, and Q is a binary predicate constant.
Take a predicate signature σ that does not include any of the following symbols:

• the object variables x, y, z, x1, y1, z1, x2, y2, z2, . . . ,

• the propositional connectives,

• the universal quantifier ∀ and the existential quantifier ∃,

• the parentheses and the comma.

The alphabet of predicate logic consists of the elements of σ and of the four groups of additional symbols
listed above. A string is a finite string of symbols in this alphabet.

A term is an object constant or an object variable. A string is called an atomic formula if it is a
propositional constant or has the form

R(t1, . . . , tn)

where R is a predicate constant of arity n (n > 0) and t1, . . . , tn are terms. For instance, if the underlying
signature is (30) then P (a) and Q(a, x) are atomic formulas.

We define when a string is a (predicate) formula recursively, as follows:

• every atomic formula is a formula,

• both 0-place connectives are formulas,

• if F is a formula then ¬F is a formula,

• for any binary connective ⊙, if F and G are formulas then (F ⊙G) is a formula,

• for any quantifier K and any variable v, if F is a formula then KvF is a formula.

For instance, if the underlying signature is (30) then

(¬P (a) ∨ ∃x(P (x) ∧Q(x, y)))

is a formula.
When we write predicate formulas, we will drop some parentheses and use other abbreviations introduced

in previous section. A string of the form ∀v1 · · · ∀vn (n ≥ 0) will be written as ∀v1 · · · vn, and similarly for
the existential quantifier.

An occurrence of a variable v in a formula F is bound if it occurs in a part of F of the form KvG;
otherwise it is free in F . For instance, in the formula

∃yP (x, y) ∧ ¬∃xP (x, x) (31)

the first occurrence of x is free, and the other three are bound; both occurrences of y in (31) are bound. We
say that v is free (bound) in F if some occurrence of v is free (bound) in F . A formula without free variables
is called a closed formula, or a sentence.

31

Representing English Sentences by Predicate Formulas Before we continue the study of the syntax
of predicate logic, it is useful to get some experience in translating sentences from English into the language
of predicate formulas. The translation exercises below are different from the other problems in that they
are not precisely stated mathematical questions: there is no way to prove, in the mathematical sense, that
a translation is adequate (at least until the semantics of predicate logic is defined). There is sometimes no
clear-cut difference between good and bad translations; it may happen that one translation is somewhat less
adequate than another but still satisfactory.

In these translation exercises, the underlying signature is (30). We will think of object variables as
ranging over the set ω of nonnegative integers, and interpret the signature as follows:

• a represents the number 10,

• P (x) represents the condition “x is a prime number,”

• Q(x, y) represents the condition “x is less than y.”

As an example, the sentence All prime numbers are greater than x can be represented by the formula

∀y(P (y)→ Q(x, y)). (32)

Exercise 29. Represent the given English sentences by predicate formulas. (a) There is a prime number
that is less than 10. (b) x equals 0. (c) x equals 9.

Exercise 30. Represent the English sentence by predicate formula: There are infinitely many prime numbers.

Substitution Let F be a formula and v a variable. The result of the substitution of a term t for v in F
is the formula obtained from F by replacing each free occurrence of v by t. When we intend to consider
substitutions for v in a formula, it is convenient to denote this formula by an expression like F (v); then we
can denote the result of the substitution of a term t for v in this formula by F (t). For instance, if we denote
formula (31) by F (x) then F (a) stands for

∃yP (a, y) ∧ ¬∃xP (x, x).

Let F (x) be formula (32) proposed above as a translation for the condition “all prime numbers are greater
than x.” A formula of the form F (t), where t is a term, usually expresses the same condition applied to the
value of t. For instance, F (a) is

∀y(P (y)→ Q(a, y)),

which means that all prime numbers are greater than 10; F (z2) is

∀y(P (y)→ Q(z2, y)),

which means that all prime numbers are greater than z2. There is one exception, however. The formula
F (y), that is,

∀y(P (y)→ Q(y, y)),

expresses the (incorrect) assertion “every prime number is less than itself.” The problem with this substi-
tution is that y, when substituted for x in F (x), is “captured” by a quantifier. To express the assertion “all
prime numbers are greater than y” by a predicate formula, we would have to use a bound variable different
from y and write, for instance,

∀z(P (z)→ Q(y, z)).

To distinguish “bad” substitutions, as in the last example, from “good” substitutions, we introduce the
following definition. A term t is substitutable for a variable v in a formula F if

• t is a constant, or

• t is a variable w, and no part of F of the form KwG contains an occurrence of v which is free in F .

For instance, a and z2 are substitutable in (32) for x, and y is not substitutable.

32

Semantics of Predicate Formulas The semantics of propositional formulas described in Section 1 defined
which truth value F I is assigned to a propositional formula F by an interpretation I. Our next goal is to
extend this definition to predicate formulas. First we need to extend the definition of an interpretation to
predicate signatures.

An interpretation I of a predicate signature σ consists of

• a non-empty set |I|, called the universe of I,

• for every object constant c of σ, an element cI of |I|,

• for every propositional constant R of σ, an element RI of {f, t},

• for every predicate constant R of σ of arity n > 0, a function RI from |I|n to {f, t}.

For instance, the second paragraph of the section on representing English sentences by predicate formulas
can be viewed as the definition of an interpretation of signature (30). For this interpretation I,

|I| = ω,

aI = 10,

P I(n) =

{
t, if n is prime,

f, otherwise,

QI(m,n) =

{
t, if m < n,

f, otherwise.

(33)

The semantics of predicate logic introduced below defines the truth value F I only for the case when F is
a sentence. As in propositional logic, the definition is recursive. For propositional constants, there is nothing
to define: the truth value RI is part of the interpretation I. For other atomic sentences, we can define

R(t1, . . . , tn)
I = RI(tI1, . . . , t

I
n).

(Since R(t1, . . . , tn) is a sentence, each term ti is an object constant, and consequently tIi is part of I). For
propositional connectives, we can use the same clauses as in propositional logic. But the case of quantifiers
presents a difficulty. One possibility would be to define

∃wF (w)I = t iff, for some object constant c, F (c)I = t

and similarly for the universal quantifier. But this formulation is unsatisfactory: it disregards the fact
that some elements of the universe |I| may be not represented by object constants. For instance, in the
example above 10 is the only element of the universe ω for which there is a corresponding object constant
in signature (30); we expect to find that

(∃xQ(x, a))I = t

(there exists a number that is less than 10) although

Q(a, a)I = f

(10 does not have this property). Because of this difficulty, some additional work is needed before we
define F I .

Consider an interpretation I of a predicate signature σ. For any element ξ of its universe |I|, select a
new symbol ξ∗, called the name of ξ. By σI we denote the predicate signature obtained from σ by adding
all names ξ∗ as additional object constants. For instance, if σ is (30) and I is (33) then

σI = {a, 0∗, 1∗, 2∗, . . . , P,Q}.

The interpretation I can be extended to the new signature σI by defining

(ξ∗)I = ξ

33

for all ξ ∈ |I|. We will denote this interpretation of σI by the same symbol I.
We will define recursively the truth value F I that is assigned to F by I for every sentence F of the

extended signature σI ; that includes, in particular, every sentence of the signature σ. For any propositional
constant R, RI is part of the interpretation I. Otherwise, we define:

• R(t1, . . . , tn)
I = RI(tI1, . . . , t

I
n),

• ⊥I = f, ⊤I = t,

• (¬F)I = ¬(F I),

• (F ⊙G)I = ⊙(F I , GI) for every binary connective ⊙,

• ∀wF (w)I = t iff, for all ξ ∈ |I|, F (ξ∗)I = t,

• ∃wF (w)I = t iff, for some ξ ∈ |I|, F (ξ∗)I = t.

As in propositional logic, we say that I satisfies F , and write I |= F , if F I = t.
We now show that interpretation (33) satisfies ∃xQ(x, a). Let I1 denote (33). By the definition, I1

satisfies ∃xQ(x, a) if (∃xQ(x, a))I1 = t. This is the case iff for some ξ ∈ |I1|, (Q(ξ∗, a))I1 = t. Let ξ be 9,
then

(Q(9∗, a))I1 = QI1(9, aI1) = QI1(9, 10) = t.

Exercise 31. Let F (x) be formula (32). Show that, for every n ∈ ω, (33) satisfies F (n∗) iff n < 2.

Satisfiability If there exists an interpretation satisfying a sentence F , we say that F is satisfiable. A set
Γ of sentences is satisfiable if there exists an interpretation that satisfies all sentences in Γ.

Exercise 32. Assume that P is a predicate constant of arity one. (a) Is set composed of sentences P (a),
∃x¬P (x) satisfiable? (b) Is set composed of sentences P (a), ∀x¬P (x) satisfiable?

Entailment and Equivalence A set Γ of sentences entails a sentence F , or is a logical consequence of Γ
(symbolically, Γ |= F), if every interpretation that satisfies all sentences in Γ satisfies F .

Exercise 33. Determine whether the sentences

∃xP (x), ∃xQ(x)

entail
∃x(P (x) ∧Q(x)).

A sentence F is logically valid if every interpretation satisfies F . This concept is similar to the notion of
a tautology.

The universal closure of a formula F is the sentence ∀v1 · · · vnF , where v1, . . . , vn are all free variables
of F . About a formula with free variables we say that it is logically valid if its universal closure is logically
valid. A formula F is equivalent to a formula G (symbolically, F ≡ G) if the formula F ↔ G is logically
valid.

Example 1. Are formulas
∀x(P (x)→ Q(x))

and
∀xP (x)→ ∀xQ(x)

equivalent.

34

Proof. We will illustrate that these formulas are not equivalent. In other words, we will illustrate that the
formula

(∀x(P (x)→ Q(x)))↔ (∀xP (x)→ ∀xQ(x)) (34)

is not logically valid. To illustrate the later it is sufficient to find an interpretation that does not satisfy (34).
Let us define interpretation I as follows: its universe |I| consists of two elements 1 and 2, functions P I

and QI are defined as follows:
element x of |I| P I(x) QI(x)
1 t f
2 f f

It is easy to see that (∀x(P (x)→ Q(x)))I = f. Indeed,

(P (1∗)→ Q(1∗))I =→ (P I(1), QI(1)) =→ (t, f) = f.

On the other hand, ((∀xP (x) → ∀xQ(x)))I = t. Indeed, (∀xP (x))I = f, since P (2∗)I = P I(2) = f.
Similarly, (∀xP (x))I = f. Thus, ((∀xP (x)→ ∀xQ(x)))I =→ ((∀xP (x))I , (∀xQ(x))I) =→ (f, f) = t.

It follows that
((∀x(P (x)→ Q(x)))↔ (∀xP (x)→ ∀xQ(x)))I =
↔ ((∀x(P (x)→ Q(x)))I , (∀xP (x)→ ∀xQ(x))I) =
↔ (f, t) = f.

Consequently, I does not satisfy (34).

Example 2. Assume that A is a sentence and thus has no free variables. Does the equivalence

(∀xP (x)) ∨A ≡ ∀x(P (x) ∨A) (35)

hold.

Proof. To show that (35) holds, we have to illustrate that formula

((∀xP (x)) ∨A)↔ (∀x(P (x) ∨A)) (36)

is logically valid. By definition, formula (36) is logically valid if every interpretation satisfies (36). Let I be
any interpretation of a predicate signature of formulas P (x) and A. We now illustrate that I satisfies (36),
or in other words

(((∀xP (x)) ∨A)↔ (∀x(P (x) ∨A)))I = t.

It is sufficient to illustrate that (∀xP (x)) ∨A)I = (∀x(P (x) ∨A))I .
Case 1. Assume that (∀xP (x))I = t. Consequently, for every element ξ in |I|,

P (ξ∗)I = t. (37)

Then, by the definition of function ∨(x, y),

((∀xP (x)) ∨A)I = t.

On the other hand, expression (∀x(P (x)∨A))I = t if for every element ξ in |I|, ∨(P (ξ∗)I , AI) = t. Indeed,for
every element ξ in |I|, condition (37) holds thus ∨(P (ξ∗)I , AI) = ∨(t,AI) = t.

Case 2. (∀xP (x))I = f. Consequently,

((∀xP (x)) ∨A)I = ∨((∀xP (x))I , AI) = ∨(f,AI) = AI.

It also follows that there is an element ξ in |I|, such that

P (ξ∗)I = f. (38)

On the other hand, (∀x(P (x) ∨ A))I = t if for every element ξ′ ∈ |I|, (P (ξ′∗) ∨ A)I = t. By (38) and
the definition of function ∨(x, y) it follows that (∀xP (x) ∨ A)I = t if and only if AI = t. Consequently,
(∀xP (x) ∨A)I = AI .

Exercise 34. For each of the formulas
P (x)→ ∃xP (x),
P (x)→ ∀xP (x)

determine whether it is logically valid.

35

2.6 Elements of Mathematical Proofs

Exhaustive Proofs, Proofs by Cases, Trivial Proofs. In mathematics, theorems often have the form
∀x(P (x)→ Q(x)). Consider the following mathematical statement

For any integers x, if x is such that −1 ≤ x ≤ 1 then x3 = x.

Intuitively, the implication
∀x(−1 ≤ x ≤ 1→ x3 = x),

where x is an integer represents this statement in logical notation. This statement is easy to prove, because
only three values of x satisfy its antecedent (left-hand-side of →) −1 ≤ x ≤ 1, and we can check for each
of them individually that it satisfies the consequent (right-hand-side of →) x3 = x as well. For the values
of integers that do not satisfy antecedent the proof is “trivial” or “vacuous”. Indeed, implication always
evaluates to true when its antecedent evaluates to false. This kind of reasoning is called “proof by cases or
proof by exhaustion.” We now present a proof for the statement above.

Proof. Consider any integer n.
Case 1: n < −1. Vacuous or Trivial proof. Indeed, condition −1 ≤ n ≤ 1 is false. Then, (−1 ≤ n ≤

1)→ n3 = n evaluates to true.
Case 2: n = −1. n3 = −1 = n.
Case 3: n = 0. n3 = 0 = n.
Case 4: n = 1. n3 = 1 = n.
Case 5: n > 1. Vacuous proof.

Proof by exhaustion is not applicable if the antecedent is satisfied for infinitely many values of variables.
For instance, the implication

∀x(−1 ≤ x ≤ 1→ −1 ≤ x3 ≤ 1)

(x is a variable for real numbers) cannot be proved by exhaustion.

Direct and Indirect Proofs Recall that the integer n is even if there exists an integer k such that n = 2k.
The integer n is odd if there exists an integer k such that n = 2k + 1. Every integer is either even or odd,
and no integer is both even and odd. The real number r is rational if there exist integers p and q with q ̸= 0
such that r = p/q. A real number that is not rational is called irrational.

A structure of a common direct proof of theorems of the form

∀x(P (x)→ Q(x))

follows.

1. Consider any value v of x in the domain of discourse.

2. Assume property P holds about v.

3. Use valid argument forms or rules of inference to conclude that property Q holds about v.

We now use a direct prove to show that for any number x if x is an integer then x is a rational number (or,
in other words, every integer is a rational number).

Proof. Consider any integer n. Obviously, n = n/1 where n and 1 are integers such that 1 ̸= 0. By the
definition of a rational number, n is rational.

Similarly, we will now show that if x is a rational number then 3x is also a rational number.

Proof. Consider any rational number n. By the definition of a rational number there exist integers p and q
(q ̸= 0) such that n = p/q. It follows that 3n = 3p/q. Consequently, 3n is a rational number as both 3p and
q are integers.

36

Exercise 35. Show that if x is a rational number then 3 + x is also a rational number.

Exercise 36. Show that if x is an even number then x2 is also an even number.

Exercise 37. Show that if x is an odd number then x3 is also an odd number.

Exercise 38. Show that the sum of two odd numbers is even.

Proofs that do not begin with the premise/antecedent of theorem statement and end with the conclusion
are called indirect proofs. Recall a valid argument form called contraposition (see Figure 4).

A proof by contraposition of ∀x(P (X)→ Q(x)) is as follows:

1. Consider any value v of x in the domain of discourse.

2. Assume property Q does not hold about v.

3. Use valid argument forms or rules of inference to conclude that property P does not hold about v.

4. By contraposition, P (v)→ Q(v) holds.

We now use prove by contraposition to illustrate that for any integer x if 3x+ 2 is odd, then x is odd.

Proof. Consider any integer n. Assume that n is not odd. In other words, n is even. By the definition of an
even integer there exists an integer k such that n = 2k. Thus,

3n+ 2 = 6k + 2 = 2(3k + 1).

Consequently, 3n+ 2 is an even number also. By contraposition we illustrated that if 3n+ 2 is odd, then n
is odd.

Similarly we can show that for any real number n if 3n is an irrational number then n is also an irrational
number.

Proof. Consider any real number n. Assume that n is a rational number. We illustrated earlier that under
such assumption, 3n is also a rational number. By contraposition we derive that if 3n is irrational then n is
also irrational.

“Proof by Contradiction“ is another common indirect proof technique. It often takes the following form:
we assume that the statement of a theorem is false. Then we derive a contradiction, which illustrates that
the statement of the theorem is true.

We now use prove by contradiction to illustrate that for any integer x if 3x+ 2 is odd, then x is odd.

Proof. Consider any integer n. By contradiction. Assume that statement ”if 3n + 2 is odd, then n is odd“
does not hold. In other words, the statement ”3n + 2 is not odd or n is odd“ does not hold, or statement
”3n + 2 is odd and n is not odd“ holds. Thus, n is even. We illustrated earlier that from the fact that n
is even it follows that 3n + 2 is even. This contradicts our assumption that ”3n + 2 is odd and n is not
odd“.

Exercise 39. Show that if x2 is odd then x is odd.

Exercise 40. Show that if the sum of two numbers is odd then one of these numbers must be even.

37

3 Growth of Functions

3.1 Calculus Notion of Function Growth Rate

Calculus Preliminaries L’Hopital’s rule states:

lim
f(x)

g(x)
= lim

f ′(x)

g′(x)

Formulas for some derivatives follow:
(xc)′ = cxc−1

(cx)′ = cxln(c)

(cf(x))′ = cf ′(x)

(f(x) + g(x))′ = (f ′(x) + g′(x))

(f(x)g(x))′ = (f ′(x)g(x) + g′(x)f(x))

where c is a constant, and x is a variable.
The number e is a mathematical constant that is the base of the natural log arithm ln. It is approximately

equal to 2.71828, and is the limn→∞(1 + 1/n)n.

Growth Let A1, A2, . . . and B1, B2, . . . be two increasing sequences of positive numbers. We can decide
which of them grows faster by looking at the limit of the ratio An

Bn
as n goes to infinity, if this limit exists.

We say that

A grows faster than B if lim
An

Bn
=∞,

A and B grow at the same rate if 0 < lim
An

Bn
<∞,

B grows faster than A if lim
An

Bn
= 0.

In the special case when

lim
An

Bn
= 1

we say that A is asymptotically equal to B.

Examples:

log 2n
3
√
n

√
n n n2 n3 1.1n 2n 3n n! nn

slower faster

Let us illustrate that sequence Pn = a2n
2+a1n+a0, where ai is a positive real number and n ≥ 1, grows

at the same rate as n2. Indeed,

lim Pn

n2 = lim a2n
2+a1n+a0

n2 =
lim(a2 +

a1

n + a0

n2) = a2 + 0 + 0 = a2

There is another way to illustrate the same fact by means of L’Hopital’s rule. It is more complicated, but
more general:

lim Pn

n2 = lim a2n
2+a1n+a0

n2 =

lim (a2n
2+a1n+a0)

′

(n2)′ =

lim (a2n
2+a1n+a0)

′′

(n2)′′ =

lim (2a2n+a1)
′

(2n)′ =

lim 2a2

2 = a2.

38

Harmonic Numbers Recall that the harmonic numbers Hn are defined by the formula

Hn = 1 +
1

2
+

1

3
+ · · ·+ 1

n
.

The sequence Hn is asymptotically equal to lnn. When n grows, the difference Hn− lnn approaches a finite
limit, which is called Euler’s constant and is denoted by γ. It is approximately equal to .577. The expression
lnn+ γ is a good approximation to Hn for large values of n.

Striling’s Formula The sequence of factorials n! grows approximately as fast as
(
n
e

)n
. More precisely, n!

is asymptotically equal to √
2πn

(n
e

)n

.

3.2 Big-O Notation

About two sequences An, Bn of positive numbers we say that An is O(Bn) if there exist positive con-
stants C, N such that

An ≤ C ·Bn whenever n ≥ N.

For instance, we can prove “by induction” (the proof method we will learn shortly) that

2n ≤ n! whenever n ≥ 4;

it follows that 2n is O(n!), because we can take C = 1 and N = 4 in the definition of big-O notation.

An example of a proof that a function is in big-O relation with another function The statement
n2 > n holds, whenever n ≥ 2. It follows that n is O(n2). It also follows that sequence Pn = a2n

2+a1n+a0,
where ai is a positive real number, is O(n2). Indeed,

a2n
2 + a1n+ a0 ≤

a2n
2 + a1n

2 + a0n
2 =

(a2 + a1 + a0)n
2

Thus we can take C = a2 + a1 + a0 and N = 2. It is trivial to see that n2 is O(Pn). Indeed, take C = 1 and
N = 1.

An example of a proof that a function is not in big-O relation with another function We now
show that n2 is not O(n), (n ≥ 1). Proof by contradiction. Assume that there are positive constants C and
N such that

n2 ≤ C · n whenever n ≥ N.

Then the following holds
n ≤ C whenever n ≥ N.

Take n to be C +N .

About two sequences An, Bn of positive numbers we say that An is Θ(Bn), or An is the same order as
Bn, if An is O(Bn) and Bn is O(An).

For instance, n2 is Θ(Pn).
We now relate the concept of “growth” and Big-O Notation.

Theorem 1. For two sequences An, Bn of positive numbers, when lim Bn

An
exists, if B grows faster than A

then A is O(B).

Theorem 2. For two sequences An, Bn of positive numbers, when lim An

Bn
exists, A and B grow at the same

rate if and only if A is Θ(B).

Exercise 41. Use Theorem 1 to illustrate that n2

n+1 is O(n2), (n ≥ 1).

39

Exercise 42. Use Theorem 2 to illustrate that n2

n+1 is Θ(n+ 2), (n ≥ 1).

Exercise 43. Use Theorem 2 to illustrate that n+ log n is Θ(n), (n ≥ 1).

These theorems provide us with additional means to illustrate whether two sequences are in big-O or
big-Θ relation.

In this section we considered increasing sequences of positive numbers. The definitions we presented can
be generalized to broader class of functions.

For instance, for functions f(x) and g(x) from real numbers to real numbers that are positive for x
sufficiently large, we say that

f(x) grows faster than g(x) if lim
f(x)

g(x)
=∞,

f(x) and g(x) grow at the same rate if lim f(x)
g(x) = L ̸= 0,

where L is some finite number,

g(x) grows faster than f(x) if lim
f(x)

g(x)
= 0. .

For functions f and g from the set of integers or the set of real numbers to the set of real numbers, we
say that f(x) is O(g(x)) if there are positive constants C and N such that

|f(x)| ≥ C|g(x)|

whenever x > N .

Theorem 3. Let f(x) = anx
n+an−1x

n−1+ · · ·+a1x+a0, where a0, a1, . . . , an−1, an are real numbers with
an ̸= 0.

f(x) = Θ(xn)

In other words, f(x) is the same order as xn.

Terminology

If a function of n is we say that it is
O(1) constant
O(log n) log arithmic
O(n) linear
O(n log n) n log n
O(n2) quadratic
O(nc) where c is a constant polynomial
O(cn) where c is a constant greater than 1 exponential
O(n!) factorial

Note how earlier we illustrated that function n2 (n ≥ 1) is not O(n). It is the same as saying that
function n2 is not linear.

Exercise 44. Let sequence An be 3n3 + (log n)4, (n ≥ 1). Find the least integer x so that sequence Bn of
the form nx (n ≥ 1) is such that A is O(B). Prove your claim.

Proof. The answer is 3.

40

One part of the argument: We illustrate that A and B grow at the same rate. From this fact by Theorem
2 it follows that A is Θ(B). The definition of big-Θ assumes that A is O(B). We start by computing

lim 3n3+(log n)4

n3 = lim (3n3+(log n)4)′

(n3)′ = lim
9n2+

4(log n)3

n

3n2 =

lim
(
9n3+4(log n)3

n)

3n2 = lim 9n3+4(log n)3

3n3 = lim (9n3+4(log n)3)′

(3n3)′ =

lim (27n3+12(log n)2)
9n3 = lim (27n3+12(log n)2)′

(9n3)′ = lim (81n3+24(log n))
27n3 =

lim (81n3+24(log n))′

(27n3)′ = lim (243n3+24)
81n3 = lim (243n

3

81n3 + 24
81n3) = 3

By definition, A and B grow at the same rate.
Another part of the argument: : we show that A is not O(n2) (or in other word it is not a quadratic

function).
By contradiction. Assume that 3n3 + (log n)4 is O(n2). Then, by the definition of big-O relation there

are positive constants C and N such that

3n3 + (log n)4 ≤ C · n whenever n ≥ N .

Note how

n3 ≤ 3n3 ≤ 3n3 + (log n)4.

Combining the last two claims we derive that

n3 ≤ C · n whenever n ≥ N .

Consequently,

n2 ≤ C whenever n ≥ N .

Take n to be C +N ; this value contradicts the last statement. Thus we derived a contradiction.

41

4 Elements on Algorithms and their Complexity

4.1 Algorithms and their Properties

An algorithm is a finite sequence of precise instructions for performing a computation or for solving a problem.
There are several properties that algorithms generally share:

• problem – a computational problem in question, i.e., a problem for which this algorithm is designed to
find solutions

• input – an algorithm has input values from a specified set

• output – from each set of input values an algorithm produces output values from a specified set that
correspond to solutions of the problem in question

• definiteness – steps of the algorithm must be defined precisely

• correctness – it needs to to what it claims

• finiteness – an algorithm should produce the desired output after a finite number of steps for any input

• effectiveness – it must be possible to perform each step of an algorithm exactly and in finite amount
of time

• generality – the procedure should be applicable to all problems of the desired form, not just for a
particular set of nput values.

Pseudocode2 is often used to describe algorithms for humans. Programming languages are used to specify
algorithms for machine reading.

A Toy Programming Language In the programming language TPL that we’ll be using, all variables
are integer variables, so that there is no need to declare them. Integer expressions are formed from integer
variables and integer constants using the operators +, −, × and div, and finally () which specifies operator
precedence. Boolean expressions are formed from equalities and inequalities between integer expressions
using the propositional connectives ∧, ∨, ¬. Assignments are expressions of the form v ← e where v is an
integer variable and e is an integer expression. Statements are formed from assignments and the statement
skip using three constructs:

• sequential composition
P1 ; . . . ;Pn

where P1, . . . , Pn are statements,

• conditional composition
if B then P1 else P2 endif

where B is a Boolean expression and P1, P2 are statements,

• loop
while B do P enddo

where B is a Boolean expression and P is a statement.

2Pseudocode is an informal high-level description of the operating principle of an algorithm that uses the structural conven-
tions of a programming language, but is intended for human reading rather than machine reading.

42

Algorithms for Computing Triangular Numbers in TPL Recall that the triangular number Tn is
the sum of all integers from 1 to n:

Tn =

n∑
i=1

i = 1 + 2 + · · ·+ n.

The following algorithm in TPL computes the triangular number Tn

T ← 0;
i← 1;
while i ≤ n do

T ← T + i;
i← i+ 1;

enddo

(39)

Later in the course we will prove this claim formally. Integer variable n is intuitively serves the role of an
input for this algorithm whereas T is output that stand for the triangular number Tn.

Also an algorithm below
T ← (n× (n+ 1)) div 2 (40)

computes the triangular number Tn. (Recall that Tn = n(n+1)
2 . It is left as an exercise to prove that

n(n+1)
2 = (n× (n+ 1)) div 2 when n is a nonnegative integer.)

4.2 Time Complexity of Algorithms

We will now study one possible metric of evaluating the effectiveness of an algorithm. This metric relies on
evaluating the number of operations used by the algorithm when the input has a particular size. In case
of the TPL the operations include, for example, assignment ← and addition +. Thus, when evaluating an
effectiveness of an algorithm we are first interested in finding a function from the size of an input to a number
of operations required by an algorithm to compute output for this input. Sometimes only some operation
are considered. It is obvious that number of operations required by an algorithm correlates with the time
spent by a computer executing the algorithm.

We say that function f (from a nonnegative integer to a nonnegative integer) captures algorithm A with
respect to set S of operations if given an integer that represents the size of an input of A the function returns
an integer that stands for the total number of operations from S used during the execution of A. We omit
“with respect to set S of operations” if set S comprises all operations occurring in A.

For instance, let A1 denote algorithm (39). The size of the input of A1 is determined by the value of its
input variable n. Function f1(n) = n+ 1 captures A1 w.r.t. set {≤} of operations. Indeed, the comparison
operation ≤ is used in a boolean expression of a while-loop in (39). This comparison will be performed n+1
times given the usual semantics of a while-loop. Function f2(n) = f1(n) + 4n + 2 = 5n + 3 captures A1

w.r.t. {≤,+,←}. In other words, f2(n) captures A1. Indeed, f1(n) stands for the number of comparisons
performed by the algorithm. The while-loop of (39) executes n times. Thus, the statements in the scope of
this loop

T ← T + i;
i← i+ 1;

will be performed n times. These statements comprise 4 operations occurring in {≤,+,←}, two additions
and two assignments. This results in 4n operations due to addition and assignment within the while loop.
The first two lines of (39) contribute two more operations.

For a function f from a nonnegative integer to a nonnegative integer, and a set S of operations we say
that an algorithm A has time complexity Θ(f) measured with respect to S when there is a function g such
that

• g captures A with respect to S,

43

• g is Θ(f).

We omit “measured with respect to S” if set S comprises all operations occurring in A.
It is easy to see that f1(n) and f2(n) are both Θ(n). Thus it follows that algorithm (39) has time

complexity Θ(n) measured with respect to set {≤} of operations as well as with respect to {≤,+,←}. Or
in other words, algorithm (39) has time complexity Θ(n).

Terminology

If an algorithm is captured by a function of n we say that its (time) complexity
(w.r.t. set S of operations) that is (measured w.r.t. S) is
Θ(1) constant
Θ(log n) logarithmic
Θ(n) linear
Θ(n log n) n log n
Θ(n2) quadratic
Θ(nc) where c is a constant polynomial
Θ(cn) where c is a constant greater than 1 exponential
Θ(n!) factorial

For instance, algorithm (39) is linear w.r.t. all operations used in this algorithm (or any set composed of
some operations occurring in the algorithm). It is easy to see that algorithm (40) has complexity Θ(1) (or,
in other words, its complexity is constant) w.r.t. all operations used in this algorithm.

44

5 Induction and Recursive Definitions

5.1 Proofs by Induction

Induction is a useful proof method in mathematics and computer science. When we want to prove by
induction that some statement containing a variable n is true for all nonnegative values of n, we do two
things. First we prove the statement when n = 0; this part of the proof is called the basis. Then we prove
the statement for n + 1 assuming that it is true for n; this part of the proof is called the induction step.
(The assumption that the statement is true for n, which is used in the induction step, is called the induction
hypothesis.)

Once we have completed both the basis and the induction step, we can conclude that the statement holds
for all nonnegative values of n. Indeed, according to the basis, it holds for n = 0. From this fact, according
to the induction step, we can conclude that it holds for n = 1. From this fact, according to the induction
step, we can conclude that it holds for n = 2. And so on.

As an example, we will give yet another proof of the formula for triangular numbers.

Problem. Prove that for all nonnegative integers n

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

Solution. Basis. When n = 0, the formula turns into

0 =
0(0 + 1)

2
,

which is correct. Induction step. Assume that

1 + 2 + · · ·+ n =
n(n+ 1)

2
.

We need to derive from this assumption that

1 + 2 + · · ·+ n+ (n+ 1) =
(n+ 1)(n+ 2)

2
.

Using the induction hypothesis, we calculate:

1 + 2 + · · ·+ n+ (n+ 1) =
n(n+ 1)

2
+ (n+ 1)

=
n(n+ 1) + 2(n+ 1)

2

=
(n+ 1)(n+ 2)

2
.

Proofs by induction can be symbolically represented by this inference rule:

P (0) ∀n(P (n)→ P (n+ 1))

∀nP (n)
.

Here n is a variable for nonnegative integers, and the expression P (n) means that n has the property that
we want to prove holds for n. The first premise represents the basis, and the second premise represents the
induction step.

We will give now two more examples of the use of induction.

Problem. Prove that for all nonnegative integers n, 2n > n.

45

Solution. Basis. When n = 0, the formula turns into 1 > 0, which is correct. Induction step. Assume that
2n > n for some n > 0. We need to derive from this assumption that 2n+1 > n + 1. This can be done as
follows, using the induction hypothesis and then the fact that 2n ≥ 2 > 1 for n > 0:

2n+1 = 2n + 2n > n+ 2n > n+ 1.

Problem. Prove that for all nonnegative integers n, n3 − n is a multiple of 3.

Solution. Basis. When n = 0, we need to check that 03 − 0 is a multiple of 3, which is correct. Induction
step. Assume that n3 − n is a multiple of 3. We need to derive from this assumption that (n+1)3 − (n+1)
is a multiple of 3. This expression can be rewritten as follows:

(n+ 1)3 − (n+ 1) = n3 + 3n2 + 3n+ 1− (n+ 1) = n3 + 3n2 + 2n
= (n3 − n) + 3n2 + 3n.

Consider the three summands n3 − n, 3n2, 3n. By the induction hypothesis, the first of them is a multiple
of 3. It is clear that the other two are multiples of 3 also. Consequently, the sum is a multiple of 3.

We have used induction to prove statements about nonnegative integers. Statements about positive
integers can be proved by induction in a similar way, except that the basis corresponds to n = 1; also, in
the induction step we may assume that n ≥ 1. Similarly, if we want to prove a statement about all integers
beginning with 2 then the basis corresponds to n = 2, and so on.

Problem. Prove that for all integers n such that n ≥ 10, 2n > n+ 1000.

Solution. Basis. When n = 10, the formula turns into 1024 > 1010, which is correct. Induction step.
Assume that 2n > n + 1000 for an integer n such that n ≥ 10. We need to derive that 2n+1 > n + 1001.
This can be done as follows:

2n+1 = 2n + 2n > n+ 1000 + 2n ≥ n+ 1000 + 210 > n+ 1001.

Where does Induction come from? Consider Peano’s Axioms3 – axioms for the natural numbers:

1. Zero – 0 – is a number.

2. If n is a number, the successor of n, denoted by n′, is a number.

3. Zero is not the successor of a number.

4. Two numbers of which the successors are equal are themselves equal.

5. (induction axiom.) If zero has the property P [Basis], and if the successor of every number with this
property P has this property P also [Induction Step], then all numbers have this property.

Induction axiom is the basis for Proofs by Induction.
Let us prove some “trivial” property about natural numbers. First we define addition:

• m+0=m,

• m+n’=(m+n)’.

where m and n are numbers.

Problem. Use Peano axioms to prove that 0 + n = n.

Solution. Basis. By the definition of addition m + 0 = m. Thus 0 + 0 = 0. In other words property in
question holds about 0. Induction step. Assume that 0 + n = n holds for n. We now show that under this
assumption also the following claim holds: 0 + n′ = n′. Indeed, 0+ n′ = (0+ n)′ by the second clause in the
definition of addition. In turn, (0+n)′ = n′ by the inductive assumption. In other words we just illustrated
that if property in question holds about n then it also holds for its successor n′. By induction axiom we
derive that all numbers have this property that 0 + n = n.

3http://mathworld.wolfram.com/PeanosAxioms.html

46

More on Induction The sum Sn of the squares of numbers from 1 to n, i.e., Sn = 12 + · · ·+ n2: can be
written also as

Sn =
(2n+ 1)(n+ 1)n

6
. (41)

Exercise 45. Prove the formula (41) for Sn by induction.

Exercise 46. Prove the formula for the sum Cn of the cubes of numbers from 1 to n:

Cn =
n2(n+ 1)2

4
.

Exercise 47. (a) Calculate the values of the expression

1

1 · 2
+

1

2 · 3
+ · · ·+ 1

n · (n+ 1)

for n = 1, . . . , 4, and guess what a simple formula for those values may look like. (b) Use your conjecture to
predict the value of this expression for n = 999. (c) Prove your conjecture by induction.

Exercise 48. Prove that for all nonnegative integers n, 4n − 1 is a multiple of 3.

Exercise 49. Guess which nonegative values of n satisfy the inequality

2n > n+ 5.

Prove that your answer is correct.

5.2 Strong and Structural Induction

The following modification of the induction method is called strong induction. We want to prove some
statement for all nonnegative values of n. To this end, we assume that the statement is true for all numbers
that are less than n. From this induction hypothesis we need to derive that the statement is true for n; this
is the induction step of strong induction.

Here is a proof by strong induction.
Recall that the sequence of Fibonacci numbers F0, F1, F2, . . . is defined by the equations

F0 = 0,
F1 = 1,
Fn+2 = Fn + Fn+1.

Problem. Let F be the sequence of Fibonacci numbers. Prove that, for all nonnegative integers n, Fn < 2n.

Solution. Assume that, for every k < n, Fk < 2k. We need to prove that Fn < 2n.
Case 1: n = 0. Then the inequality to be proved turns into 0 < 1.
Case 2: n = 1. Then the inequality to be proved turns into 1 < 2.
Case 3: n > 1. Then

Fn = Fn−2 + Fn−1 < 2n−2 + 2n−1

< 2n−2 + 2 · 2n−2

< 3 · 2n−2 < 4 · 2n−2

2n.

47

Exercise 50. Let F be the sequence of Fibonacci numbers. Prove that, for all nonnegative integers n,
Fn < (53)

n.

Proof by strong induction. Assume that, for every k < n, Fk < (53)
k. We need to prove that Fn < (53)

n.
Case 1: n = 0. Then the inequality to be proved turns into 0 < 1.
Case 2: n = 1. Then the inequality to be proved turns into 1 < 5

3 .
Case 3: n > 1. Then

Fn = Fn−2 + Fn−1 < (53)
n−2 + (53)

n−1

< (53)
n−2 + (53)

n−2 · (53)

< (83)(
5
3)

n−2 < (259) · (53)
n−2

< (53)
2 · (53)

n−2

< (53)
n

Recall the recursive definition of a (propositional) formula:

• every atom is a formula,

• both 0-place (⊤ and ⊥) connectives are formulas,

• if F is a formula then ¬F is a formula,

• for any binary connective ⊙, if F and G are formulas then (F ⊙G) is a formula.

Properties of formulas can be often proved by induction. For example, by strong induction on length
(number of symbols) of a formula. In such a proof, the induction hypothesis is that every formula which is
shorter than F has the property P that we want to prove. From this assumption we need to derive that F
has property P also. Then it follows that all formulas have property P .

In another useful form of induction, we check that all atoms and 0-place connectives have property P ,
and that the property is preserved when a new formula is formed using a unary or binary connective. More
precisely, we show that

• every atom has property P ,

• both 0-place connectives have property P ,

• if a formula F has property P then so does ¬F ,

• for any binary connective ⊙, if formulas F and G have property P then so does (F ⊙G).

Then we can conclude that property P holds for all formulas. This is called “structural induction.”

Problem. Prove that the number of left parentheses in any formula is equal to the number of right
parentheses.

Solution 1. By structural induction. We call the property “the number of left parentheses is equal to the
number of right parentheses” – P . Consider any formula F .

• Every atom trivially has property P . (Indeed, there are no parentheses.)

• Both 0-place connectives trivially have property P .

• Let a formula F have property P . Then ¬F also has this property. It is easy to see that formula ¬F
and F share the same parentheses. Hence property P holds about F .

48

• Consider any binary connective ⊙. Let formulas G and H have property P . We now show that formula
F = (G ⊙ H) also has this property. Let lF and rF denote numbers of left and right parentheses of
F respectively. Similarly, letters lG, rG, lH , and rH denote numbers of left and right parentheses of
G and H. We assumed that lG = rG and lH = rH . From the construction of F (i.e., the fact that F
has the form (G ⊙H)), it follows that lF = lG + lH + 1. Similarly, rF = rG + rH + 1. Consequently,
lF = rF .

Solution 2. By strong induction. We call the property “the number of left parentheses is equal to the
number of right parentheses” – P . Consider any formula F . Assume that, for every formula that is shorter
than F the number of left parentheses is equal to the number of right parentheses. We need to prove that
this property P holds for F . From the definition of a formula there are 4 cases or in other words formula F
can take 4 different forms. We now show that for every possible form of F the property P holds.
Case 1. F is an atom. P trivially holds.
Case 2. F is some 0-place connective. P trivially holds.
Case 3. F has the form ¬F ′. F ′ is the shorter formula than F . Hence P holds about F ′. It is easy to see
that formula ¬F ′ and F ′ share the same parentheses. Hence property P holds about F .
Case 4. F has the form (G ⊙ H), where G and H are formulas which are trivially of shorter length than
F . Let lF and rF denote numbers of left and right parentheses of F respectively. Similarly, letters lG, rG,
lH , and rH denote numbers of left and right parentheses of G and H. From the inductive hypothesis it
follows that lG = rG and lH = rH . From the construction of F , it follows that lF = lG + lH + 1. Similarly,
rF = rG + rH + 1. Consequently, lF = rF .

Exercise 51. A prefix of a string a1 · · · an is any string of the form a1 · · · am where 0 ≤ m ≤ n. In any
prefix of a formula, the number of left parentheses is greater than or equal to the number of right parentheses.

We call the property “In any prefix of a formula, the number of left parentheses is greater than or equal
to the number of right parentheses” – P . We call the property “The number of left parentheses is greater
than or equal to the number of right parentheses” – P ′. Note that to illustrate that P holds for formula F
we have to show that property P ′ holds for every prefix of F . On the other hand, if we know that property
P holds for formula F , we then know that property P ′ holds for every prefix of F . By structural induction.

• For an atom a, it has only two prefixes: empty string and atom a itself. The property P ′ trivially
holds for both of these prefixes. Thus property P holds for atom a.

• Case of 0-place connectives is similar to that of an atom.

• Let a formula F have property P . Consider formula ¬F . Take any prefix p of ¬F . It is easy to see
that it is either an empty string or has the form ¬p′ where p′ is a prefix of F . The empty string case
is trivial. For the later case, we know that the number of left parentheses is greater than or equal to
the number of right parentheses in p′. Hence the same holds about ¬p′.

• Consider any binary connective ⊙. Let formulas G and H have property P . We now show that formula
F = (G⊙H) also has this property P by illustrating that property P ′ holds about every possible prefix
p of F .
Case 1. Prefix p of F is an empty string. Trivial.
Case 2. Prefix p of F is (p′ where p′ is some prefix of G. We know that the number of left parentheses
is greater than or equal to the number of right parentheses in p′. The number of left parentheses in
(p′ is greater by one than the number of left parentheses in p′. Hence the property P ′ holds of p.
Case 3. Prefix p of F is (G ⊙ p′ where p′ is some prefix of H. We know that (i) the number of left
parentheses is greater than or equal to the number of right parentheses in G, (ii) the number of left
parentheses is greater than or equal to the number of right parentheses in p′. The number of left
parentheses in (G ⊙ p′ is greater by one than the number of left parentheses in G plus the number
of left parentheses in p′. The number of right parentheses (G ⊙ p′ is the same as the sum of right
parentheses in G and p′. It follows that property P ′ holds of p.
Case 4. Prefix p of F is F itself. Hence p has the form (G⊙H). Let lF and rF denote numbers of left
and right parentheses of F respectively. Similarly, letters lG, rG, lH , and rH denote numbers of left

49

and right parentheses of G and H. We know that (i) the number of left parentheses is greater than
or equal to the number of right parentheses in G, (ii) the number of left parentheses is greater than
or equal to the number of right parentheses in H. Or, in other words, lG ≤ rG and lH ≤ rH . By the
construction of F , lF = lG + lH + 1 and rF = rG + rH + 1. Consequently, lF ≤ rF .

50

6 Recursive Definitions

A recursive definition of a sequence of numbers expresses some members of that sequence in terms of its
other members. For instance, here is a recursive definition of triangular numbers:

T0 = 0,
Tn+1 = Tn + n+ 1

(n is a variable for nonnegative integers.) The first formula gives the first triangular number explicitly;
the second formula shows how to calculate any other triangular number if we already know the previous
triangular number.

There are two ways to find T4 using this definition. One is to find first T1, then T2, then T3, and then T4:

T1 = T0 + 1 = 0 + 1 = 1,
T2 = T1 + 2 = 1 + 2 = 3,
T3 = T2 + 3 = 3 + 3 = 6,
T4 = T3 + 4 = 6 + 4 = 10.

The other possibility is to form a chain of equalities that begins with T4 and ends with a number:

T4 = T3 + 4
= T2 + 3 + 4 = T2 + 7
= T1 + 2 + 7 = T1 + 9
= T0 + 1 + 9 = T0 + 10
= 0 + 10 = 10.

This is an example of “lazy evaluation”: we don’t calculate the members of the sequence other than our goal
T4 until they are needed. The strategy used in the first calculation is “eager,” or “strict.”

Consider the recursive definition of factorials

0! = 1,
(n+ 1)! = n! · (n+ 1).

(42)

Exercise 52. Calculate 4! using (a) eager evaluation, and (b) lazy evaluation.

Exercise 53. Function f is defined by the formulas

f(0) = 10,
f(n+ 1) = f(n)(n2 + n− 90) + 1.

Find f(11) without a calculator.

If a sequence of numbers is defined using Sigma-notation then we can always rewrite its definition using
recursion. For instance, the formula

Xn =

n∑
i=1

1

i2 + 1

can be rewritten as
X0 = 0,

Xn+1 = Xn +
1

(n+ 1)2 + 1
.

The definition of factorials

n! =

n∏
i=1

i

can be rewritten as (42).

51

Exercise 54. The numbers U0, U1, U2, . . . are defined by the formula

Un =

n∑
i=1

(2i− 1)2.

Define this sequence using recursion, instead of sigma-notation.

To prove properties of recursively defined sequences, we often use induction. Consider, for instance, the
numbers Y0, Y1, Y2, . . . defined by the formulas

Y0 = 0,
Yn+1 = 2Yn + n+ 1.

We will prove by induction that Yn ≥ 2n whenever n ≥ 2. Basis: n = 2. Since Y2 = 4 and 22 = 4, the
inequality Y2 ≥ 22 holds. Induction step. Assume that Yn ≥ 2n for an integer n such that n ≥ 2. We need
to derive that Yn+1 ≥ 2n+1. This can be done as follows:

Yn+1 = 2Yn + n+ 1 ≥ 2 · 2n + n+ 1 = 2n+1 + n+ 1 > 2n+1.

Recall one of the axioms about integers:

(i) The set of integers Z is closed under the operations of addition and multiplication, that is, the
sum and product of any two integers is an integer.

We will now prove by induction that Yn is an integer for n ≥ 0 (recall that n is an integer). Basis: n = 0.
Since Y0 = 0, it immediately follows that Y0 is an integer. Induction step. Assume that Yn is an integer
for some n > 0. We need to derive that Yn+1 is also an integer. Per the definition of this sequence,
Yn+1 = 2Yn + n + 1. Since the set of integers is closed under the operations of addition and multiplication
and we are given that Yn and n are integers it follows that Yn+1 is also an integer.

Exercise 55. Is it true that for every even n, Yn is even? Prove that your answer is correct. Is induction
required in the proof?

Recursive definitions can be written in “case notation” by showing which formula should be used for
calculating the n-th member of the sequence depending on the value of n. For instance, the definition of
triangular numbers, rewritten in case notation, will look like this:

Tn =

{
0, if n = 0,

Tn−1 + n, otherwise.

The sequence of Fibonacci numbers F0, F1, F2, . . . is defined by the equations

F0 = 0,
F1 = 1,
Fn+2 = Fn + Fn+1.

It is different from the examples that we’ve seen before in that two members of the sequence are given
explicitly, not one; but to calculate any other Fibonacci number we need to know two previous Fibonacci
numbers, one is not enough. Here is the definition of Fibonacci numbers in case notation:

Fn =

0, if n = 0,

1, if n = 1,

Fn−2 + Fn−1, if n ≥ 2.

Exercise 56. Rewrite the recursive definition of the factorial function in the case format.

In all examples of recursive definitions so far, the larger n is, the more work is needed to calculate the
n-th member of the sequence. The recursive definition of the numbers M(0),M(1),M(2), . . . shown below
is different: it’s easy to calculate M(n) when n is large, and difficult when n is small.

M(n) =

{
n− 10, if n > 100,

M(M(n+ 11)), otherwise.

52

Recursive Definitions with Two Variables A function of two variables is a function whose domain
consists of ordered pairs (x, y). For example, multiplication is a function of two variables: f(x, y) = x · y.

Some functions of two variables can be defined using recursion. For example, the multiplication of
nonnegative integers can be defined in terms of addition as follows:

f(m, 0) = 0,
f(m,n+ 1) = f(m,n) +m.

Exercise 57. Use the definition above to find f(2, 3).

Exercise 58. Give a recursive definition for the function f(m,n) = mn using no algebraic operations other
than addition and multiplication. Use it to find f(2, 3).

Exercise 59. Consider the function f defined by

f(m, 0) = 1,
f(0, n+ 1) = 1,
f(m+ 1, n+ 1) = f(m,n) + f(m,n+ 1).

Make the table of values of f(m,n) for all m,n ≤ 5.

53

7 Counting

7.1 The Product Rule

Theorem 4. The Product Rule. Suppose a sequence T1, . . . , Tn of tasks so that ti (1 ≤ i ≤ n) stands for
the number of possible ways to perform task Ti, regardless in which ways the other tasks in the sequence are
done. The number of possible ways to perform the sequence T1, . . . , Tn of tasks is t1 × · · · × tn.

The product rule is often phrased in terms of sets as follows: If A1, . . . Am are finite sets, then the number
of elements in the Cartesian product of these sets is the product of the number of the elements in each of
the sets:

|A1 ×A2 × · · · ×Am| = |A1| × |A2| × · · · × |Am|

Problem. A local telephone number is given by a sequence of six digits. How many different telephone
numbers are there if the first digit cannot be 0?

Solution.
9× 10× 10× 10× 10× 10 = 900, 000

Problem. A local telephone number is given by a sequence of six digits. How many different telephone
numbers are there if the first digit cannot be 0; and the situation where all of the remaining 5 digits are 0
is forbidden.

Solution. The number of different telephone numbers whose first digit is not 0 follows: 900, 000. The
situation where the first digit is non 0 and all of the remaining 5 digits are 0 accounts for 9×1×1×1×1×1 = 9
by product rule. So the answer is 900, 000− 9 = 899, 991.

Problem. A new company with just two employees, Sanchez and Patel, rents a floor of a building with 12
offices. How many ways are there to assign different offices to these two employees?

Solution.
12× 11 = 132

Problem. The chairs in an auditorium are to be labeled with a letter and a positive integer not exceeding
100. What is the largest number of chairs that can be labeled differently?

Solution.
26× 100 = 2600

Problem. How many different license plates are available if each plate contains a sequence of three letters
followed by three digits?

Solution.
26× 26× 26× 10× 10× 10 = 17, 576, 000

Exercise 60. What is the number of subsets of set composed of n elements.

Problem. How many functions are there from a set with m elements to a set with n elements?

Solution. Suppose the elements in the domain are a1, . . . , am:
f(a1) = n possibilities
f(a2) = n possibilities
...

...
...

f(am) = n possibilities
Total nm

Exercise 61. How many different functions there are from a set with 3 elements to a set with 5 elements.

54

Problem. How many one-to-one functions are there from a set with m elements to a set with n elements
(m ≤ n).

Solution. Suppose the elements in the domain are a1, . . . , am:
f(a1) = n possibilities
f(a2) = (n− 1) possibilities, because the function is one to one
...

...
...

f(am) = (n− (m− 1)) possibilities

Total n× (n− 1)× · · · × (n−m+ 1) = n!
(n−m)!

Exercise 62. How many different one-to-one functions there are from a set with 3 elements to a set with 5
elements.

7.2 The Sum Rule

Theorem 5. The Sum Rule. Suppose that a task T can be done in one of t1 ways, or in one of t2 ways,
. . . or in one of tn ways, where none of the ti ways are the same as any of the tj ways for any i, j so that
1 ≤ i < j ≤ n. Then the number of possible ways to perform T is t1 + · · ·+ tn.

The sum rule is often phrased in terms of sets as follows: If A1, . . . Am are pairwise disjoint finite sets,
then the number of elements in the union of these sets is the sum of the numbers of elements in each of these
sets:

|A1 ∪A2 ∪ · · · ∪Am| = |A1|+ |A2|+ · · ·+ |Am|

Problem. A student can choose a computer project from one of the three lists. No project is on more than
one list. The three lists contain 23, 15 and 19 possible projects respectively. How many possible projects
are there to choose from?

Solution. 23 + 15 + 19 = 57.

Combining the Product Rule and the Sum Rule Many counting problems cannot be solved using
just the sum or just the product rule. Yet, they can be solved using both of these rules in combination.

Problem. Each user on a computer system has a password, which is six to eight characters long, where
each character is an uppercase letter or a digit. How many possible passwords are there?

Solution. Let P6, P7 and P8 stand for numbers of possible ways to create passwords of length 6, 7, and 8
respectively. The total number of passwords of the described system is P6 + P7 + P8 due to the sum rule.
On the other hand by the product rule P 6 = 366, P 7 = 367, P 8 = 368 (indeed, there are 26 uppercase letter
and 10 digits). The answer follows: 366 + 367 + 368.

7.3 The Pigeonhole Principle

Theorem 6. If k is a positive integer and k + 1 or more objects are placed into k boxes, then there is at
least one box containing two or more of the objects.

Proof. By contradiction. Suppose none of the boxes contain more than one object. It follows that there are
at most k objects which contradicts to our assumption that there are at least k + 1 objects.

Problem. Among any group of 367 people, there must be at least two people with the same birthday,
because there are only 366 possible birthdays.

Problem. How many students must be in a class to guarantee that at least two students receive the same
score on the final exam – assuming the exam is graded on a scale from 0 to 100 points? By pigeon hole
principle: at least 102.

55

Theorem 7 (Generalized Pigeonhole Principle). If N objects are placed into k boxes, then there is at least
one box containing at least ⌈N/k⌉ objects, where ⌈x⌉ denotes a ceileing function that maps a real number x
to the smallest integer not less than x.

Problem. Among 100 people there are at least ⌈100/12⌉ = 9 who were born in the same month.

Problem. What is the minimum number of students required in a discrete math class to be sure that at
least six will receive the same grade – assuming five possible grades: A, B, C, D, and F?

The smallest number N that satisfies the following condition

⌈N/5⌉ = 6

is 26. This number represents the solution to the problem by generalized Pigeonhole principle.

Exercise 63. At least how many cards must be selected from a standard deck of 52 cards to guarantee that
at least three cards of the same suit are chosen? The number of distinct suits is 4.

7.4 Permutations and Combinations

Permutations A permutation is an ordered arrangement of the objects in a given set. For example, for a
set {a b c} of three elements there are 6 different permutations:

a b c, a c b, b a c, b c a, c a b, c b a

For a set of n elements there are n! permutations.
An r-permutation is an ordered arrangement of r elements of a given set. For example, for a set {a b c}

there are 6 different 2-permutations:

a b, a c, b a, b c, c a, c b.

For a set of n elements and an integer r where 1 ≤ r ≤ n, there are

n× (n− 1)× (n− 2)× · · · × (n− (r − 1))

r-permutations. We denote this number by P (n, r). It is easy to show that

P (n, r) =
n!

(n− r)!
.

Problem. How many ways are there to select a first-prize winner, a second-prize winner, and a third-prize
winner from 100 different people who have entered a contest?

Solution.
P (100, 3) = n× (n− 1)× (n− 2) = 100× 99× 98.

Problem. Suppose there are eight runners in a race. The winner receives a gold medal, the second-place
finisher receives a silver medal, and the third-place finisher receives a bronze medal. How many different
ways are there to award these medals, if all possible outcomes of the race can occur and there are no ties?

Solution.
P (8, 3) = 8× 7× 6 = 336

Problem. How many permutations of the letters ABCDEFGH contain the string ABC?

Solution. The string ABC can occur in 6 positions.

ABCp4p5p6p7p8
p1ABCp5p6p7p8
...

...
p1p2p3p4p5ABC

For each of these 6 situations we have 5! permutations of 5 remaining elements {D E F G H}. Thus the
answer is 6× 5!.

56

Combinations An r-combination of elements of a set A is an unordered selection of r elements from A.
Thus an r-combination is a subset of A whose cardinality is r.

The number of r-combinations of a set with cardinality n is denoted by C(n, r), which is also sometimes
written as

(
n
r

)
. We also say that “n choses r”. The number

(
n
r

)
is called binominal coefficient.

Theorem 8. For a set whose cardinality is n, where n is a nonnegative integer an r is an integer with
0 ≤ r ≤ n:

C(n, r) =
n!

r!(n− r)!

Corollary 1. Let n and r be nonnegative integers with r ≤ n. Then

C(n, r) = C(n, n− r)

Problem. How many different committees of three students can be formed from a group of four students?

Solution.

C(4, 3) =
4!

3!1!
=

4

1
= 4

Problem. How many poker hands of five cards can be dealt from a standard deck of 52 cards?

Solution.

C(52, 5) =
52!

5!47!
=

52× 51× 50× 49× · · · × 48

5× 4× 3× 2× 1
= 26× 17× 10× 49× 12 = 2, 598, 960

Problem. How many bit strings of length n contain exactly r 1’s?

Solution. C(n, r). (Recall how we used binary strings to model subsets of a set.)

Problem. Suppose there are 9 faculty members in the mathematics department and 11 in the computer
science department. How many ways are there to select a committee to develop a discrete math course at a
school if the committee is to consist of three faculty members from the mathematics department and four
from the computer science department.

Solution.

C(9, 3)× C(11, 4)

57

8 Relations

8.1 Relations and their Kinds: Reflexive, Symmetric, Transitive

Many examples in this section refer to comparison operations =, <,>,≤, and ≥. Their properties are
captured by axioms of real numbers (see for instance, Appendix I in K. Rosen textbook.)

Any condition on a pair of elements of a set A defines a binary relation, or simply relation, on A. For
instance, the condition x < y defines a relation on the set R of real numbers (or on any other set of numbers).
If R is a relation, the formula xRy expresses that R holds for the pair x, y.

A relation R can be characterized by the set of all ordered pairs (x, y) such that xRy. In mathematics,
it is customary to talk about a relation as it were the same thing as the corresponding set of ordered pairs.
For instance, we can say that the relation < on the set {1, 2, 3, 4} is the set

{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)}.

A relation R on a set A is said to be reflexive if, for all x ∈ A, xRx. For instance, the relations = and ≤
on the set R (or on any set of numbers) are reflexive, and the relations ̸= and < are not.

A relation R on a set A is said to be symmetric if, for all x, y ∈ A, xRy implies yRx. For instance, the
relations = and ̸= on R are symmetric, and the relations < and ≤ are not.

A relation R on a set A is said to be transitive if, for all x, y, z ∈ A, xRy and yRz imply xRz. For
instance, the relations =, < and ≤ on the set R are transitive, and the relation ̸= is not.

Problem. Consider a relation on the set {a, b, c} defined as follows:

R = {(a, a), (a, b), (b, a), (b, b), (c, c)}.

Illustrate that this relation is reflexive, symmetric, and transitive.

Solution. To illustrate that R is reflexive, we have to verify that for every member x of the set {a, b, c},
pair (x, x) is in R. Indeed, pairs (a, a), (b, b), and (c, c) are in R.

To show that R is symmetric, we have to verify that for any pair of elements x, y from {a, b, c}, the
statement

if (x, y) is in R then (y, x) is in R (43)

holds. The table below lists all possible assignments for x and y and provides details on evaluation of the
statement in question given each assignment.

x y (x, y) is in R (y, x) is in R statement (43)
a a t t t
a b t t t
a c f t
b a t t t
b b t t t
b c f t
c a f t
c b f t
c c t t t

(44)

Recall that t stands for true (holds) and f stands for false (does not hold). The last column illustrates that
under any assignment statement (43) holds. Thus, relation R is symmetric. The fourth column of the table
is missing some of the entries, this is due to the fact that when the antecedent of the if-then statement is
evaluated to f the value of the consequent is immaterial as the given if-then statement as a whole will be
evaluated to t. (Remember the truth table of the implication symbol in propositional logic).

To show that R is transitive, we have to verify that for any triple of elements x, y, z from {a, b, c}, the
statement

if pairs (x, y) and (y, z) are in R then (x, z) is in R (45)

58

holds. To do so it is is sufficient to construct a table in style of (44) that lists all possible assignments for
triple x, y, z and verify that the column that presents evaluation of proposition (45) under each assignment
contains value t. This table must contain 27 rows each representing a dstinct possible assignment. Yet, we
know that when the antecedent of (45), namely, statement pairs (x, y) and (y, z) are in R does not hold (in
other words, evaluates to f) then the statement (45) evaluates to t. The table that we present below does
not list the assignments of x, y, z that result in evaluating the antecedent of (45) to f (such as, for example,
an assignment x = a, y = b, z = c or an assignment x = c, y = a, z = a).

x y z pairs (x, y) and (y, z) are in R (x, z) is in R statement (45)
a a a t t t
a a b t t t
a b a t t t
a b b t t t
b a a t t t
b a b t t t
b b a t t t
b b b t t t
c c c t t t

Exercise 64. Argue that any relation on any singleton set is transitive.

Problem. Consider a relation on the set of all people defined as follows:

R = {(a, b) | a is shorter than b}.

Is R transitive?

Solution. We say that a person a is shorter than a person b, when the height of a person a is less than the
height of a person b, where height is understood as a real number in, say, metric scale. In other words, this
question can be reformulated as a question on whether the comparison relation less than, i.e., <, (on the
subset of real numbers composed of the values of heights of all the people) is transitive. As discussed earlier
< relation is transitive.

8.2 Equivalence Relations and Partitions

An equivalence relation is a relation that is reflexive, symmetric, and transitive.
A partition of a set A is a collection P of non-empty subsets of A such that every element of A belongs

to exactly one of these subsets. For instance, here are some partitions of R:

P1 = {{0, 2, 4, . . . }, {1, 3, 5, . . . }},
P2 = {{0, 1}, {2, 3}, {4, 5}, . . . },
P3 = {{0}, {1}, {2}, {3}, . . . }.

If P is a partition of a set A then the relation “x and y belong to the same element of P” is an equivalence
relation.

Problem. Find the partition of the set {1, 2, . . . , 6} so that each of its elements A corresponds to the
equivalence relation |x− 3| = |y − 3| on A.

Solution. The condition |x− 3| = |y− 3| holds when x = 1 and y = 5. It holds also when x = 2 and y = 4.
So the partition is {{1, 5}, {2, 4}, {3}, {6}}. Indeed, the relation |x − 3| = |y − 3| is an equivalence relation
on each of the members of the partition. Consider the set {1, 5}, the relation |x− 3| = |y− 3| can be written
as the following set of the ordered pairs:

{(1, 1), (1, 5), (5, 1), (5, 5)}.

59

For the set {2, 4}, the relation |x− 3| = |y − 3| can be written as the following set of the ordered pairs:

{(2, 2), (2, 4), (4, 2), (4, 4)}.

For the sets {3} and {6}}, the relations |x− 3| = |y − 3| can be written as the following sets of the ordered
pairs {(3, 3)} and {(6, 6)} respectively. It is easy to see that all listed relations are reflexive, symmetric, and
transitive. Hence they are also equivalence relations.

Order Relations A relation R on a set A is said to be antisymmetric if, for all x, y ∈ A, xRy and yRx
imply x = y. For instance, the relation ≤ on R is anti-symmetric.

A partial order is a relation that is reflexive, anti-symmetric, and transitive. For instance, the relation
≤ on R, and the relation ⊆ on P(A) for any set A are partial orders.

A total order on a set A is a partial order such that for all x, y ∈ A, xRy or yRx. For instance, ≤ is
total.

Problem. A bit string x is called a substring of a bit string y if there exist bit strings z1, z2 such that
z1xz2 = y. For instance, the substrings of 0111 are

ϵ, 0, 1, 01, 11, 011, 111, 0111.

Is the relation “x is a substring of y” an equivalence relation? a partial order? a total order?

Solution. The substring relation is reflexive and transitive. But it is not symmetric (for instance, 0 is
a substring of 01, but not the other way around). Consequently it is not an equivalence relation. It is
antisymmetric: if x is a substring of y and y is a substring of x then x = y. Consequently it is partial order.
But it is not total (for instance, 0 is not a substring of 1, and 1 is not a substring of 0).

Table below summarizes properties on relations that we discussed earlier for comparison relations on the
set R of real numbers (or on any set of numbers).

RELATION reflexive symmetric transitive equivalence antisymmetric partial order total order

= ✓ ✓ ✓ ✓ ✓ ✓
<,> ✓ ✓
≤,≥ ✓ ✓ ✓ ✓ ✓

60

9 Graphs

9.1 Undirected Graphs

An undirected graph G is defined by two sets: a set V of objects called the vertices (or nodes) of G, and a
collection E of two-element subsets {u, v} of V , called the edges of the graph. The vertices u, v are called
the ends of the edge {u, v}. When we draw a graph, we usually show every vertex as a small circle, and every
edge as a line segment joining its two ends. For instance, the graph with the vertices a, b, c, d, e, f, g and
the edges

{a, b}, {b, c}, {c, d}, {a, f}, {f, e}, {b, e}, {c, f}, {b, f}, {c, e}
looks like this:

a f e g

b c d

If a graph has an edge with the ends u, v, we say that u and v are adjacent. The adjacency relation
is symmetric and irreflexive. The number of vertices adjacent to a vertex v is called the degree of v. For
instance, the degree of a in the graph shown above is 2, and the degree of g is 0. Vertices of degree 0, such
as g, are called isolated.

The adjacency matrix of a graph with n vertices is the n × n matrix such that its entry in row u and
column v is 1 if u, v are adjacent, and 0 otherwise. For instance, here is the adjacency matrix of the graph
shown above:

a b c d e f g

a 0 1 0 0 0 1 0
b 1 0 1 0 1 1 0
c 0 1 0 1 1 0 0
d 0 0 1 0 0 0 0
e 0 1 1 0 0 1 0
f 1 1 0 0 1 0 0
g 0 0 0 0 0 0 0

The adjacency matrix of any graph is symmetric, and its main diagonal consists of zeroes.
A complete graph on n vertices, denoted by Kn, contains an edge between each pair of vertices.
A graph is called bipartite if its vertex set V can be partitioned into two disjoint sets V1 and V2 so that

every edge has one vertex in V1 and one in V2.

Paths in a Graph A path in a graph is a list

v1, v2, . . . , vk (46)

of vertices such that every two consecutive vertices vi, vi+1 are adjacent. About this path we say that it is
a path from v1 to vk. A path is simple if its vertices are distinct from one another. A path (46) is a cycle
if k > 2, vk = v1, the vertices v1, v2, . . . , vk−1 are all distinct, and the edges {v1, v2}, . . . , {vk−1, vk} are all
distinct. For instance, a, b, c, e is a simple path in the graph above. Path a, b, c, e, f, a is a cycle in that
graph; note how b, c, e, f, a, b is also a cycle (graphically, we are not able to distinguish these cycles).

The relation “there is a path from u to v” is an equivalence relation. When the elements of some set A
have a notion of equivalence, formalized as an equivalence relation, defined on them, then one may split the
set A into equivalence classes. These equivalence classes are constructed so that elements a and b belong to
the same equivalence class if and only if they are equivalent.

The equivalence classes of the relation “there is a path from u to v” are called the connected components
of the graph. For instance, the connected components of the graph above are {a, b, c, d, e, f} and {g}. If u
and v belong to the same connected component then the distance from u to v is defined as the minimum
number of edges in a path from u to v. For instance, the distance from a to c is 2.

If for every pair of vertices u, v there is a path from u to v then we say that the graph is connected.

61

Trees A tree is a connected graph that doesn’t contain cycles. For instance, the graph

a f e

b c d

is a tree.
A rooted tree is a tree with one distinguished vertex, called the root. For every vertex v in a rooted tree,

there is unique path from the root to v, The vertices that belong to that path are called the ancestors of x;
if the last edge of that path is {y, x} then we say that y is the parent of x, and x is a child of y. A vertex
that doesn’t have children is called a leaf.

A tree with n vertices has n − 1 edges: for every vertex v other than the root, the corresponding edge
connects v with its parent.

9.2 Directed Graphs

In a directed graph, edges are ordered pairs of vertices, rather than two-element subsets. About an edge
⟨u, v⟩ we say that it leaves u and enters v. When we draw a directed graph, we show an edge ⟨u, v⟩ as an
arrow from u to v.

The number of edges that enter a vertex v is called the in-degree of v. The number of edges that leave v
is called the out-degree of v. The adjacency matrix of a directed graph with n vertices is the n× n matrix
such that its entry in row u and column v is 1 if there graph has an edge that leaves u and enters v, and 0
otherwise.

A path in a directed graph is a list (46) of vertices such that for every two consecutive vertices vi, vi+1

the graph has an edge that leaves vi and enters vi+1.
The relation “there is a path from u to v and a path from v to u” is an equivalence relation. Its equivalence

classes are called the strongly connected components of the graph.

62

10 Elements on Proving Partial Correctness of Programs

A Toy Programming Language Let us recall a toy programming language (TPL) from earlier lecture
notes. In the programming language TPL that we’ll be using, all variables are integer variables, so that
there is no need to declare them. Integer expressions are formed from integer variables and integer constants
using the operators +, − and ×. Boolean expressions are formed from equalities and inequalities between
integer expressions using the propositional connectives ∧, ∨, ¬. Assignments are expressions of the form
v ← e where v is an integer variable and e is an integer expression. Statements are formed from assignments
and the statement skip using three constructs:

• sequential composition
P1 ; . . . ;Pn

where P1, . . . , Pn are statements,

• conditional composition
if B then P1 else P2 endif

where B is a Boolean expression and P1, P2 are statements,

• loop
while B do P enddo

where B is a Boolean expression and P is a statement.

Partial Correctness Let P be a statement, and let F and G be conditions (for instance, Boolean expres-
sions). The expression

{F}P {G}

means that whenever F is true prior to the execution of P , and P terminates, G is true upon termination.
This expression reads: P is partially correct with respect to precondition F and postcondition G.

For instance, the assignment n ← n + 3 is partially correct with respect to the precondition n = 5 and
the postcondition n = 8:

{n = 5}n← n+ 3 {n = 8}.

Proving Partial Correctness If v is an integer variable occurring in a condition F , and e is an integer
expression, then F v

e stands for the result of substituting e for v in F . For instance,

(n > m)nn+3

stands for
n+ 3 > m.

The following rules can be used to prove partial correctness.

Rule of Assignment: {F v
e } v ← e {F}.

Example: {n+ 3 > m}n← n+ 3 {n > m}.

Rules of Consequence:

{F}P {G} G→ H

{F}P {H}
,

F → G {G}P {H}
{F}P {H}

.

For instance, since n > m implies n > m− 5, from the previous example we can conclude that

{n+ 3 > m}n← n+ 3 {n > m− 5}.

Since n+ 1 > m implies n+ 3 > m, we can also conclude that

{n+ 1 > m}n← n+ 3 {n > m}.

63

Basic rules:

{true}

{F} F → G

{G}
.

Rule of Composition:
{F}P1 {G} {G}P2 {H}

{F}P1;P2 {H}
.

If-then-else Rule:
{F ∧ C} P1 {G} {F ∧ ¬C} P2 {G}
{F} if C then P1 else P2 endif {G}

.

Example: to prove

{x = X ∧ y = Y } if x < y then z ← x else z ← y endif {z = min(X,Y)}

we need to verify that
{x = X ∧ y = Y ∧ x < y} z ← x {z = min(X,Y)}

and
{x = X ∧ y = Y ∧ ¬(x < y)} z ← y {z = min(X,Y)}.

We will use
if C then P endif

as shorthand for
if C then P else skip endif .

Skip Rule: {F} skip {F}.

While-do Rule:
{F ∧ C} P {F}

{F} while C do P enddo {F ∧ ¬C}
.

For instance, if we can prove

{x = 2i ∧ i < n} x← x× 2; i← i+ 1 {x = 2i}

then we will be able to conclude that

{x = 2i}
while i < n do x← x× 2; i← i+ 1 enddo

{x = 2i ∧ ¬(i < n)}.

We note that a condition x = 2i above is called a loop invariant. A loop invariant is a property of a
program loop that is true before (and after) each iteration. Knowing loops invariants adds to understanding
the effect of a loop and allows us to reason of its correctness.

64

Proofs as Annotated Programs Proof of {n > 10} m← n+ 2 {m > 10}:

{n > 10}
{n+ 2 > 10}
m← n+ 2

{m > 10}

Proof of {m = n} m← n+ 2 {m > n}:

{m = n}
{true}
{n+ 2 > n}
m← n+ 2

{m > n}

Proof of {i = 1 ∧ j = 2} m← i; n← j {m = 1 ∧ n = 2}:

{i = 1 ∧ j = 2}
m← i;

{m = 1 ∧ j = 2}
n← j

{m = 1 ∧ n = 2}

Proof of {i = 1 ∧ j = 2} m← i;n← j {n > m}:

{i = 1 ∧ j = 2}
{j > i}
m← i;

{j > m}
n← j

{n > m}

Exercise 65. For each of the following assertions, determine if it is true. If it is then present its proof as
an annotated program. It not, give a counterexample.

(a) {n > 3} n← n+ 3 {n > 8}

(b) {n > 7} n← n+ 3 {n > 8}

(c) {n > k} n← n+ 3 {n > k}

(d) {n > k} n← n+ 3 {n > m}

(e) {n > k} n← n+ 3; k ← k + 2 {n > k}

(f) {n ̸= 0} n← n+ 3; n← n× n {n ̸= 9}

(g) {n ̸= 0} n← n× n; n← n+ 3 {n ̸= 3}

(h) {x = 7 ∧ y = 10} temp← x;x← y; y ← temp {x = 10 ∧ y = 7}

65

Exercise 66. For each of the following assertions, show the two premises from which it can be derived by
the if-then-else-rule, and present proofs as annotated programs.

(a) {x = 3} if x < 0 then y ← 0 else y ← 1 endif {y = 1}

(b) {true} if x < 0 then x← 0 endif {x ≥ 0}

Exercise 67. Determine which of the following conditions are loop invariants for the loop

while i < j do i← i+ 1; j ← j − 1 enddo.

(a) i+ 20 = j

(b) i+ j = 20

(c) i2 + j2 = 20

Justify your answers.

66

Acknowledgment The creation of this book was made possible with the assistance of Affordable Content
Grants provided by the University of Nebraska Omaha in 2024.

	Basic Structures: Sets, Functions, Sequences, Sums
	Sets Basics
	Sets Operations
	Functions
	Sequences and Summations

	Elements of Mathematical Logic and Proofs
	Syntax and Semantics of Propositional Formulas
	Tautologies, Equivalence, Satisfiability and Entailment
	Inference
	Elements of Predicate Logic
	Predicate Logic, Formally
	Elements of Mathematical Proofs

	Growth of Functions
	Calculus Notion of Function Growth Rate
	Big-O Notation

	Elements on Algorithms and their Complexity
	Algorithms and their Properties
	Time Complexity of Algorithms

	Induction and Recursive Definitions
	Proofs by Induction
	Strong and Structural Induction

	Recursive Definitions
	Counting
	The Product Rule
	The Sum Rule
	The Pigeonhole Principle
	Permutations and Combinations

	Relations
	Relations and their Kinds: Reflexive, Symmetric, Transitive
	Equivalence Relations and Partitions

	Graphs
	Undirected Graphs
	Directed Graphs

	Elements on Proving Partial Correctness of Programs

