
Handout on Basics behind Answer Sets

Yuliya Lierler
University of Nebraska Omaha

Introduction

Answer set programming (ASP) is a form of declarative programming ori-
ented towards modeling

i intelligent agents in knowledge representation and reasoning and

ii difficult combinatorial search problems.

It belongs to the group of so called constraint programming languages. ASP
has been applied to a variety of applications including plan generation and
product configuration problems in artificial intelligence and graph-theoretic
problems arising in VLSI design and in historical linguistics [1].

Syntactically, ASP programs look like logic programs in Prolog, but
the computational mechanisms used in ASP are different: they are based
on the ideas stemming from the development of satisfiability solvers for
propositional logic.

This document presents the concept of an answer set for programs in
their simplest form: no variables, no classical negation symbol, no disjunc-
tion in the heads of rules. The textbooks [?, 2] provide an account for general
definition of this concept that assumes rules of the general form that includes
all the features mentioned above. Yet, it is useful to first consider as simple
programs as possible to build intuitions about answer sets.

In this note italics is primarily used to identify concepts that are being
defined. Some definitions are identified by the word Definition.

Traditional Programs and their Answer Sets

1 Syntax

A traditional rule is an expression of the form

a0 ← a1, . . . , am,not am+1, . . . ,not an. (1)

1

where n ≥ m ≥ 0; a0 is a propositional atom or symbol ⊥; and a1, . . . , an
are propositional atoms (propositional symbols). The expression a0 is called
the head of the rule, and the list

a1, . . . , am,not am+1, . . . ,not an

is its body. If the body is empty (n = 0) then the rule is called a fact and
identified with its head a0. We call rule (1) a constraint when its head is
symbol ⊥ (we then drop ⊥ from a rule).

A traditional (or propositional logic) program is a finite set of traditional
rules. For instance,

p.
r ← p, q.

(2)

and
p← not q.
q ← not r.

(3)

are traditional programs.
A traditional rule (1) is positive if m = n, that is to say, if it has the

form
a0 ← a1, . . . , am. (4)

A traditional program is positive if each of its rules is positive. For instance,
program (2) is positive, and (3) is not.

2 The Answer Set of a Positive Program

We will first define the concept of an answer set for positive traditional
programs. To begin, we introduce auxiliary definitions.

Definition 1. A set X of atoms satisfies a positive traditional rule (4) when
a0 ∈ X whenever {a1, . . . , am} ⊆ X.

For instance, any positive traditional rule (4) is satisfied by a singleton
set {a0}.

To interpret Definition 1 recall the truth table of implication in propo-
sitional logic:

p q p→ q

true true true
true false false
false true true
false false true

2

One can intuitively read it in English as follows condition p → q holds
if q holds whenever p holds. Expression a0 ∈ X plays a role of q whereas
{a1, . . . , am} ⊆ X plays a role of p in the definition of a set of atoms satisfying
a rule.

Problem 1. Given a set X of atoms and a positive traditional rule (4)

Does X satisfies rule (4)?

{a1, . . . , am} ⊆ X and a0 ∈ X Y es
{a1, . . . , am} ⊆ X and a0 6∈ X
{a1, . . . , am} 6⊆ X and a0 ∈ X Y es
{a1, . . . , am} 6⊆ X and a0 6∈ X

Definition 2. A set X of atoms satisfies a positive traditional program Π
if X satisfies every rule (4) in Π.

For instance, any positive traditional program is satisfied by the set
composed of the heads a0 of all its rules (4).

Problem 2.

X Does X satisfies program (2)?

∅ No
{p} Y es
{q}
{r}
{p q}
{p r}
{q r}
{p q r}

Proposition 1. For any positive traditional program Π without constraints,
there exists a set of atoms satisfying Π.

Proof. Indeed. Consider the set X to be composed of all atoms occurring
in Π. It follows that for every rule in Π its head atom is in X. By the
definition of rule satisfaction it follows that X satisfies every rule of Π.
(Note that we could have also considered other sets to construct a similar
argument. Can you think of such a set?)

Proposition 2. For any positive traditional program Π, the intersection of
all sets satisfying Π satisfies Π also.

3

Proof. By contradiction. Suppose that this is not the case. Let X denote
the intersection of all sets satisfying Π. By definition (of program’s satisfia-
bility), there exists a rule

a0 ← a1, . . . , am.

in Π such that it is not satisfied by X, in other words

a0 6∈ X

and
{a1, . . . , am} ⊆ X.

Since X is an intersection of all sets satisfying Π then we conclude that (i)
{a1, . . . , am} belongs to each one of the sets satisfying Π and (ii) there is a
set Y satisfying Π such that a0 6∈ Y . By definition, Y does not satisfy Π.
We derive at contradiction.

Proposition 2 allows us to talk about the smallest set of atoms that
satisfies Π.

Definition 3. The smallest set of atoms that satisfies positive traditional
program Π is called the answer set of Π.

For instance, the sets of atoms satisfying program (2) are

{p}, {p, r}, {p, q, r},

and its answer set is {p}.
We now illustrate some interesting properties of answer sets. Let a pro-

gram consist of facts only. The set of these facts form the only answer set of
such a program. Intuitively, each fact states what is known and an answer
set reflects this information by asserting that each atom mentioned as a fact
is true, whereas anything else is false. Thus answer sets semantics follows
closed world assumption (CWA) – presumption that what is not currently
known to be true is false. From the definition of an answer set and Propo-
sition 1, it immediately follows that any positive traditional program has
a unique answer set. It is intuitive to argue that answer set semantics for
logic programs generalizes CWA. Note that an atom, which does not occur
in the head of some rule in a program, will not be a part of any answer set
of this program:

Proposition 3. If X is an answer set of a positive traditional program Π,
then every element of X is the head of one of the rules of Π.

4

Positive Rules Intuitively, we can think of (4) when its head is an atom
as a rule for generating atoms: once you have generated a1, . . . , am, you are
allowed to generate a0. The answer set is the set of all atoms that can be
generated by applying rules of the program in any order. For instance, the
first rule of (2) allows us to include p in the answer set. The second rule
says that we can add r to the answer set if we have already included p and
q. Given these two rules only, we can generate no atoms besides p. If we
extend program (2) by adding the rule

q ← p.

then the answer set will become {p, q, r}. We can easily implement such a
process for generating the answer set for positive traditional program by an
efficient procedure.

Positive rules may remind you Horn clauses or definite clauses. One can
identify (4) with the following implication

a1 ∧ · · · ∧ am ⇒ a0

that is equivalent to the Horn clause

¬a1 ∨ · · · ∨ ¬am ∨ a0.

Rule (4) is satisfied by a set of atoms if and only if its respective Horn clause
is satisfied by this set in propositional logic.

3 Answer Sets of a Program with Negation

To extend the definition of an answer set to arbitrary traditional programs,
we will introduce one more auxiliary definition.

Definition 4. The reduct ΠX of a traditional program Π relative to a
set X of atoms is the set of rules (4) for all rules (1) in Π such that
am+1, . . . , an 6∈ X.

In other words, ΠX is constructed from Π by (i) dropping all rules (1)
such that at least one atom from am+1, . . . , an is in X, and (ii) eliminating
not am+1, . . . ,not an expression from the rest of the rules.

Thus ΠX is a positive traditional program.

5

Problem 3. Let Π be (3),

X What is ΠX? Explanation

∅ p. p← not q.
q. q ← not r.

{p} p. p← not q.
q. q ← not r.

{q} q. p← not q.
q ← not r.

{r}

{p q}

{p r}

{q r}

{p q r}

Definition 5. We say that X is an answer set of Π if X is the answer set
of ΠX (that is, the smallest set of atoms satisfying ΠX).

Problem 4.

X Is X an answer set of program (3)?

∅ No
{p} No
{q} Y es
{r}
{p q}
{p r}
{q r}
{p q r}

If Π is positive then, for any X, ΠX = Π. It follows that the new defi-
nition of an answer set is a generalization of the definition from Section 2:
for any positive traditional program Π, X is the smallest set of atoms sat-
isfying ΠX iff X is the smallest set of atoms satisfying Π.

Intuitively, rule (1) allows us to generate a0 as soon as we generated
the atoms a1, . . . , am provided that none of the atoms am+1, . . . , an can be

6

generated using the rules of the program. There is a vicious circle in this
sentence: to decide whether a rule of Π can be used to generate a new atom,
we need to know which atoms can be generated using the rules of Π. The
definition of an answer set overcomes this difficulty by employing a “fixpoint
construction.” Take a set X that you suspect may be exactly the set of atoms
that can be generated using the rules of Π. Under this assumption, Π has
the same meaning as the positive program ΠX . Consider the answer set
of ΠX , as defined in Section 2. If this set is exactly identical to the set X
that you started with then X was a “good guess”; it is indeed an answer set
of Π.

In Problem 4, to find all answer sets of program (3) we constructed its
reduct for each subset of {p, q, r} to establish whether these sets are answer
sets of (3). The following general properties of answer sets of traditional
programs allow us to sometime establish that a set is not an answer set in
a trivial way by inspecting its elements rather than constructing the reduct
of a given program.

Proposition 4. If X is an answer set of a traditional program Π then every
element of X is the head of one of the rules of Π.

Proposition 5. If X is an answer set for a traditional program Π then no
proper subset of X can be an answer set of Π.

In application to program (3), Proposition 4 tells us that its answer sets
do not contain r, so that we only need to check

∅, {p}, {q}, and {p, q}.

Once we established that {q} is an answer set, by Proposition 5

• ∅ cannot be an answer set because it is a proper subset of the answer
set {q}, and

• {p, q} cannot be an answer set because the answer set {q} is its proper
subset.

Set {p} is not an answer set as set {q} is the answer set of program’s reduct
wrt {p}. Consequently, {q} is the only answer set of (3).

Program (3) has a unique answer set. On the other hand, the program

p← not q.
q ← not p.

(5)

7

has two answer sets: {p} and {q}. The one-rule program

r ← not r. (6)

has no answer sets.

Problem 5. Prove that if X is an answer set of a traditional program Π so
that for some rule (1), it holds that {a1, . . . , am} ⊆ X and {am+1, . . . , an}∩
X = ∅, then a0 ∈ X.

Problem 6. Find all answer sets of the following program, which extends (5)
by two additional rules:

p← not q.
q ← not p.
r ← p.
r ← q.

Problem 7. Find all answer sets of the following combination of pro-
grams (5) and (6):

p← not q.
q ← not p.
r ← not r.
r ← p.

Problem 8. Prove the claim of Proposition 4

Constraints Consider a constraint

← p.

Extending program (2) by this rule will result in a program that has no
answer sets. In other words, constraint ← p eliminates the only answer
of (2). It is convenient to view any constraint

← a1, . . . , am,not am+1, . . . ,not an

as a clause (a disjunction of literals)

¬a1 ∨ · · · ∨ ¬am ∨ am+1 ∨ · · · ∨ an.

Then, we can state the general property about constraints: answer sets
of a program satisfy the propositional logic formula composed of its con-
straints (here (i) the notion of satisfaction is as understood classically in

8

propositional logic and (ii) an answer set is associated with an interpreta-
tion in an intuitive manner). Furthermore, for a program Π and a set Γ
of constraints the answer sets of Π ∪ Γ coincide with the answer sets of Π
that satisfy Γ. Consequently, constraints can be seen as elements of classical
logic in logic programs.

4 Classical Negation in Programs

The textbook [2] immediately introduces programs that are of more complex
form even in propositional case. Indeed, it allows additional connective ¬
(classical negation). So that basic entities of a program are literals (a literal
is either an atom a or an atom proceeded with classical negation ¬a) In turn,
the concept of an answer set is defined over the consistent sets of literals
whereas here we defined an answer set over the sets of atoms. Yet, it is
easy to simulate classical negation in the simpler form of programs that we
consider here.

Classical negation can always be eliminated from a program by means
of auxiliary atoms and additional constraints. Indeed, given a program
composed of rules of the form

l0 ← l1, . . . , lm,not lm+1, . . . ,not ln (7)

so that l0 is a literal or ⊥ and l1 . . . ln are literals, we can replace an occur-
rence of any literal of the form ¬a with a fresh atom a′ and add a constraint
to this program in the form

← a, a′.

The answer sets of this new program as defined in this handout are in one
to one correspondence with the answer sets as defined in the textbook. In
particular, by replacing atoms of the form a′ by ¬a we obtain the textbook
answer sets.

Acknowledgments

Parts of these notes follow the lecture notes on Answer Sets; and Methodol-
ogy of Answer Set Programming; course Answer set programming: CS395T,
Spring 20051 by Vladimir Lifschitz. Zachary Hansen helped to correct some
typos.

1http://www.cs.utexas.edu/~vl/teaching/asp.html

9

References

[1] Gerhard Brewka, Thomas Eiter, and Miros law Truszczyński. Answer set
programming at a glance. Communications of the ACM, 54(12):92–103,
2011.

[2] Michael Gelfond and Yulia Kahl. Knowledge Representation, Reason-
ing, and the Design of Intelligent Agents: The Answer-Set Programming
Approach. Cambridge University Press, 2014.

10

Handout on Answer Set Programming Paradigm

Yuliya Lierler
University of Nebraska Omaha

Introduction

Answer set programming paradigm (ASP) is a form of declarative program-
ming oriented towards difficult combinatorial search problems. It belongs to
the group of so called constraint programming languages. The idea of ASP
is to represent a given computational problem by a program whose answer
sets correspond to solutions, and then use an answer set solver to generate
answer sets for this program. In this note we discuss the methodology of
answer set programming as well as the use of software systems for comput-
ing answer sets. First, a graph coloring problem is utilized to illustrate the
use of answer set programming in practice. Then, solutions to Hamiltonian
cycle and to n-queens problems are presented. Across the handout you are
given problems to solve. This handout is self-contained: you are given all
the definitions and links that are required in constructing solutions.

In the text italics is primarily used to identify concepts that are being
defined. Some definitions are identified by the word Definition.

In this course we will use the answer set system clingo1 that incorpo-
rates answer set solver clasp1 with its front-end grounder gringo1 (user
guide is available online at https://sourceforge.net/projects/potassco/
files/guide/2.0/guide-2.0.pdf/download). You may access system clingo
via web interface available at https://potassco.org/clingo/run/ or down-
load an executable for clingo version 5 from the url listed at footnote 1.

Answer set programming practitioners develop applications that rely on
ASP languages, which allow variables. Yet, common ASP solvers, including
clasp (a subsystem of clingo) process propositional logic programs only.
We now re-introduce such programs and restate the definition of an answer
set in the form convenient for this part of the course.

1https://potassco.org/clingo/.

1

1 Propositional Logic Programs Extended with Choice Rules

Recall traditional rules from the lecture notes on Basics behind Answer Sets2

of the form
a0 ← a1, . . . , am,not am+1, . . . ,not an, (1)

where a0 is a propositional atom or symbol ⊥; a1, . . . , ap are propositional
atoms. In practice of answer set programming, rules of more complex struc-
ture are common. Here we provide intuitions behind so called choice rules.
Later in the notes we talk about rules that go beyond propositional atoms.
We will also mention constructs called aggregates that are convenient in
modeling problems requiring, for example, counting.

Answer sets semantics by default follows closed world assumption (CWA) –
presumption that what is not currently known to be true is false. For in-
stance, program

p
q ← r

(2)

has a single answer set {p}. Intuitively, the ASP semantics states that there
are “no grounds” for deriving r or q, hence per CWA they are not the case.

The so called choice rules are used to “locally eliminate” CWA. Choice
rules of the form

{a0} ← a1, . . . , am,not am+1, . . . ,not an, (3)

are important constructs of common ASP dialects. Consider a program
resulting from appending choice rule

{r}. (4)

to program (2). This program has two answer sets {p} and {p, q, r}. The
choice rule (4) tells that, intuitively, that an atom r may be a part of an
answer set.

2 Formalization of Graph coloring problem by means of a
Propositional logic program

Consider a graph coloring problem GC :

A 3-coloring of a directed graph (V,E) is a labeling of its vertexes
with at most 3 colors (named, 1, 2 and 3) such that no two
vertexes sharing an edge have the same color.

2https://works.bepress.com/yuliya_lierler/71/

2

G1
a b

d c

G2
a b

d c

Figure 1: Sample graphs G1 and G2.

For instance, see two specific graphs G1 and G2 in Figure 1. It is easy to see
that there are six distinct 3-colorings for graph G1 including the following:

assigning color 1 to vertexes a and c, color 2 to vertex b, and
color 3 to vertex d forms a 3-coloring of G1.

We denote this 3-coloring of graph G1 by SG1 . Graph G2 has no 3-colorings.
A solution to this problem can be described by a set of atoms of the form

cvi (v ∈ V in a given graph (V,E) and i ∈ {1, 2, 3}); including cvi in the set
indicates that an assertion that vertex v is assigned color i. A solution is a
set X satisfying the following conditions:

1. Each vertex must be assigned a color

2. A vertex may not be assigned more that one color

3. Vertexes sharing an edge must be assigned a distinct color.

A following propositional logic program under answer set semantics en-
codes these specifications so that its answer sets are in one to one correspon-
dence with the 3-colorings of a given graph (V,E):

{cvi} (v ∈ V, 1 ≤ i ≤ 3)

← not cv1,not cv2,not cv3. (v ∈ V).

← cvi, cvj (v ∈ V, 1 ≤ i < j ≤ 3),

← cvi, cwi ({v, w} ∈ E, 1 ≤ i ≤ 3),

(5)

We now provide an intuitive reading of this program.

• A collection of choice rules for each vertex v captured by the first
line in (5) intuitively says that vertex v may be assigned some colors.
(Condition 1)

3

{ca1} {ca2} {ca3} {cb1} {cb2} {cb3} {cc1} {cc2} {cc3} {cd1} {cd2} {cd3}
← not ca1,not ca2,not ca3.
← not cb1,not cb2,not cb3.
← not cc1,not cc2,not cc3.
← not cd1,not cd2,not cd3.

← ca1, ca2 ← ca1, ca3 ← ca2, ca3
← cb1, cb2 ← cb1, cb3 ← cb2, cb3
← cc1, cc2 ← cc1, cc3 ← cc2, cc3
← cd1, cd2 ← cd1, cd3 ← cd2, cd3
← ca1, cb1 ← ca2, cb2 ← ca3, cb3
← cd1, ca1 ← cd2, ca2 ← cd3, ca3
← cb1, cd1 ← cb2, cd2 ← cb3, cd3
← cc1, cd1 ← cc2, cd2 ← cc3, cd3
← cb1, cc1 ← cb2, cc2 ← cb3, cc3

Figure 2: Logic program for 3-coloring for graph G1.

• The second line states that it is impossible that a vertex is not assigned
a color. (Condition 1)
• The third line says that it is impossible that a vertex is assigned two

colors. (Condition 2)
• The fourth line states that it is impossible that any two adjacent ver-

texes are assigned the same color. (Condition 3)

Recall graph G1 in Figure 1. Figure 2 presents a logic program in spirit
of (5) for G1. Horizontal lines separate the clauses that come from distinct
”schematic rules” in (5). This program has six answer sets including

{ca1, cb2, cc1, cd3},

which captures solution SG1 . To encode the 3-coloring problem for graph G2
one has to extend the set of rules in Figure 2 with rules

← ca1, cc1 ← ca2, cc2 ← ca3, cc3.

This program has no answer sets, which captures the fact that this graph
has no 3-colorings.

The ASP specification (5) illustrates the use of the so-called gener-
ate and test methodology within answer set programming paradigm. The

4

answer

setsASP Solver
program

logic

program

grounded
Grounder

Figure 3: Common Architecture of ASP Systems

generate part of the specification “defines” a collection of ”perspective”
answer sets that can be seen as potential solutions. The test part consists
of conditions that eliminate the ”perspective” answer sets of the generate
part that do not correspond to solutions. The first line in (5) corresponds
to generate: saying that any subset of the atoms of the form cvi (v ∈ V
in a given graph (V,E) and i ∈ {1, 2, 3}) forms a potential solution. The
remaining lines correspond to test. Observe, how choice rules provide a
convenient tool in ASP for formulating generate, whereas constraints are
used to formulate test.

3 Programs with Variables and Grounding

ASP practitioners develop applications that rely on languages, which go
beyond propositional/ground atoms. Figure 3 presents a typical architecture
of an answer set programming tool that encompasses two parts: a system
called grounder and a system called solver. The former is responsible for
eliminating variables in a program. The latter is responsible for finding
answer sets of a respective propositional (ground) program. For instance,
system gringo3 is a well known grounder that serve as front-ends for many
solvers including clasp. A combination of gringo and clasp is known as
system clingo.

We recall that given a signature σ consisting of object constants, vari-
ables, predicate symbols, and function symbols (where predicate and func-
tion symbols are associated with a nonnegative integer n called arity, so that
we identify function symbols of arity 0 with object constants),

1. Any object constant or variable in σ is a term, and

an expression of the form f(t1, . . . , tn) is a term where f is a function
symbol in σ of arity n > 0 and t1, . . . tn are terms.

2. Any predicate symbol in σ of arity 0 is an atom, and

3http://potassco.sourceforge.net/ .

5

an expression of the form p(t1, . . . , tn) is an atom where p is a predicate
symbol in σ of arity n and t1, . . . tn are terms.

3. Any term that contains no variables is called ground. Similarly, any
atom that contains no variables is ground. Otherwise, we refer to these
entities as non-ground.

A logic program with variables is a finite set of rules of the form (1),
where a0 is symbol ⊥ or a non-ground atom; and a1, . . . , ap are non-ground
atoms. Grounding a logic program replaces each rule with all its instances
obtained by substituting ground terms, formed from the object constants
and function symbols occurring in the program, for all variables. For a
program Π, by ground(Π) we denote the result of its grounding. (We use
the convention common in logic programming: variables are represented by
capitalized identifiers.) We illustrate this concept on an example. Let Π be
a program

{a(1)} {a(2)} {b(1)}
c(X)← a(X), b(X),

(6)

ground(Π) follows
{a(1)} {a(2)} {b(1)}
c(1)← a(1), b(1)
c(2)← a(2), b(2).

The answer sets of a program Π with variables are answer sets of ground(Π).
For instance, there are eight answer sets of program (6) including ∅ and set
{a(1) b(1) c(1)}.

Problem 1. (a) Consider the following program with variables

{a(1)}. {a(2)}. {b(1)}.
d(X,Y)← a(X), b(Y).

(7)

Construct the result of grounding for this program.
(b) Follow the link https: // potassco. org/ clingo/ run/ . Replace

symbol “←“ by ”:-“ in the ground program you constructed in (a) and let
clingo run on your program using reasoning mode ”enumerate all“.

(c) Using the same procedure as in (b), find all answer sets for the pro-
gram listed in (a). Do answer sets found in (b) coincide with the ones
enumerated in this step?

Given a program Π with variables, grounders often produce a variable-
free program that is smaller than ground(Π), but still has the same answer

6

sets as ground(Π); we call any such program an image of Π. For example,
program

{a(1)} {a(2)} {b(1)}
c(1)← a(1), b(1)

is an image of (6).
Passing parameter −t in command line when calling clingo on a pro-

gram will force the system to produce ground program in human readable
form. Running clingo in online interface with checkbox ”statistics” allows
one to obtain valuable information about the execution of the system. For
example, lines titled

• “Rules” provides number of rules in a grounding of the input and
suggests the relative size of a ground program,

• “Choices” corresponds to the number of backtracks done by the system
in search for the solution (we will learn of this feature in a little bit),

• “Time” reports the execution time of the system.

In command line to obtain statistics while running clingo use flag “--stats”

Problem 2. Let clingo run on the program (7) using reasoning mode
”enumerate all“ and marking checkbox ”statistics”. What is the number of
rules that clingo reports?

This number corresponds to the size of the image (measured in number
of rules) produced by gringo after grounding the input program.

Think of an image for program (7) that is of the same size as gringo
computed. List this image.

When a program Π with variables has at least one function symbol and
at least one object constant, grounding results in infinite ground(Π). Yet,
even for an input program of this kind, grounders often find an image that
is a finite propositional program (finite image). For instance, for program

p(0)
q(f(X))← p(X)

(8)

grounding results in infinite program outlined below

p(0)
q(f(0))← p(0)
q(f(f(0)))← p(f(0))
q(f(f(f(0))))← p(f(f(0)))
· · ·

7

A finite image of program (8) follows

p(0)
q(f(0))← p(0).

Program
p(0)
q(f(0))

is another image of (8). In fact, given program (8) as an input grounder
gringo will generate the latter image.

To produce images for input programs, grounders follow techniques ex-
emplified by intelligent grounding. Different grounders implement distinct
procedures so that they may generate different images for the same input
program. One can intuitively measure the quality of a produced image by
its size so that the smaller the image is the better. A common syntactic
restriction that grounders pose on input programs is “safety”. A program Π
is safe if every variable occurring in a rule of Π also occurs in positive body
of that rule. For instance, programs (6) and (8) are safe. The safety require-
ment suggests that positive body of a rule must contain information on the
values that should be substituted for a variable in the process of grounding.
Safety is instrumental in designing grounding techniques that utilize knowl-
edge about the structure of a program for constructing smaller images. The
gringo grounder and the grounder of the dlv system expect programs to be
safe. For programs with function symbols, to guarantee that the grounding
process terminates, grounders pose additional syntactic restrictions (in other
words, to guarantee that a grounder is able to construct a finite image).

4 Formalization of Graph Coloring Problem by Means of a
Logic Program with Variables

We now revisit our graph coloring example and illustrate how often a set
of propositional rules that follow a simple pattern can be represented con-
cisely by means of logic programs with variables. Recall program (5). We
now capture atoms of the form cvi by expressions c(v, i), where c is a pred-
icate symbol and v, i are object constants denoting a vertex v and color i
respectively. Atom of the form vtx(v), intuitively, states that an object
constant v is a vertex, while atom e(v, w) states that there is an edge from
vertex v to vertex w in a given graph. Atom color(i) states that an object
constant i represents a color. Recall graph coloring problem GC for an in-
put graph (V,E). We now present a program with variables that encodes a

8

solution to this problem. First, this program consists of facts that encode
graph (V,E):

vtx(v) (v ∈ V)
e(v, w) ({v, w} ∈ E)

(9)

Second, facts
color(c) (c ∈ {1, 2, 3}) (10)

enumerate three colors of the problem. The following rules conclude the
description of the program:

{c(V, I)} ← vtx(V), color(I) (11)

← not c(V, 1),not c(V, 2),not c(V, 3), vtx(V) (12)

← c(V, I), c(V, J), I < J, vtx(V), color(I), color(J) (13)

← c(V, I), c(W, I), vtx(V), vtx(W), color(I), e(V,W) (14)

These rules are the counterparts of groups of rules in propositional pro-
gram (5). Indeed,

• rule (11) states that every vertex may be assigned some colors;

• the second rule (12) states that it is impossible that a vertex is not
assigned a color;

• rule (13) says that it is impossible that a vertex is assigned two colors;
and

• rule (14) says that it is impossible that any two adjacent vertexes are
assigned the same color.

Programs with variables permit for a concise encoding of an instance
of a search problem. Indeed, size of a program composed of rules (9-12) is
almost identical to the size of a given graph (V,E). There are |V |+ |E|+ 7
rules in this program. On the other hand, the line

← cvi, cwi ({v, w} ∈ E, 1 ≤ i ≤ 3)

of program (5) alone encapsulates 3|E| rules.

5 Modeling of Search Problems in ASP

Answer set programming provides a general purpose modeling language that
supports elaboration tolerant solutions for search problems. We now define a

9

search problem abstractly. A search problem P consists of a set of instances
with each instance I assigned a finite set SP (I) of solutions. In answer
set programming to solve a search problem P , we construct a program ΠP

that captures problem specifications so that when extended with facts DI

representing an instance I of the problem, the answer sets of ΠP ∪DI are in
one to one correspondence with members in SP (I). In other words, answer
sets describe all solutions of problem P for the instance I. Thus solving of a
search problem is reduced to finding a uniform encoding of its specifications
by means of a logic program with variables.

For example, an instance of the graph coloring search problem GC is
a graph. All 3-colorings for a given graph form its solutions set. Consider
any graph (V,E). By D(V,E) we denote facts in (9) that encode graph
(V,E). By Πgc we denote a program composed of rules in (10-12). This
program captures specifications of 3-coloring problem so that answer sets
of Πgc∪D(V,E) correspond to solutions to instance graph (V,E) of a problem.
Recall graphs G1 and G2 presented in Figure 1. Facts DG1 representing G1
follow

vtx(a) vtx(b) vtx(c) vtx(d) e(a, b) e(b, c) e(c, d) e(d, a) e(b, d).

Program Πgc ∪DG1 has six answer sets, including

{vtx(a) vtx(b) vtx(c) vtx(d)
e(a, b) e(b, c) e(c, d) e(d, a) e(b, d)
color(1) color(2) color(3)
c(a, 1) c(b, 2) c(c, 1) c(d, 3)},

which captures solution SG1 . Similarly, we can use encoding Πgc to establish
whether 3-colorings exist for graph G2. Facts DG2 representing G2 consists
of facts in DG1 and an additional fact e(a, c). Program Πgc ∪ DG2 has no
answer sets suggesting that no 3-colorings exist for graph G2.

It is important to mention that the languages supported by ASP grounders
and solvers go beyond rules presented here. For instance, gringo ver-
sions 4.5+ support such constructs as aggregates, cardinality expressions,
intervals, pools. It is beyond the scope of this lecture to formally discuss
these constructs, but it is worth mentioning that they generally allow us
more concise, intuitive, and elaboration tolerant encodings of problems.
Also, they often permit to utilize more sophisticated and efficient proce-
dures in solving.

For instance, a single rule

← not 1#count{V, I : c(V, I)}1, vtx(V). (15)

10

can replace two rules (12) and (13) in program Πgc. This rule states that

it must be the case that a vertex is assigned exactly one color. (16)

This shorter program will result in smaller groundings for instances of the
GC problem paving the way to more efficient solving. Cardinality construct

1#count{V, I : c(V, I)}1

intuitively suggests us to count, for a given value of V the tuples (V, I) for
which atom of the form c(V, I) belongs to the answer set. Number 1 to the
right and to the left of this aggregate expression tells us a specific condition
on the count, in particular, that it has to be exactly 1. Indeed, the number
to the right suggests at most count whereas the number to the left suggest
at least count. Cardinality expressions form only one example of multitude
of constructs that gringo language offers for effective modeling of problem
specifications.

It is worth noting that the gringo language also provides syntactic
sugar, i.e., convenient abbreviations for groups of rules. For example, ex-
pression

edge(a, b; b, c; c, d).

abbreviates the set of facts

edge(a, b). edge(b, c). edge(c, d).

Expression
1{c(V, I) : color(I)} ← vtx(V).

abbreviates rules (11) and (12). So that we can encode Condition 1 listed
in Section 2 by one rule.

Expression
1{c(V, I) : color(I)}1← vtx(V). (17)

abbreviates a collection of two rules (11) and (15). Intuitively, we can read
the meaning of this rule as stated in (16) that we used to characterize an
intuitive meaning of constraint (15). Although English statements turn out
to be the same for rules (15) and (17), the formal meaning of mathematical
expression (17) obviously extends that of (15). In addition to a constraint on
solutions captured by (15) [which is one of the rules abbreviated by expres-
sion (17)], choice rule (11) [the other rule abbreviated by expression (17)]
provides ground for atoms of the form c(·, ·) be part of solutions. Or, in
other words, choice rule (11) removes closed world assumption from c(·, ·)
atoms.

11

Problem 3. Note that directive #show c/2. added to a clingo program Πgc

allows one to instruct clingo to only output these atoms in the computed
answer sets that have the form c(·, ·).

(a) Recall the statement of graph coloring problem. Imagine the following
extension to that statement: there is at most one node in a given graph
colored by color named 1. Extend the program Πgc so that this new statement
is respected.

(b) For graph G1, how many solutions to the new graph coloring problem
stated in (a) are there?

(c) Use clingo to test your solution in by running it on the program
Πgc ∪DG1 extended with the code you developed in (a). List the answer sets
that clingo computes (list only the atoms of the form c(·, ·)).

6 The Generate-Define-and-Test Modeling Methodology of
ASP

Previously, we presented how the generate and test methodology is ap-
plicable within answer set programming. Yet, an essential feature of logic
programs is their ability to elegantly and concisely “define” predicates. Logic
programs provide a convenient language for expressing inductive/recursive
definitions.

The generate, define, and test is a typical methodology used by
ASP practitioners in designing programs. It generalizes the generate and
test methodology discussed earlier. The roles of the generate and test
parts of a program stay the same so that, informally,

• generate defines a large collection of answer sets that could be seen
as potential solutions, while

• test consists of rules that eliminate the answer sets of the generate
part that do not correspond to solutions.

• The define section expresses additional, auxiliary concepts and con-
nects the generate and test parts.

To illustrate the essence of define, consider a Hamiltonian cycle search
problem:

Given a directed graph (V,E), the goal is to find a Hamiltonian
cycle — a set of edges that induce in (V,E) a directed cycle
going through each vertex exactly once.

12

This is an important combinatorial search problem related to Traveling
Salesperson problem. A solution can be described by a set of atoms of
the form in(v, w), (v, w) ∈ E of the given graph (V,E); including in(v, w)
in the set indicates that an edge from vertex v to vertex w is part of a found
Hamiltonian cycle. A solution is a set X satisfying the following conditions

1. the Hamiltonian cycle is formed by the edges of a given graph (V,E),
or, in other words, the extension of predicate in is a subset of E,

2. X does not contain a pair of different atoms of the form in(u, v),
in(u′, v) (two selected edges end at the same vertex; thus we visit
node u only once),

3. For each pair u, v of vertexes, X is such that (u, v) is a part of the
transitive closure of in relation defined by X. (Thus, a found subset
of edges of the graph is indeed a cycle.) Recall that

• the transitive closure of a binary relation R (in our case relation
in) on a set Y of elements (in our case the set of the vertexes
of the given graph) is the smallest relation on Y that contains R
and is transitive.

• a transitive relation R on set Y of elements is such that for any
three elements a, b, c (not necessarily distinct elements) in Y the
following property holds if a is in relation R with b and b is in
relation R with c then a is in relation R with c.

We now formalize the specifications of Hamiltonian cycle problem by
means of generate, define, and test methodology. As in the encod-
ing Πgc of the graph coloring problem, we use expressions of the form vtx(v)
and e(v, w) to encode an input graph.

Choice rule
{in(X,Y)} ← e(X,Y) (18)

forms the generate part of the problem. This rule states that any subset of
edges of a given graph may form a Hamiltonian cycle (Condition 1). Answer
sets of a program composed of this rule and a set of facts encoding an input
graph will correspond to all subsets of edges of the graph. For instance,
program composed of facts DG1 that encode directed graph G1 introduced
in Figure 1 extended by rule (18) has 32 answer sets each representing a
different subset of its edges.

The remaining Conditions 2-3 are captured in the test part. To formu-
late Condition 3, an auxiliary concept of reachable (a transitive closure of

13

in) is required so that we can capture the restriction that a found subset of
edges of the graph is also a cycle. The define part follows

reachable(V, V)← vtx(V)
reachable(U,W)← in(U, V), reachable(V,W),

vtx(U), vtx(V), vtx(W)
(19)

These rules define transitive closure of the predicate in: all pairs of ver-
texes (u, v) such that v can be reached from u by following zero or more
edges that are in.

We are now ready to state the test part composed of three rules

Condition 2 ← in(U, V), in(W,V), U 6= W, vtx(U ;V ;W)
Condition 3 ← not reachable(U, V), vtx(U ;V).

(20)

Rules (18), (19), and (20) form a program Πhc that captures specifica-
tions of Hamiltonian cycle search problem. Extending Πhc with facts rep-
resenting a directed graph results in a program whose answer sets describe
all Hamiltonian cycles of this graph. For example, program Πhc ∪DG1 has
only one answer set. Set

{in(a, b) in(b, c) in(c, d) in(d, a)}

contains all in-edges of that answer set stating that edges (a, b), (b, c), (c, d),
and (d, a) form the only Hamiltonian cycle for graph G1.

Concise encoding of transitive closure is a feature of answer set program-
ming that constitutes an essential difference between ASP and formalisms
based on classical logic. For example, transitive closure is not expressible
by first-order formulas. Thus any subset of first-order logic taken as the
language with variables for modeling search problems declaratively will fail
at defining (directly) concepts that rely on transitive closure.

In mastering the art of answer set programming it is enough to develop
intuitions about answer sets of the programs with variables that are formed
in accordance with the generate, define, and test methodology. Some of
these intuitions will stem from the general properties you encountered earlier
such as any element of answer set must appear in the head of some rule in a
program. For the general definition of an answer set, it is more difficult to
develop intuitions on what answer sets conceptually are and unnecessary.

Problem 4. Recall that the rule

← in(U, V), in(W,V), U 6= W, vtx(U ;V ;W)

14

in Πhc states that no two selected edges end at the same node. Rewrite
this rule using aggregate #count exemplified in rule (15). You may wish to
consult Clingo-Gringo manual Section 3.1.12 for more details on aggregates.

7 ASP Formulation of n-Queens

We now turn our attention to another combinatorial search problem: n-
queens problem.

The goal is to place n queens on an n × n chessboard so that
no two queens would be placed on the same row, column, and
diagonal.

A solution can be described by a set of atoms of the form q(i, j) (1 ≤ i, j ≤
n); including q(i, j) in the set indicates that there is a queen at position
(i, j). A solution is a set X satisfying the following conditions:

1. the cardinality of X is n,

2. X does not contain a pair of different atoms of the form q(i, j), q(i′, j)
(two queens on the same row),

3. X does not contain a pair of different atoms of the form q(i, j), q(i, j′)
(two queens on the same column),

4. X does not contain a pair of different atoms of the form q(i, j), q(i′, j′)
with |i′ − i| = |j′ − j| (two queens on the same diagonal).

Here is the representation of this program in the input language of
clingo:

number(1..n).

%Condition 1 and 2

1{q(K,J): number(K)}1:- number(J).

%Condition 3

:-q(I,J), q(I,J1), J<J1.

%Condition 4

:-q(I,J), q(I1,J1), J<J1, |I1-I|==J1-J.

We name this program queens.clingo.
Appending the line

15

const n=8.

to the code in queens.clingo will instruct answer set system clingo to search
for solution for 8-queens problem. Alternatively, the command line

clingo -c n=8 queens.clingo

instructs the answer set system clingo to find a single solution for 8-queens
problem, whereas the command line

clingo -c n=8 queens.clingo 0

instructs clingo to find all solutions to 8-queens program. The command
line

gringo -c n=8 queens.clingo > queens.8.grounded

instructs the grounder gringo to ground 8-queens problem; the ground
problem (ready for processing with clasp) is stored in file queens.8.grounded.
The command lines

gringo -t -c n=8 queens.clingo

or

clingo -t -c n=8 queens.clingo

will produce human-readable grounded 8-queens problem.
The command line

clasp < queens.8.grounded

will instruct the answer set solver clasp to look for answer sets of a program
in queens.8.grounded.

An extract from the output of the last command line follows

...

Answer: 92

number(1) number(2) number(3) number(4)

number(5) number(6) number(7) number(8)

q(5,8) q(7,7) q(2,6) q(6,5) q(3,4) q(1,3) q(8,2) q(4,1)

SATISFIABLE

This 92nd solution found by the solver encodes the following valid configu-
ration of queens on the board

16

1 2 3 4 5 6 7 8

1 Q

2 Q

3 Q

4Q

5 Q

6 Q

7 Q

8 Q

Similarly, appending the line

const n=4.

to the code in queens.clingo will instruct clingo to solve 4-queens problem.
The command line

clingo -c n=4 queens.clingo 0

instructs clingo to find all solutions for 4-queens problem.

Problem 5. (a) Use clingo to find all solutions to the 8-queens problem
that have a queen at (1, 1). How many solutions of the kind are there?

(b) Use clingo to find all solutions to the 12-queens problem that have
a queen at (1, 1). How many solutions of the kind are there?

Submit the lines of code that you wrote to solve these problems.

Problem 6. (a) Use clingo to find all solutions to the 8-queens problem
that have no queens in the 4 × 4 square in the middle of the board. How
many solutions of the kind are there?

(b) Use clingo to find all solutions to the 10-queens problem that have
no queens in the 4×4 square in the middle of the board. How many solutions
of the kind are there?

Submit the lines of code that you wrote to solve these problems.

Acknowledgments

Parts of this handout follow What is answer set programming to proposi-
tional satisfiability, Yuliya Lierler, Constraints, July 2017, Volume 22, Is-
sue 3, pp 307337 available at https://link.springer.com/article/10.

1007/s10601-016-9257-7.

17

Handout on Algorithms in Backtracking Search behind

SAT and ASP

Yuliya Lierler
University of Nebraska Omaha

Introduction

We now turn out attention to search algorithms underlying ASP technology. In particular, we
will focus on the techniques employed by answer set solver such as clasp. Recall that clasp is
only one building block of an answer set system clingo that also incorporates grounder called
gringo. In the scope of this course we ignore the details behind grounders, but note that these
are highly nontrivial systems solving a complex and computationally intense task of intelligent
instantiation.

The algorithms behind majority answer set solvers fall into group of so called backtracking
search algorithms.

Backtracking is a general algorithm for finding all (or some) solutions to some com-
putational problem, that incrementally builds candidates to the solutions, and aban-
dons each partial candidate c (”backtracks”) as soon as it determines that c cannot
possibly be completed to a valid solution. (Wikipedia)

The Davis-Putnam-Logemann-Loveland (DPLL) procedure is a classic example of back-
tracking search algorithms. DPLL is a method for deciding the satisfiability of propositional
logic formula in conjunctive normal form, or, in other words, for solving the propositional sat-
isfiability problem. Algorithms used by answer set solvers share a lot in common with DPLL.
In this handout, we thus begin by presenting DPLL procedure. We then discuss its extensions
suitable for computing answer sets of a program in place.

1 Satisfiability Solving: Davis-Putnam-Logemann-Loveland Pro-
cedure

Recall that a literal is an atom or a negated atom. A signature is a set of atoms. Given
a propositional formula, the set of atoms occurring in it is considered to be its signature by
default. A clause is a disjunction of literals (possibly the empty disjunction ⊥). A formula
is said to be in conjunctive normal form (CNF) if it is a conjunction of clauses (possibly the
empty conjunction >). The task of deciding whether a CNF formula is satisfiable is called a
satisfiability (SAT) problem. Recall that an interpretation/assignment over a signature is a
mapping from the elements of the signature to truth values f or t. For example, given formula

(p ∧ q) ∨ r (1)

1

there are 8 interpretations in its signature {p, q, r} including the following

interpretation p q r

I1 f t t
I2 f t f

A formula is called satisfiable if we can find an interpretation over its signature so that this
formula is evaluated to true under this interpretation. (We assume the familiarity with the
interpretation functions for the classical logic connectives >,⊥,¬,∧ and ∨.) We say that in such
case an interpretation satisfies a formula and also call it a model. For instance, interpretation
I1 satisfies formula (1) while I2 does not. In other words, I1 is a model of formula (1). Hence
this formula is also satisfiable. It is common to identify an interpretation over signature σ with
the set of literals and also with the set of atoms in an intuitive way. For instance, the table
below presents such a mapping for interpretations I1 and I2.

interpretation p q r set of literals set of atoms w.r.t. σ = {p, q, r}
I1 f t t {¬p, q, r} {q, r}
I2 f t f {¬p, q,¬r} {q}

Later in the discourse we frequently use the word interpretation to denote a set of literals.

1.1 DPLL by means of Pseudocode

The Davis-Putnam-Logemann-Loveland (DPLL) procedure is an algorithm for deciding the
satisfiability of propositional logic formula in CNF. DPLL also allows to find a satisfying inter-
pretation of a formula if it exists. Enhancements of DPLL form modern SAT solving technology.

We now state some terminology useful in presenting DPLL. For a literal of the form A we
say that ¬A is its complement, whereas for a literal of the form ¬A, atom A is its complement. A
set M of literals is consistent when it does not contain complementary pairs A, ¬A. Otherwise,
we call a set inconsistent. Sets {a, b,¬c} and {a, b, c,¬c} exemplify consistent and inconsistent
sets of literals, respectively. In the sequel by wrt we abbreviate the phrase with respect to. We
say that a clause l1 ∨ · · · ∨ ln is unit-ary wrt the set M of literals, when

• there is i such that 0 ≤ i ≤ n and li 6∈M (we call literal li a unit literal), and

• for every j such that 0 ≤ j ≤ n and j 6= i, lj ∈M .

For instance, a∨¬b∨ c is a unit-ary clause wrt {¬a, b} and c is its unit literal. Clause a∨¬b is
a unit-ary clause wrt set {¬a, b}, where both a and ¬b are unit literals. We say that a clause
l1∨· · ·∨ ln is satisfied by the set M of literals, when for some i such that 0 ≤ i ≤ n the following
holds li ∈ M . We say that a literal l is unassigned by a set M of literals if neither l nor its
complement l is in M ; otherwise we say that literal l is assigned by M .

Consider the procedure called unit propagation presented in Figure 1. This procedure is
invoked on a consistent set M of literals. To apply unit propagation to a given CNF formula F ,
Unit-Propagate is invoked with F and M = ∅. For instance, to apply unit propagation to

p ∧ (¬p ∨ ¬q) ∧ (¬q ∨ r) (2)

we invoke Unit-Propagate with this formula as F and with ∅ as M . After the first execution
of the body of the loop,

M = {p};

2

Unit-Propagate(F,M)
while M is a consistent set of literals,

and F has a unit-ary clause wrt M so that l is a unit literal of that clause
M ←M ∪ {l}

end

Figure 1: Unit propagation

DPLL(F,M)
Unit-propagate(F,M);
if M is an inconsistent set of literals then return;
if every atom occurring in F is assigned by M then exit with a model of M ;
l← a literal containing an atom from F unassigned by M ;
DPLL(F,M ∪ {l});
DPLL(F,M ∪ {l})

Figure 2: Davis-Putnam-Logemann-Loveland procedure

after the second iteration
M = {p,¬q}.

This computation shows that any model of the given formula is such that p is assigned to t and
q is assigned to f.

There are two cases when the process of unit propagation alone is sufficient for solving
the satisfiability problem for given F . Consider the value of M upon the termination of Unit-
Propagate(F, ∅). First, if F is such that all of its clauses are satisfied by M , as in the example
above, then F is satisfiable, and any satisfying interpretation can be easily extracted from M .
In the example above

M = {p,¬q}

gives rise to two models of (2):

interpretation p q r

I1 t f f
I2 t f t

Second, if M is an inconsistent set of literals then F is not satisfiable.

Problem 1. Use unit propagation to decide whether the formula

p ∧ (p ∨ q) ∧ (¬p ∨ ¬q) ∧ (q ∨ r) ∧ (¬q ∨ ¬r)

is satisfiable.

The Davis-Putnam-Logemann-Loveland procedure presented in Figure 2 is an extension of
the unit propagation method that can solve the satisfiability problem for any CNF formula.
Like Unit-propagate, it is initially invoked with F and M = ∅.

3

Example 1. Consider, for instance, the application of the DPLL procedure to

(¬p ∨ q) ∧ (¬p ∨ r) ∧ (q ∨ r) ∧ (¬q ∨ ¬r). (3)

First DPLL is called with this formula as F and with ∅ as M (Call 1). After the call to Unit-
propagate, the value of M remains the same. Assume that the literal selected as l is p. Now
DPLL is called recursively with F and {p} as M (Call 2). After the call to Unit-propagate,
M turns into an inconsistent set {p, q, r,¬r} (or an inconsistent set {p, q, r,¬q}). Thus DPLL
returns. Next DPLL is called with {¬p} as M (Call 3). After the call to Unit-propagate, M
remains the same. Assume that the literal selected as l is q. Then DPLL is called with {¬p, q}
as M (Call 4). After the call to Unit-propagate, M = {¬p, q,¬r}. Since M is consistent
and assigns every atom occurring in F , DPLL returns M as a model:

p q r

f t f

Problem 2. How would this computation be affected by selecting ¬p as l in Call 1? By selecting
¬q as l in Call 3?

1.2 DPLL by means of Transition Systems

In the previous section we described the DPLL procedure using pseudocode. Here we use a
different method to present this algorithm. In particular, we use a transition system that can
be viewed as an abstract representation of the underlying DPLL computation. This transition
system captures what “states of computation” are, and what transitions between states are
allowed. In this way, a transition system defines a directed graph such that every execution
of the DPLL procedure corresponds to a path in this graph. Some edges may correspond to
unit propagation steps, some to decision, some to backtracking. Later in the handout, we will
follow this approach for describing a search algorithm suitable for computing answer sets of a
program.

For a set σ of atoms, a record relative to signature σ is a sequence l1 . . . ln−1 ln of distinct
literals over σ, with some literals possibly annotated by ∆, which marks them as decision
literals, so that

1. l1 . . . ln−1 contains no complementary pairs A,¬A, and

2. a decision literal may not be preceded by the complement of this literal in the sequence.

A state relative to σ is either a distinguished state FailState or a record relative to σ. For
instance, the states relative to a singleton set {p} are

FailState, ∅, p, ¬p, p∆, ¬p∆, p ¬p, p∆ ¬p, ¬p p, ¬p∆ p, .

Note how sequences of literals such as p p, p p∆, p ¬p∆, p∆ ¬p∆ do not form records (the
former two sequences are not formed by distinct literals; the later two sequences do not satisfy
Condition 2). Similarly, while sequence p q ¬q forms a record relative to signature {p, q},
sequence p q ¬q ¬p is not a record (it does not satisfy Condition 1).

Frequently, we identify a record M with a set of literals, ignoring both the annotations
and the order among its elements. This allows us to use notation stemming from set theory.
For example, let M be a record p q ¬q, we identify an expression p ∈ M with the condition
p ∈ {p, q,¬q} that ”checks” whether p is a member of set {p, q,¬q} Similarly we can speak

4

of literals being unassigned by a record, or a record being inconsistent. These terms were
defined earlier in the handout for the sets of literals. For instance, states p∆ ¬p and p q ¬p
are inconsistent. Also both q and ¬q are unassigned by state p∆ ¬p, whereas both of them are
assigned by p q ¬p.

Each CNF formula F determines its DPLL graph dpF . The set of nodes of dpF consists
of the states relative to the signature of F . The edges of the graph dpF are specified by four
transition rules:

Unit Propagate: M ⇒ M l if

{
there is a unit-ary clause in F w.r.t. M so that
literal l is its unit literal

Decide: M ⇒ M l∆ if l is unassigned by M

Fail : M ⇒ FailState if

{
M is inconsistent, and
M contains no decision literals

Backtrack : P l∆ Q⇒ P l if

{
P l∆ Q is inconsistent, and
Q contains no decision literals.

A node (state) in the graph is terminal if no edge originates in it. The transition rule Unit
Propagate is also often called a propagator/inference rule of DPLL.

The following proposition gathers key properties of the graph dpF .

Proposition 1. For any CNF formula F ,

(a) graph dpF is finite and acyclic,

(b) any terminal state of dpF other than FailState is a model of F ,

(c) FailState is reachable from ∅ in dpF if and only if F is unsatisfiable.

Thus, to decide the satisfiability of a CNF formula F it is enough to find a path leading from
node ∅ to a terminal node M . If M = FailState, F is unsatisfiable. Otherwise, F is satisfiable
and M is a model of F .

For instance, let F1 = {p ∨ q,¬p ∨ r}. Below we show a path in dpF1 with every edge
annotated by the name of the transition rule that gives rise to this edge in the graph:

∅ Decide⇒ p∆ Unit Propagate⇒ p∆ r
Decide⇒ p∆ r q∆. (4)

The state p∆ r q∆ is terminal. Thus, Proposition 1(b) asserts that F1 is satisfiable and {p, r, q}
is a model of F1. Another path in dpF1 that leads us to concluding that set {p, r, q} is a model
of F1 follows

∅ Decide⇒ p∆ Decide⇒ p∆ r∆ Decide⇒ p∆ r∆ q∆. (5)

We can view a path in the graph dpF as a description of a process of search for a model
of a formula F by applying transition rules of the graph. Therefore, we can characterize an
algorithm of a SAT solver that utilizes the inference rules of dpF by describing a strategy for
choosing a path in dpF . A strategy can be based, in particular, on assigning priorities to some
or all transition rules of dpF , so that a solver will never apply a transition rule in a state if a
rule with higher priority is applicable to the same state. The DPLL algorithm can be captured
by the following priorities:

Backtrack,Fail >> Unit Propagate >> Decide.

5

Note how path (6) in the graph dpF1 respects priorities above, while path (5) does not. Thus
DPLL will never explore the latter search trajectory given input F1.

Problem 3. Let G be formula (3). Then a pass in dpG that can be seen as capturing the
computation of DPLL described in Example 1 follows:

∅ Decide⇒ p∆ Unit Propagate⇒ p∆ q
Unit Propagate⇒ p∆ q r

Unit Propagate⇒
p∆ q r ¬q Backtrack⇒ ¬p Decide⇒ ¬p q∆ Unit Propagate⇒ ¬p q∆ ¬r

(6)

(a) List an alternative path to (6) in dpG that also can be seen as capturing the computation
of DPLL. (Hint: think of nondeterminism in Unit-Propagate procedure.)

(b) Consider node q in graph dpG. List all the edges that leave this node in dpG. Annotate
these edges by transition rules that they are due. Specify nodes to which these edges lead. For
instance,

q
Decide⇒ q p∆

is one of these edges. (c) Consider node p∆ q r ¬q in graph dpG. List all the edges that leave
this node in dpG (as in the previous question).

2 From ASP to SAT

A number of transformations from logic programs under answer set semantics to SAT exist.
Given a propositional logic program Π, there are two kinds of transformations:

• transformations that preserve the vocabulary of Π and form a propositional theory FΠ

that is equivalent to Π. In other words, models of Π and FΠ coincide.

• transformations that may contain “new atoms” so that the answer sets for Π can be
obtained by removing these atoms from the models of constructed FΠ.

Remarkable transformation of the former kind is called completion. For a large syntactic
class of programs (“tight” programs), the models of program’s completion coincide with the
answer sets of a program. This fact is exploited in several state-of-the-art answer set solvers
including clasp (a solver of clingo). For example, for tight programs clasp practically runs
a (significantly enhanced) DPLL procedure on program’s completion to obtain answer sets of
a program.

Answer Set Solving. We are now ready to present an extension to the DPLL algorithm that
captures a family of backtrack search procedures for finding answer sets of a propositional logic
program.

Recall that a propositional logic program is a finite set of rules of the form

a0 ← a1, . . . , ak,not ak+1, . . . ,not am, (7)

where a0 is a propositional atom or symbol ⊥; a1, . . . , an are propositional atoms. For a rule r
of the form (7), by rcl we denote a clause

a0 ∨ ¬a1 ∨ · · · ∨ ¬ak ∨ ak+1 ∨ · · · ∨ am (8)

when a0 is an atom; and a clause

¬a1 ∨ · · · ∨ ¬ak ∨ ak+1 ∨ · · · ∨ am, (9)

6

when a0 is ⊥. For a program Π, by Πcl we denote a CNF formula composed of the respective
clauses rcl for rules r in Π. For example let Π stand for program

p
r ← p, q

(10)

then Πcl follows
p ∧
r ∨ ¬p ∨ ¬q. (11)

For a program Π, by σΠ we denote the set of atoms occurring in it. We call σΠ a program’s
signature. For a program Π, we call an interpretation M over σΠ a classical model of Π if it
is a model of Πcl. For example, program (10) has three classical models {p,¬q,¬r}, {p,¬q, r},
and {p, q, r}. In a sense, a concept of a classical model generalizes the definition of what does
it mean for a set of atoms to satisfy a definite program to arbitrary programs.

A set U of atoms occurring in a propositional program Π is unfounded on a consistent set M
of literals with respect to Π if for every atom a ∈ U the following condition holds: for every
rule in Π of the form

a← a1, . . . , ak,not ak+1, . . . ,not am

(note that a is the head atom in this rule) the property below holds:

• either M ∩ {¬a1, . . . ,¬ak, ak+1, . . . , am} 6= ∅

• or U ∩ {a1, . . . , ak} 6= ∅

For instance, set {r} is unfounded on set {p,¬q, r} with respect to program (10), while set {q}
is unfounded on any set of literals with respect to program (10). We may also note that any
set of atoms containing atom p will not be unfounded on any set of literals with respect to
program (10) (this fact is explained by the presence of fact p. in the program). It is easy to see
that the ∅ of atoms is unfounded on any set of literals with respect to any program.

For a set M of literals, by M+ we denote the set composed of all the literals that occur
without classical negation in M . E.g., {p, q,¬r}+ = {p, q}.

We now state a formal result that relates the notions of an unfounded set and answer sets.
This result is crucial for understanding key inference rules used in propagators of modern answer
set solvers.

Proposition 2. For a program Π and a set M of literals over σΠ, M+ is an answer set of Π
if and only if M is a classical model of Π and no non-empty subset of M+ is an unfounded set
on M with respect to Π.

This proposition gives an alternative characterization of an answer set. I.e., we may bypass
the reference to a reduct in our argument that a set of atoms is an answer set. It is sufficient
to verify that (i) this set of atoms corresponds to a classical model of a program and (ii) no
non-empty subset of this set is unfounded. For example, this proposition asserts that

• classical models of program (10) are the only interpretations that may correspond to
answer sets of (10)

• sets {p,¬q,¬r}, {p,¬q, r}, {p, q, r} of literals are the classical models of program (10).
Thus, sets {p,¬q,¬r}+ = {p}, {p,¬q, r}+ = {p, r}, {p, q, r}+ = {p, q, r} of atoms form
the candidates for being answer sets,

7

• sets {p, r} and {p, q, r} are not answer sets of the program due to unfounded sets {r} and
{q} respectively. Set {p} is an answer set (since the only nonempty subset of it, namely,
{p}, is not an unfounded set on {p,¬q,¬r} with respect to program (10)).

We define the transition graph asetΠ for a program Π as follows. The set of nodes of the
graph asetΠ consists of the states relative to atoms occurring in Π. There are five transition
rules that characterize the edges of asetΠ. The transition rules Unit Propagate, Decide, Fail ,
Backtrack of the graph dpΠcl , and the transition rule

Unfounded : M ⇒ M ¬a if

{
a ∈ U for a set U unfounded on M
with respect to Π.

The graph asetΠ can be used for deciding whether a logic program has answer sets:

Proposition 3. For any program Π,

(a) graph asetΠ is finite and acyclic,

(b) for any terminal state M of asetΠ other than FailState, M+ is an answer set of Π,

(c) FailState is reachable from ∅ in asetΠ if and only if Π has no answer sets.

A Peek at Important Enhancements of ASP (and SAT) solvers The key difference
of system clingo from the smodels algorithm that we presented lays in implementation of
such advanced solving techniques as learning and forgetting, backjumping and restarts. Below
we provide some intuitions behind these.

The learning technique allows a solver to extend its knowledge base (that originally is
composed of a given program) by additional constraints so that certain inferences become
readily available in the later states of search via propagation rules (eliminating the need for
intermediate applications of decide rules). The forgetting allows the solver to make the learning
process dynamic so that sometimes learned constraints are forgotten/removed to eliminate the
chance of solver’s knowledge base becoming of a prohibitive size.

Backjumping enhances backtracking mechanism by allowing to identify the decision level
different from the last one that is safe to jump to so that (i) no solution is lost and (ii) part of
the search space is escaped.

Restarting allows a solver to drop currently searched path and start over again with a hope
to make better choices on a new path that lead to a solution quicker.

Problem 4. Let Π1 be a program
r.
p← not q, r
q ← not p, r

(a) List all classical models of Π1.
(b) List all unfounded sets on set {r, p, q} with respect to program Π1.
(c) List all unfounded sets on set {r,¬p,¬q} with respect to program Π1.
(d) List all unfounded sets on set {r, p,¬q} with respect to program Π1.
(e) List all answer sets of Π1.
(f) List some five states in graph asetΠ1.
(g) List some path in asetΠ1 from ∅ to state r¬q∆p. Think of another possible path in

this graph from ∅ to the same state r¬q∆p. List that path. In both cases annotate all the
transitions/edges in your path by the names of the respective rules.

8

(h) Is state r¬q∆p terminal in the graph asetΠ1? If so what can you conclude about pro-
gram Π1 and state r¬q∆p given Proposition 3.

Acknowledgments

Parts of this handout follow

• the lecture notes on Logic-based AI course, UT, Spring 20111 by Vladimir Lifschitz.

• What is answer set programming to propositional satisfiability, Yuliya Lierler, Constraints,
July 2017, Volume 22, Issue 3, pp 307337 available at https://link.springer.com/

article/10.1007/s10601-016-9257-7.

In class discussions of Fall 2020 course on Introduction to AI at UNO contributed to several
examples listed in these notes.

1http://www.cs.utexas.edu/~vl/teaching/lbai

9

