Semantics for Conditional Literals via the SM Operator

Zach Hansen Yuliya Lierler

University of Nebraska Omaha

September 2022

Hansen and Lierler (UNO)

Conditional Literal Semantics

- 2 Conditional Logic Programs
- 3 Conditional Programs via the SM Operator
- Conditional Programs via Infinitary Propositional Logic
- 5 Connecting Semantics for Conditional Literals

- 2 Conditional Logic Programs
- 3 Conditional Programs via the SM Operator
- 4 Conditional Programs via Infinitary Propositional Logic
- 5 Connecting Semantics for Conditional Literals

3/22

Program Verification

We are interested in the verification of nonground ASP programs. Thus, we rely on translations to first-order logic and the SM operator.

Meta programming

Conditional literals are expressive, non-standard ASP constructs. They are frequently used in meta-programming (Kaminski et al. 2021). Examples include:

optimization statements;

reasoning about actions;

reasoning about preferences;

guess-and-check programming.

The Graph Coloring Problem (CS Lecture Notes)

 $\{asg(V, I)\} := vtx(V); color(I).$

- :- not asg(V, r); not asg(V, g); not asg(V, b); vtx(V).
- :- asg(V, I); asg(V, J); $I \neq J$; vtx(V); color(I; J).
- :- asg(V, I); asg(W, I); vtx(V; W); color(I); edge(V, W).

The Graph Coloring Problem (Rewritten)

 $\{ asg(V, I) \} := vtx(V); \ color(I). \\ := not \ asg(V, I) : \ color(I); \ vtx(V). \\ := asg(V, I); \ asg(V, J); \ I \neq J; \ vtx(V); \ color(I; J). \\ := asg(V, I); \ asg(W, I); \ vtx(V; W); \ color(I); \ edge(V, W).$

3 Conditional Programs via the SM Operator

4 Conditional Programs via Infinitary Propositional Logic

5 Connecting Semantics for Conditional Literals

Conditional Logic Programs

Terms are variables, object constants, or $f(t_1, ..., t_k)$ **Atomic formulas** are $t_1 = t_2$ or **atoms** $p(t_1, ..., t_k)$ **Basic literals** are atomic formulas (optionally negated) **Conditional literals** are $H : l_1, ..., l_m$ (abbreviated H : L) **Rules** have the form $H_1 | \cdots | H_m \leftarrow B_1; ...; B_n$. A (conditional logic) program is a finite set of rules.

Basic Choice Rules

$$\{p(\mathbf{t})\} \leftarrow B_1; \ldots; B_n$$

is considered to be shorthand for

$$p(\mathbf{t}) \mid not \ p(\mathbf{t}) \leftarrow B_1; \ldots; B_n$$

Explicit Program Signatures

For a signature $\sigma = (\mathcal{O}, \mathcal{F}, \mathcal{P})$ of a first-order language:

 $\ensuremath{\mathcal{O}}$ is the set of object constants;

 \mathcal{F} is the set of function symbols (non-zero arity);

 $\ensuremath{\mathcal{P}}$ is the set of predicate constants;

 G_{σ} is the set of all ground terms constructed from \mathcal{O} and \mathcal{F} of σ . For a program Π :

 $\sigma = (\mathcal{O}_{\Pi}, \mathcal{F}_{\Pi}, \mathcal{P}_{\Pi})$, where $\mathcal{O}_{\Pi}, \mathcal{F}_{\Pi}$, and \mathcal{P}_{Π} contain all the object constants, function symbols, and predicate constants occurring in Π ; \mathcal{G}_{Π} denotes $\mathcal{G}_{(\mathcal{O}_{\Pi}, \mathcal{F}_{\Pi}, \mathcal{P}_{\Pi})}$.

8 / 22

2 Conditional Logic Programs

3 Conditional Programs via the SM Operator

4 Conditional Programs via Infinitary Propositional Logic

5 Connecting Semantics for Conditional Literals

Global vs. Local Variables

A variable is *global* in a conditional literal $H : \mathbf{L}$ if it occurs in H but not in \mathbf{L} ;

All other variables occurring in a conditional literal are local.

All variables are global in basic literals;

A variable is global in a rule if it is global in at least one rule literal.

Example

In rule

```
:- not asg(V, I): color(I); vtx(V).
```

with conditional literal

```
not asg(V, I): color(I);
```

V is a global variable, whereas I is local.

ϕ_{z}

For a rule R with global variables z:

for a conditional literal $H : \mathbf{L}$ occurring in the body of R with local variables \mathbf{x} , $\phi_{\mathbf{z}}(H : \mathbf{L})$ is $\forall \mathbf{x} (\phi_{\mathbf{z}}(\mathbf{L}) \rightarrow \phi_{\mathbf{z}}(H))$;

for a conditional literal $H : \mathbf{L}$ occurring in the head of R with local variables $\mathbf{x}, \phi_{\mathbf{z}}(H : \mathbf{L})$ is $\exists \mathbf{x} ((\phi_{\mathbf{z}}(\mathbf{L}) \rightarrow \phi_{\mathbf{z}}(H)) \land \neg \neg \phi_{\mathbf{z}}(\mathbf{L}))$.

ϕ

 $\phi(R)$ is the formula $\forall \mathbf{z}(\phi_{\mathbf{z}}(B_1) \land \cdots \land \phi_{\mathbf{z}}(B_n) \rightarrow \phi_{\mathbf{z}}(H_1) \lor \cdots \lor \phi_{\mathbf{z}}(H_m))$ where \mathbf{z} is the list of the global variables of R

11 / 22

Conditional Literal Translation

Transformation ϕ applied to the conditional literal

```
not asg(V, I) : color(I)
```

produces formula

$$\forall i(color(i) \rightarrow \neg asg(v, i))$$

$\phi(\Pi)$

$$\begin{array}{l} \forall vi ((vtx(v) \land color(i)) \rightarrow asg(v, i) \lor \neg asg(v, i)) \\ \forall v ((\forall i (color(i) \rightarrow \neg asg(v, i)) \land vtx(v)) \rightarrow \bot) \\ \forall vij ((asg(v, i) \land asg(v, j) \land i \neq j \land vtx(v) \land color(i) \land color(j)) \rightarrow \bot) \\ \forall viw ((asg(v, i) \land asg(w, i) \land vtx(v; w) \land color(i) \land edge(v, w)) \rightarrow \bot) \end{array}$$

Semantics via the SM operator

An interpretation is a **p**-stable model of a first-order sentence F when it is a model of $SM_p[F]$.

For a conditional logic program Π and a Herbrand interpretation I over the signature $(\mathcal{O}_{\Pi}, \mathcal{F}_{\Pi}, \mathcal{P}_{\Pi})$, I is an *answer set* of Π when I is a \mathcal{P}_{Π} -stable model of $\phi(\Pi)$.

- 2 Conditional Logic Programs
- 3 Conditional Programs via the SM Operator

Conditional Programs via Infinitary Propositional Logic

5 Connecting Semantics for Conditional Literals

Conditional Programs via Infinitary Propositional Logic

Traditional Characterization of Conditional Literals:

- (i) Syntactic reduction to IPL formulas¹;
- (ii) Semantics defined by IPL stable model semantics².

Closed Conditional Literal Transformations

If **x** is the list of variables occurring in a conditional literal $H : \mathbf{L}$:

Body: $\tau(H : \mathbf{L})$ is the *conjunction* of the formulas

$$\tau(\mathbf{L}_{\mathbf{r}}^{\mathbf{x}}) \rightarrow \tau(H_{\mathbf{r}}^{\mathbf{x}})$$

over all tuples of ground terms $\mathbf{r} \in \mathcal{G}^{|\mathbf{x}|}$.

Hansen and Lierler (UNO)

15 / 22

¹A. Harrison, V. Lifschitz, and F. Yang. "The Semantics of Gringo and Infinitary Propositional Formulas". In: *Proceedings of the Fourteenth International Conference on Principles of Knowledge Representation and Reasoning (KR'14)*. Ed. by C. Baral, G. De Giacomo, and T. Eiter. AAAI Press, 2014

²M. Truszczyński. "Connecting First-Order ASP and the Logic FO(ID) through Reducts". In: Correct Reasoning: Essays on Logic-Based AI in Honour of Vladimir Lifschitz. Ed. by E. Erdem et al. Vol. 7265. Lecture Notes in Computer Science. Springer-Verlag, 2012, pp. 543–559

Instantiations of rule R w.r.t. a set G of ground terms

 $inst_{\mathcal{G}}(R) = \{R_{\mathbf{u}}^{\mathbf{z}} \mid \mathbf{u} \in \mathcal{G}^{\mathbf{z}}\}^{\wedge}$

Program Π, rule R in Π

$$\tau(R) = \{\tau(r) \mid r \in inst_{\mathcal{G}_{\Pi}}(R)\}^{\wedge}.$$

Similarly,

$$\tau(\Pi) = \{\tau(R) \text{ w.r.t. } \mathcal{G}_{\Pi} \mid R \in \Pi\}^{\wedge}.$$

æ

16 / 22

• • = • • = •

- 2 Conditional Logic Programs
- 3 Conditional Programs via the SM Operator
- 4 Conditional Programs via Infinitary Propositional Logic
- 5 Connecting Semantics for Conditional Literals

Summary

We have presented our translation ϕ , which produces *nonground* first-order formulas from logic programs.

We have reviewed translation τ , which produces infinitary propositional formulas from logic programs.

We use a previously established result to show that the \mathcal{P}_{Π} -stable models of $\phi(\Pi)$ coincide with the stable models of $\tau(\Pi)$.

F is a FO sentence over σ

$$gr(\bot) = \bot;$$

$$gr(A) = A \text{ for a ground atom } A;$$

$$gr(t_1 = t_2) \text{ is } \top \text{ if } t_1 \text{ is identical to } t_2, \text{ and } \bot \text{ otherwise, for ground terms } t_1, t_2;$$

If $F = G \lor \ldots \lor H$, then $gr(F) = gr(G) \lor \cdots \lor gr(H);$
If $F = G \land \ldots \land H$, then $gr(F) = gr(G) \land \cdots \land gr(H);$
If $F = G \rightarrow H$, then $gr(F) = gr(G) \rightarrow gr(H);$
If $F = \exists \mathbf{x} G(\mathbf{x})$, then $gr(F) = \{gr(G(\mathbf{u})) \mid \mathbf{u} \in \mathcal{G}_{\sigma}^{\mathbf{x}}\}^{\lor};$
If $F = \forall \mathbf{x} G(\mathbf{x})$, then $gr(F) = \{gr(G(\mathbf{u})) \mid \mathbf{u} \in \mathcal{G}_{\sigma}^{\mathbf{x}}\}^{\land}.$

< 4³ ► <

æ

Theorem (Syntactic Identity)

For any conditional logic program Π containing at least one object constant, $gr(\phi(\Pi))$ is identical to $\tau(\Pi)$.

Theorem (Main Theorem)

For any conditional logic program Π containing at least one object constant and any Herbrand interpretation I over $(\mathcal{O}_{\Pi}, \mathcal{F}_{\Pi}, \mathcal{P}_{\Pi})$, the following conditions are equivalent:

- I is a \mathcal{P}_{Π} -stable model of $\phi(\Pi)$;
- I is a clingo answer set of Π .

Graph Coloring Example

$\mathcal{G}_{\Pi} = \{1,g\}$

Take rule R to be :- not asg(V, I) : color(I); vtx(V). The grounding of $\phi(R)$ replaces global variables:

$$gr(\phi(R)) = \{ (gr(\forall i(color(i) \rightarrow \neg asg(1, i)) \land vtx(1)) \rightarrow \bot), \\ (gr(\forall i(color(i) \rightarrow \neg asg(g, i)) \land vtx(g)) \rightarrow \bot) \}^{\land}$$

Take closed rule r to be :- not asg(1, I) : color(I); vtx(1). Then, $\tau(r) = ((color(1) \rightarrow \neg asg(1, 1)) \land (color(g) \rightarrow \neg asg(1, g))) \land vtx(1) \rightarrow \bot$

Comparing Transformations w.r.t. the set of ground terms $\{1, g\}$

$$(\forall i(color(i) \rightarrow \neg asg(1,i)) \land vtx(1)) \rightarrow \bot$$

is equivalent to

$$ig((\mathit{color}(1)
ightarrow \neg \mathit{asg}(1,1)) \land (\mathit{color}(g)
ightarrow \neg \mathit{asg}(1,g)) ig) \land \mathit{vtx}(1)
ightarrow \bot$$

Hansen and Lierler (UNO)

Contribution

We have provided semantics for conditional literals via the SM operator which do not refer to grounding. This enables us to create modular proofs of correctness for a broader class

of nonground programs.

Future Work

We are potentially interested in integrating this work into Anthem. For instance, the graph coloring example explored here could be verified by an extended version of Anthem.