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Abstract

The availability of generators of random instances of boolean
formulas has had a major impact on solver technology for KR
formalisms such as SAT, QBF and ASP. Recently, we pro-
posed new models of random QSAT formulas in non-clausal
form, as well as the first model of random disjunctive logic
programs. Our models support generating instances of sub-
stantial hardness. Here, we present a tool that generates for-
mulas/programs from the new models in a variety of output
formats including (Q)DIMACS, QCIR, and ASPCore 2.0.

Introduction
The ability to generate large numbers of formulas of a
desired hardness is important for many KRR formalisms,
and in particular it received much attention in SAT and
QBF communities (Gent and Walsh 1999). Indeed, inher-
ently hard instances are essential for designing and test-
ing new search techniques (Achlioptas 2009), and are used
in solver competitions (Järvisalo et al. 2012a; Narizzano,
Pulina, and Tacchella 2006). Large collections of easy in-
stances support the so-called fuzz testing and can help re-
veal issues in solver implementation, as well as defects
in solver design (Brummayer, Lonsing, and Biere 2010).
Random formulas have been used successfully to assess
CDCL solvers (Silva, Lynce, and Malik 2009) on resource
management and efficacy of heuristics (Elffers et al. 2016;
Järvisalo et al. 2012b). The ability to generate large numbers
of easy and hard logic programs is equally important to the
field of Answer Set Programming (ASP) (Brewka, Eiter, and
Truszczynski 2011) for developing and testing solvers (Al-
viano et al. 2015; Calimeri et al. 2016; Gebser et al. 2007;
Gebser, Maratea, and Ricca 2017b).

The tools to generate formulas and programs for solver
development and testing often resort to random genera-
tion (Creignou, Egly, and Seidl 2012; Lauria et al. 2017).
Accordingly, class of formulas (hereafter, referred to as
models) of random formulas and programs have received
substantial attention from the artificial intelligence commu-
nity in the last twenty years (Achlioptas 2009; Mitchell, Sel-
man, and Levesque 1992; Selman, Mitchell, and Levesque
1996). In this paper we present an instance generation tool
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that generates instances from the models of random formu-
las, QBFs and disjunctive logic programs recently proposed
by Amendola, Ricca, and Truszczynski (2017; 2018). The
tool can also generate CNF formulas from the well-known
fixed-length model (Mitchell, Selman, and Levesque 1992),
and QBFs from the Chen-Interian model (Chen and Inte-
rian 2005). The tool supports standard output formats used
in SAT, QBF and ASP competitions: (Q)DIMACS (Järvisalo
et al. 2012a; Narizzano, Pulina, and Tacchella 2006),
QCIR (Jordan, Klieber, and Seidl 2016), and ASPCore
2.0 (Calimeri et al. 2016).

Random CNF formulas, QBFs, and programs
In this section, we recall the fixed-length clause model for
random CNF formulas and the Chen-Interian model for ran-
dom QBF formulas. We then describe the models of QBFs
and programs proposed by Amendola et al. (2017; 2018).

By C(k,n,m) we denote the set of all k-CNF formulas
consisting of m clauses over (some fixed) set of n proposi-
tional variables. Similarly, D(k,n,m) stands for the set of
all k-DNF formulas of m products (conjunctions of non-
complementary literals) over an n-element set of atoms.
The fixed-length clause model. The model is given by the
set C(k,n,m) of CNF formulas, with all formulas assumed
equally likely.
The Chen-Interian model. The model generates QBFs of
the form ∀X∃Y F , where sets X and Y are disjoint, |X | =
A, |Y | = E, and F is a CNF formula with m clauses, each
containing a literals with variables in X and e literals with
variables in Y . We write Q(a,e;A,E;m) for the set of all
such QBFs. The Chen-Interian model generates QBFs from
Q(a,e;A,E;m), with all formulas equally likely.
The controlled model. Also this model generates QBFs of
the form ∀X∃Y F , where sets X and Y are disjoint, |X | = A,
|Y | = E, and F is a CNF formula. However, now F has 2A
clauses, one for each literal with a variable in X , with all re-
maining literals in the clause with variables in Y . We write
Qctd(k,A,E) for the the set of such QBFs. The controlled
model generates QBFs from Qctd(k,A,E), with all formulas
equally likely. Clearly, Qctd(k,A,E) ⊆ Q(1,k− 1;A,E;2A).
Thus, the controlled model is related to the Chen-Interian
model. The main difference is that the clauses, while ran-
dom with respect to existential variables are not random with



respect to universal variables.
The multi-component model. This construct can be applied
to any model considered above. Let F be a class of propo-
sitional formulas. By t-F we denote the class of all disjunc-
tions of t formulas from F . Similarly, if Q is a class of
QBFs of the form ∀X∃Y F , where F ∈F , we write t-Q for
the class of all QBFs of the form ∀X∃Y F , where F ∈ t-F .
We refer to models t-F and t-Q as multi-component. We
assume that formulas (QBFs, respectively) in the model are
equally likely.
Models of random logic programs. Every QBF ∃X∀Y F ,
where F is a DNF formula can be translated by the trans-
lation of Eiter and Gottlob (Eiter and Gottlob 1995) to a
disjunctive logic program so that true QBFs are mapped
to consistent programs. The Chen-Interian and the con-
trolled models described above have their dual counterparts.
Thus, each gives rise to the corresponding model of dis-
junctive logic programs. We denote them Ddlp(e,a;E,A;m)

and Dctd
dl p(E,A,k), respectively. The Eiter-Gottlob transla-

tion has a simple extension to QBFs obtained from the
multi-component models. Thus, multi-component Chen-
Interian and controlled models imply multi-component
models of programs denoted by t-Ddlp(e,a;E,A;m) and t-
Dctd

dl p(E,A,k), respectively.

Phase Transition and Hardness. The fixed-length clause
model exhibits a well-known easy-hard-easy pattern
(Mitchell, Selman, and Levesque 1992) (sometimes more
accurately called the “easy-hard-less hard” pattern (Coarfa
et al. 2000)). It is aligned with the phase transition area,
where the satisfiability of formulas switches from SAT to
UNSAT. Experimental results show that formulas prior to
the phase transition are “easy” to solve. At the phase transi-
tion, they are “hard” to solve. Finally, past the phase tran-
sition they are again “easy” to solve (some prefer to say
“less hard” as they are typically harder than those prior to
the phase transition). All models discussed above have sim-
ilar satisfiability properties, showing a phase transition re-
gion and an easy-hard-easy pattern (Chen and Interian 2005;
Amendola et al. 2017; 2018).

Implementation
We developed our tool in Java. Its modular architec-
ture supports a variety of generation methods and output
formats employed in SAT, QBF and ASP competitions:
(Q)DIMACS (Järvisalo et al. 2012a; Narizzano, Pulina, and
Tacchella 2006), QCIR (Jordan, Klieber, and Seidl 2016),
and ASPCore 2.0 (Calimeri et al. 2016).

All formats ensure that clauses do not contain comple-
mentary literals, conjunctions of clauses/rules contain no
repetition of the same clause/rule, and formulas/programs
generated according to the multi-component model contain
no repetitions of the same component. Formulas appear-
ing in our multi-component models are non-clausal (when
t > 1), whereas the (Q)DIMACS format requires the formu-
las to be in CNF. We implemented Tseitin’s translation of
non-clausal theories to CNF (Tseitin 1983). It is worth not-
ing that the translation for multi-component logic programs

$ java -jar RandomGenerator.jar -h

SYNOPSIS: MainGenerator [-option]

-generator=[BasicGenerator,CIGenerator,SATGenerator,

ControlledCIGenerator] Select generator type

-out=[PrintProgram,PrintQBF,PrintQCIR,MultiOutput,

PrintSAT] select output format

-o=<filename> Specify filename, mandatory with

MultiOutputGenerator, default STDOUT

-formats=<OutputFormat1, ..., OutputFormatn>

Specify a comma separated list of output formats for

MultiOutput, e.g., PrintProgram,PrintQBF

-E=<n> Number of existential variables, default 1

-A=<n> Number of universal variables, default 1

-c=<n> Number of clauses/rules,

ignored by ControlledCIGenerator, default 1

-k=<n> Clause/rule size only for BasicGenerator, default 1

-e=<n> Number of existentials in each clause/rule

only for CI, default 1

-a=<n> Number of universals in each clause/rule

only for CI, default 1

-w=<n> Number of components, default 1

Figure 1: Command line and help message of the generator.

is particularly simple (Amendola et al. 2018). The tool is im-
plemented to be used as Posix command line command, but
could be integrated as a library of a more general purpose
random generation environment.1

Usage
We now describe how to invoke the tool from the command
line, provide guidelines for generating hard formulas, and
report on the tool’s known applications.

Invocation. Figure 1 shows the result of running the tool
with option -h. It prints an explanation of the available op-
tions. In particular, the generation model can be selected
by specifying a value for -generator option: BasicGenera-
tor corresponds to QBFs in the fixed-length clause model,
CIGenerator corresponds to the Chen-Interian model, Con-
trolledCIGenerator corresponds to the controlled model,
and SATGenerator corresponds to SAT formulas in the
fixed-length clause model.

Model generation can be paired with different output for-
mats specified by option -out. The five main options are:
PrintProgram, PrintQBF, PrintQCIR, PrintSAT, and Mul-
tiOutput. The first four options output logic programs in
ASPCore 2.0, QBFs in QDIMACS, QBFs in QCIR, and
CNF formulas in DIMACS formats, respectively. Setting -
out=MultiOutput has the tool print the same instance in sev-
eral output formats that can be specified with option -format.
This is useful when one plans to run several solvers on the
same sets of instances, eliminating the need for format con-
verters. Once a formula is generated, it is stored in several
files having as name the string provided as parameter of
the -o option. Parameters such as the numbers of variables,
clauses/rules, components and others can specified by using
(some of) the options shown in Figure 1.

1The generator is available at: https://www.mat.
unical.it/ricca/RandomLogicProgramGenerator.



$ java -jar RandomGenerator.jar -generator=CIGenerator

-out=PrintQBF -o=10-CI-2-3-20-40 -w=10 -a=2 -e=3

-A=20 -E=40 -c=80

$ java -jar RandomGenerator.jar

-generator=ControlledCIGenerator

-out=MultiOutputGenerator

-formats=PrintProgram,PrintQBF,PrintQCIR

-o=4-Qctd-4-20-10 -w=4 -a=1 -e=3 -A=20 -E=10

Figure 2: Two examples of invocations of the RandomGen-
erator tool from the command line.

Two examples are provided in Figure 2. The first
command generates one instance of the class 10-
Q(2,3;20,40;80) and prints it in QDIMACS format. The
instances of this class have 10 components (-w=10) that
are Chen-Interian model formulas. Each formula has 80
clauses (-c=80), each clause has two universal (-a=2) and
three existential (-e=3) variables. They are selected from
a set of 20 universal (-A=20) and 40 existential variables
(-E=40), respectively. The result is stored in a single file
called 10-CI-2-3-20-40.dimacs. The second com-
mand generates one instance in the class 4-Qctd(4,20,10),
and prints it in three formats: ASPCore 2.0, QDIMACS and
QCIR. The instances of this class have four components
(-w=4). They are formulas from the controlled model with
clauses having one universal (-a=1) and three existential
(-e=3) variables. They are selected from a set of 20 univer-
sals (-A=20) and 10 existential variables (-E=10), respec-
tively. The result is stored in three files 4-Qctd-4-20-10
with extensions .asp, .dimacs, .qcir.

Generating formulas. The generator can be used for assess-
ing solver performance or testing an implementation, and
these activities usually have different requirements for in-
stance properties. In presence of so many generation param-
eters, it is not obvious how to choose the right settings for
the purpose. Here we provide simple guidelines for iden-
tifying the settings for generating formulas of the desired
hardness. The key underlying property is that all our models
show some form of the easy-hard-easy pattern that can be
exploited to find “areas” of formulas of varying difficulty.

For the Chen-Interian model, one strategy is to fix a and e
(to define the structure of a clause). Next for each pair of val-
ues of A = |X | and E = |Y |, one runs the tool with different
numbers m of clauses/rules. The formulas (programs) gen-
erated in this way show the phase transition and the corre-
sponding easy-hard-easy pattern. Running a solver on those
formulas allows one to observe these properties and select
the value of m that yields formulas/programs of the desired
difficulty. Figure 3 shows the results of this study for the
Chen-Interian model instances with 128 samples for each
size and a = 1, e = 3 and, for (a-a’), E = 50 and t = 1,
for (b-b’) E = 60 and t = 1, and for (c-c’), E = 60 and
t = 2. In each case, we let A vary from 20 to 140, and for
each value of A we ranged m from 50 to 500. The results
show the phase transition (plotting the number of SAT in-
stances for each sample, i.e., the frequency of SAT) and its
correlations with the easy-hard-easy pattern (plotting aver-
age execution time per sample). Comparing Figure 3 (a’)

with Figure 3 (b’) we note that hardness (expectedly) in-
creases with E; whereas comparing Figure 3 (b-b’) with Fig-
ure 3 (c-c’) we observe that the phase transition shifts left
and hardness significantly grows with the number of compo-
nents, as explained by Amendola et al. (2017; 2018). Thus,
increasing t one can get super-hard instances with fewer
variables w.r.t. standard models. These properties are solver-
independent (Amendola et al. 2017; 2018), which was
demonstrated by experiments with several well-known SAT
solvers (Audemard, Lagniez, and Simon 2013; Biere 2014;
Dequen and Dubois 2006), QBF solvers (Heule et al. 2015;
Pigorsch and Scholl 2010; Janota et al. 2016), and ASP
solvers (Alviano et al. 2015; Gebser et al. 2007). Moreover,
when t ≥ 2 multi-component models generate instances bet-
ter solved by solvers for real-world instances (Amendola
et al. 2017; 2018), which is a desirable property for test-
ing/assessing CDCL-based solvers (Ansótegui, Bonet, and
Levy 2009; Giráldez-Cru and Levy 2016).

Results in Figure 3 are a starting point for fine-tuning
the parameters to obtain the desired hardness/satisfiability
property. We developed similar strategies for the Controlled
model and obtained analogous systematic pictures. These re-
sults are available with the distribution of our tool.
Known uses. Instances produced by the generator tool have
been recently used in system competitions for QBF (Pulina
2016; Pulina and Seidl 2017) and Answer Set Programming
(ASP) (Gebser, Maratea, and Ricca 2017a), yielding some
of the hardest instances in these events.

Three sets of instances were submitted to QBF Evalua-
tions, see (Pulina and Seidl 2017). The instance set “Model
instances” used in 2016 comprised 60 formulas from the t-
component Chen-Interian model with 40 universal and 60
existential variables, and with t ranging from two to six,
sampled in the hard region (the number of clauses varying
from 200 to 432). None of these instances was classified as
easy (solved by all 21 solvers), about 28% was classified as
hard (no solver could solve any of them in 600s), about 7%
medium-hard (only one solver could solve any of them), and
about 65% medium (otherwise). In 2017 we submitted two
sets of instances of the multi-component controlled model,
labeled “Selection hard” and “wgrowing” in QBF Evalau-
tion. The first set contained 10 instances with 48 existential
variables, up to 146 universal variables, and up to 9 com-
ponents. Half of these instances were tagged hard and the
other half medium. The second set contained 33 instances
from the hard region sampled from a set of 256 instances
generated uniformly with 48 existential variables and 128
universal variables by varying the number of components
from 3 to 9. In this set 73% were tagged hard and 27% were
tagged medium. Interestingly, our instances helped identify a
bug in one of the participating solvers, showing the efficacy
of our model also in correctness testing.

We submitted a set of 128 instances of the multi-
component controlled model, labeled “Random Disjunctive
Programs” to the 2017 ASP competition. These instances
were generatd for 80 universal variables, 24 existential vari-
ables, and 9 components. The organizers classified 121 in-
stances as hard (solved by only one reference solver), 2 in-
stances as very hard (solved by no reference solver) and the
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Figure 3: Phase transition and hardness in (multicomponent) Chen-Interian formulas.

remaining 5 as easy (solved by all solvers). For the competi-
tion, the organizers selected 20 of these instances. No solver
could solve all these instances. Importantly, they were the
smallest in size but among the hardest to solve in the en-
tire event in the search category (Gebser, Maratea, and Ricca
2017a). We could submit even harder instances (simply in-
creasing variables or components), but providing a too-hard
instance set would not be beneficial for comparing solvers.

Conclusions
We described a generator of fixed-length clause, Chen-
Interian, controlled and multi-component models for ran-
dom disjunctive logic programs and QSAT formulas. The

tool supports a variety of standard output formats such as
(Q)DIMACS, QCIR, and ASPCore 2.0, and provides prac-
tical means for generating new benchmarks to evaluate ro-
bustness and performance of SAT, QBF and ASP solvers.
The tool has already been used in several competitions that
showed its ability to generate formulas that can challenge
even the best solvers, especially when a combination of the
controlled and multi-component model is employed.
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