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Part 1:

Gentle Inroduction to Answer Set Programming
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What Is Answer Set Programming?

ASP is a form of declarative programming, which means that it does

not involve encoding algorithms.

A program in a declarative language is an encoding of the problem

itself, not of an algorithm.

A declarative programming system �nds a solution by the process of

automated reasoning.

In ASP, a program is a set of rules, and solutions are found by

systems called answer set solvers.

The solver clingo was created at the University of Potsdam:

https://potassco.org.
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Answer Set Solvers Calculate Stable Models

Program: Output of clingo:

q :- not p. Answer: 1

q

q :- not p. Answer: 1

r :- q. q r

q :- not p. Answer: 1

p :- not q. p

Answer: 2

q

Mathematical de�nition:

Michael Gelfond and V.L., 1988; Kit Fine, 1989.
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Using Answer Set Solvers for Search

�We encode planning problems in such a way that stable models of

the encodings correspond to valid sequences of actions� (Yannis

Dimopoulos, Bernhard Nebel and Jana Koehler, 1997).

generating plans for the Reaction Control System of the Space

Shuttle

reconstructing evolutionary trees in biology and linguistics

con�guring railway safety systems and products in automotive

industry

�nding answers to biomedical queries

haplotype inference in genetics

optimizing positions of valves in a water distribution system

team building in the port of Gioia Tauro
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A Puzzle

A farmer must transport a fox, a goose and a bag of beans from one

bank of a river to the other using a boat which can only hold one item

in addition to the farmer. The fox cannot be left alone with the goose,

and the goose cannot be left alone with the beans. How can he do it?

Crossing with: goose nothing fox goose . . .

Timeline: 0 → 1 → 2 → 3 → 4 . . . h

On the

left bank: boat fox boat beans boat

fox beans fox goose

goose beans beans

beans
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Solving the Puzzle

% de�nitions

item(fox).

item(goose).

item(beans).

load(I) :- item(I).

load(nothing).

opposite(left,right).

opposite(right,left).

% possible actions

{cross(L,T)} :- load(L), 0 <= T < h. % choice rule

:- cross(L1,T), cross(L2,T), L1 != L2. % constraint
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Solving the Puzzle, cont'd

% e�ects of actions

loc(boat,B1,T+1) :- cross(L,T), loc(boat,B,T), opposite(B,B1).

loc(I,B1,T+1) :- cross(I,T), item(I), loc(I,B,T), opposite(B,B1).

loc(I,B,T+1) :- cross(L,T), loc(I,B,T), item(I), I != L.

% initial conditions

loc(boat,left,0).

loc(I,left,0) :- item(I).

% prohibited states

:- loc(fox,B,T), loc(goose,B,T), not loc(boat,B,T).

:- loc(goose,B,T), loc(beans,B,T), not loc(boat,B,T).
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Solving the Puzzle, cont'd

% goal

:- not loc(boat,right,h).

:- not loc(I,right,h), item(I).

% directives

#const h=7.

#show cross/2.

Output of clingo:

Answer: 1

cross(goose,0) cross(nothing,1) cross(beans,2) cross(goose,3)

cross(fox,4) cross(nothing,5) cross(goose,6)

Answer: 2

cross(goose,0) cross(nothing,1) cross(fox,2) cross(goose,3)

cross(beans,4) cross(nothing,5) cross(goose,6)
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Grounding and Safety

The process of calculating stable models begins with grounding:

replacing the program with a program without variables that has the

same stable models.

Example: in the program

item(fox). item(goose). item(beans). . . .

:- not loc(I,right,h), item(I). (?)

rule (?) can be replaced by

:- not loc(fox,right,h).

:- not loc(goose,right,h).

:- not loc(beans,right,h).

If we drop 'item(I)' from (?), clingo will display an error message:

'I' is unsafe

grounding stopped because of errors
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Making a List of Prime Numbers

Problem: Find all primes between a and b.

Assume that a > 1.

prime(I) :- a <= I <= b, not composite(I).

composite(I*J) :- I > 1, J > 1.

This program is correct, but unsafe. Replace the second rule by

composite(I*J) :- 2 <= I <= b, 2 <= J <= b.

With the directives

#show prime/1.

#const a = 10.

#const b = 20.

clingo will produce the output

Answer: 1

prime(11) prime(13) prime(17) prime(19)
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Developing an ASP Program

Unsafe program Π1 (using interval notation):

prime(I) :- I = a..b, not composite(I).

composite(I*J) :- I > 1, J > 1.

Safe program Π2:

prime(I) :- I = a..b, not composite(I).

composite(I*J) :- I = 2..b, J = 2..b.

More e�cient program Π3:

prime(I) :- I = a..b, not composite(I).

composite(I*J) :- I = 2..b, J = 2..b/I.

Two stages of the programming process:

creating a straightforward encoding

making it safe for grounding and e�cient for search, possibly in

several steps
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Part 2:

Gentle Inroduction to the Use of Formal Methods

in Answer Set Programming
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Formal Methods

We would like to use mathematically rigorous methods to verify that

changes made in a program in the process of making it safe and more

e�cient are indeed equivalent transformations.

Can we use such methods to verify the correctness of the original

version of the program? Yes, if the given speci�cation is

mathematically precise.

We need

a de�nition of equivalence of programs

computational methods for verifying equivalence

Another application: checking that independent ASP solutions to the

same problem are equivalent.
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Equivalence of Programs

Two programs are considered equivalent if they exhibit the same

external behavior for every reasonable input.

�Reasonable input�: values of a and b should be speci�ed; they should

be integers, and the value of a should be greater than 1.

�External behavior�: the set of atoms in the stable model that contain

prime/1.

This is made precise in the article by Fandinno, Hansen, Lierler, L.

and Temple that de�ned equivalence with respect to a user guide

(TPLP, 2023).

The user guide for prime number programs:

input: a -> integer. output: prime/1.

input: b -> integer. assumption: a > 1.
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Program Completion

Program completion (Keith Clark, 1978) is a syntactic transformation

that converts logic programs into �rst-order theories. For many

programs, stable models can be characterized in terms of program

completion (François Fages, 1994).

Rules containing a predicate symbol p in the head can be viewed as

su�cient conditions for p. The completed de�nition of p is the

formula expressing that collectively these conditions are necessary.

Program: p(a).

p(X) :- q(X,Y).

Completion: ∀X(p(X) ↔ X = a∨ ∃Y q(X, Y)).
Program Π1: prime(I) :- I = a..b, not composite(I).

composite(I*J) :- I > 1, J > 1.

Completion:

∀I(prime(I) ↔ a ≤ I ≤ b∧ ¬ composite(I)),

∀N(composite(N) ↔ ∃IJ(N = I× J∧ I > 1∧ J > 1)).
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Program Π1: prime(I) :- I = a..b, not composite(I).

composite(I*J) :- I > 1, J > 1.

Completion:

∀I(prime(I) ↔ a ≤ I ≤ b∧ ¬ composite(I)),

∀N(composite(N) ↔ ∃IJ(N = I× J∧ I > 1∧ J > 1)).
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Relating Program Equivalence to Completion

We would like to express the claim that Π1 and Π2 are equivalent

w.r.t. the user guide

input: a -> integer. output: prime/1.

input: b -> integer. assumption: a > 1.

in terms of the completions of Π1 and Π2:

∀I(prime(I) ↔ a ≤ I ≤ b∧ ¬ composite(I)),

∀N(composite(N) ↔ ∃IJ(N = I× J∧ I > 1∧ J > 1)); (1)

∀I(prime(I) ↔ a ≤ I ≤ b∧ ¬ composite(I)),

∀N(composite(N) ↔ ∃IJ(N = I× J∧ 2 ≤ I ≤ b∧ 2 ≤ J ≤ b)). (2)

First try: (1) is equivalent to (2) under the assumption a > 1. This is

not satisfactory, because the de�nitions of composite in (1) and (2)

are not equivalent. We need a de�nition of completion that re�ects

the di�erence between output predicates and auxiliary predicates.
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Forgetting

9 is the square of 3: 9 = 32.

9 is a complete square: ∃n(9 = n2).

To forget, replace a constant by an existentially quanti�ed variable.

Completion of Π1:

∀I(prime(I) ↔ a ≤ I ≤ b∧ ¬ composite(I))∧

∀N(composite(N) ↔ ∃IJ(N = I× J∧ I > 1∧ J > 1)).

Comp1, the completion of Π1 with composite forgotten:

∃C(∀I(prime(I) ↔ a ≤ I ≤ b∧ ¬C(I))∧

∀N(C(N) ↔ ∃IJ(N = I× J∧ I > 1∧ J > 1))).

Comp2, the completion of Π2 with composite forgotten:

∃C(∀I(prime(I) ↔ a ≤ I ≤ b∧ ¬C(I))∧

∀N(C(N) ↔ ∃IJ(N = I× J∧ 2 ≤ I ≤ b∧ 2 ≤ J ≤ b))).
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Relating Program Equivalence to Completion, cont'd

We would like to express the claim that Π1 and Π2 are equivalent

w.r.t. the user guide

input: a -> integer. output: prime/1.

input: b -> integer. assumption: a > 1.

in terms of the completions of Π1 and Π2.

Second try: Comp1 is equivalent to Comp2 assuming that a > 1.

This is not satisfactory, because the de�nition of equivalence of

formulas in logic refers to all possible ways to interpret

object constants (1, 2, a, b),

function constants (×),
predicate constants (≤, >, prime).

We are interested in �standard interpretations�: variables range over

the integers, and 1, 2, ×, ≤, > are interpreted in the usual way.
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Verifying Equivalence w.r.t. User Guide

Given a user guide and two programs,

construct completion formulas Comp1, Comp2;

derive the formula

Assumptions→ (Comp1 ↔ Comp2) (?)

from a set of axioms that hold for all standard interpretations.

anthem (https://potassco.org/anthem/) is a proof assistant that

given a user guide and two programs, generates formula (?), and

calls the theorem prover vampire to derive (?) from an

appropriate set of axioms.

Contributors:

Jorge Fandinno Zach Hansen Jan Heuer

Yuliya Lierler Vladimir Lifschitz Patrick Lühne

Torsten Schaub Tobias Stolzmann Nathan Temple
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Operation of anthem

Program 1:

prime(I) :- I = a..b, not composite(I).

composite(I*J) :- I > 1, J > 1.

Program 2:

prime(I) :- I = a..b, not composite(I).

composite(I*J) :- I = 2..b, J = 2..b.

User guide:

input: a -> integer.

input: b -> integer.

output: prime/1.

assumption: a > 1.

Output of anthem

Success! Anthem found a proof of equivalence. (158355 ms)

Optional 4th argument: �proof outline�.
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Calculating Exact Covers

An exact cover of a collection S of sets is a subcollection S ′ of S

such that each element of the union of all sets in S

belongs to exactly one set in S ′.

Example: S = {{a}, {a, b}, {b, c}}; S ′ = {{a}, {b, c}}.

How do we encode S by a set of atoms?

s(a, 1), s(a, 2), s(b, 2), s(b, 3), s(c, 3); n = 3.

How do we encode S ′ by a set of atoms?

in_cover(1), in_cover(3).

Program:

{in_cover(1..n)}.

:- I != J, in_cover(I), in_cover(J), s(X,I), s(X,J).

covered(X) :- in_cover(I), s(X,I).

:- s(X,I), not _covered(X).
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Calculating Exact Covers, cont'd

Program:

{in_cover(1..n)}.

:- I != J, in_cover(I), in_cover(J), s(X,I), s(X,J).

covered(X) :- in_cover(I), s(X,I).

:- s(X,I), not covered(X).

Example: S = {{a}, {a, b}, {b, c}}.

Input: s(a,1). s(a,2). s(b,2). s(b,3). s(c,3). #const n=3.

Output of clingo, with the directive #show in_cover/1:

in_cover(1) in_cover(3)

What user guide would we specify to reason about this program?

input: n -> integer. assumption: n >= 0.

input: s/2. assumption: forall X I (s(X,I) -> 1 <= I <= n).

output: in_cover/1.
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Calculating Exact Covers, cont'd
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Conclusion

To develop an ASP program, we improve a straightforward

encoding to make it safe for grounding and e�cient for search.

Di�erent versions of a program exhibit the same external

behavior for every reasonable input.

This idea can be made precise by de�ning external equivalence

as equivalence with respect to a user guide.

Under some conditions, external equivalence can be characterized

in terms of completed de�nitions.

The di�erence between output predicates and auxiliary

predicates can be expressed using second-order quanti�ers.

In some cases, external equivalence of programs can be veri�ed

using the translator anthem and the theorem prover vampire.
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