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Abstract
This paper contributes to the development of theoretical foundations of answer set program-

ming. Groundbreaking work on the SM operator by Ferraris, Lee, and Lifschitz proposed a def-
inition/semantics for logic (answer set) programs based on a syntactic transformation similar to
parallel circumscription. That definition radically differed from its predecessors by using classi-
cal (second-order) logic and avoiding reference to either grounding or fixpoints. Yet, the work
lacked the formalization of crucial and commonly used answer set programming language con-
structs called aggregates. In this paper, we present a characterization of logic programs with
aggregates based on a many-sorted generalization of the SM operator. This characterization in-
troduces new function symbols for aggregate operations and aggregate elements, whose meaning
can be fixed by adding appropriate axioms to the result of the SM transformation. We prove that
our characterization coincides with the ASP-Core-2 semantics for logic programs and, if we allow
non-positive recursion through aggregates, it coincides with the semantics of the answer set solver
CLINGO.

1. Introduction

Answer set programming (ASP) is a form of declarative logic programming that was originally de-
veloped to address the challenges of non-monotonic reasoning arising in artificial intelligence (Lif-
schitz, Schaub, & Woltran, 2018). Ever since its inception, it has been an important player in
knowledge representation and reasoning. For example, ASP’s use of negation-as-failure provides
a natural solution to the historically challenging frame problem, allowing programmers to express
laws of inertia with just a couple of rules. As a knowledge representation and reasoning paradigm,
it is particularly well-suited to solving knowledge-intensive search and optimization problems (Lif-
schitz, 2019). It has been fruitfully applied to numerous challenging domains, such as space shuttle
decision support systems (Balduccini & Gelfond, 2005; Balduccini, Gelfond, Nogueira, Watson, &
Barry, 2001), complex scheduling (Abels, Jordi, Ostrowski, Schaub, Toletti, & Wanko, 2021; Bal-
duccini, 2011; Ricca, Grasso, Alviano, Manna, Lio, Iiritano, & Leone, 2012), planning (Cao Tran,
Pontelli, Balduccini, & Schaub, 2023), robotics (Aker, Erdogan, Erdem, & Patoglu, 2011; Gebser,
Obermeier, Otto, Schaub, Sabuncu, Nguyen, & Son, 2018), and adaptive Linux package configu-
ration (Gebser, Kaminski, & Schaub, 2011). The success of these applications relies on the com-
bination of rich knowledge representation languages with effective solvers. One of the most useful
constructs of the ASP language are aggregates: intuitively, these are functions that apply to sets.
The semantics of aggregates have been extensively studied in the literature (Simons, Niemelä, &
Soininen, 2002; Dovier, Pontelli, & Rossi, 2003; Pelov, Denecker, & Bruynooghe, 2007; Son &
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Pontelli, 2007; Ferraris, 2011; Faber, Pfeifer, & Leone, 2011; Gelfond & Zhang, 2014, 2019; Ca-
balar, Fandinno, Schaub, & Schellhorn, 2019). In most cases, papers rely on the idea of grounding
— a process in which all variables are replaced by variable-free terms. Thus, first, a program with
variables is transformed into a propositional one, then the semantics of the propositional program is
defined. However, this makes reasoning about programs with variables cumbersome. For instance,
it makes it difficult to consider the rules of a program modeling some problem in separation from a
specific instance of that problem (as the instance provides the grounding context). The characteri-
zation of programs with aggregates introduced in this paper overcomes this obstacle. Recent work
by Fandinno, Hansen, and Lierler (2022a) illustrates the importance of this achievement by apply-
ing the introduced semantics to the realm of formal verification of programs with aggregates. In
particular, the authors used the presented semantics to argue the correctness of logic programs with
aggregates representing encodings of the Graph Coloring and the Traveling Salesman problems. In
the proofs, no reference to the specific instances of the problems is used.

We base our characterization of aggregates on the ASP-Core-2 standard, which is a widely ac-
cepted, foundational fragment of ASP modeling languages (Calimeri, Faber, Gebser, Ianni, Kamin-
ski, Krennwallner, Leone, Maratea, Ricca, & Schaub, 2020). This standard does not permit re-
cursion through aggregates. Modern solvers such as CLINGO (Gebser, Kaminski, Kaufmann, &
Schaub, 2019) and DLV (Adrian, Alviano, Calimeri, Cuteri, Dodaro, Faber, Fuscà, Leone, Manna,
Perri, Ricca, Veltri, & Zangari, 2018) do not have this restriction. Yet, these solvers may com-
pute distinct answers for the same input program — in particular, CLINGO and DLV diverge in
their interpretation of recursive aggregates. The solver CLINGO (Gebser et al., 2019) follows the
Abstract Gringo semantics (Gebser, Harrison, Kaminski, Lifschitz, & Schaub, 2015) for recur-
sive aggregates. We show that if we consider non-positive recursion through aggregates, then our
characterization also agrees with the Abstract Gringo semantics implemented by CLINGO. In
this paper, we do not address unrestricted recursion through aggregates, as our main goal is to ax-
iomatize aggregates as understood in the ASP-Core-2 semantics (Calimeri et al., 2020). The fact
that for programs with aggregates with non-positive recursion our characterization agrees with the
Abstract Gringo semantics came at no cost to the complexity of the proposed approach. On the
other hand, considering unrestricted recursion through aggregates will require either an introduc-
tion of restrictions on the type of studied aggregates (as Lifschitz, 2022 does) or a more complex
translation that is unnecessary to achieve our main goal.

The following is a summary of the contributions of this paper that can also be used as a road
map for the structure of the paper. Before proceeding to the main parts of the paper we would like
to position this work properly within the body of related work. Thus, we begin the presentation
with a section devoted to related work. We then review the preliminaries that include (i) the pre-
cise definition for the syntax of the kinds of programs considered in this work and (ii) operator SM
for many-sorted signatures. Next, we introduce a translation from logic programs to many-sorted
first-order logic and define the semantics of aggregates using the SM operator that yields a sec-
ond-order formula (Section 4). We establish the conditions on the models of our translation that
provide us with the semantics of a logic program. This provides a meta-logical overview of our
formalism (Section 4). We prove that our semantics coincides with the ASP-Core-2 semantics
and that when non-positive recursion is allowed it coincides with the Abstract Gringo semantics
(Section 5). We present an axiomatization of aggregates and prove that it correctly captures the
conditions imposed in Section 4 on the models of the translation. We derive our Main Theorem,
which states that answer sets according to the ASP-Core-2 semantics correspond to the models of
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the formula obtained from our translation that satisfy the mentioned axioms (Section 6). We show
that under certain conditions, we can replace the second-order formalization by a first-order one. In
particular, we show that for programs with aggregates that apply to finite sets, we can replace the
second-order axiomatization of aggregates by a first-order one (Section 7). It is important to note
that the restriction to finite aggregates is not a practical limitation as solvers cannot process infinite
sets. We provide rigorous and detailed proofs of our results in Appendix A. These proofs are in
of themselves a key contribution — they provide a deeper understanding of aggregates within our
formalism, and they lay a foundation for future extensions.

Parts of this paper appeared in the Proceedings of the Thirty-Seventh AAAI Conference on Ar-
tificial Intelligence (Fandinno, Hansen, & Lierler, 2022b). The presentation of this paper extends
earlier results to new kinds of aggregates, namely, sum+, min, and max; includes details on the
kinds of logic programs with aggregates that can be captured by the so-called completion transfor-
mation, which allows the use of first-order logic in place of the SM operator transformation that
results in second-logic formalization; and includes a thorough, comprehensive account of all formal
arguments and required background.

2. Related Work

This section discusses the main differences between our proposed formalism and previous ap-
proaches to defining aggregate semantics without reference to grounding.

Classical Logic Language. Lee, Lifschitz, and Palla (2008) translate certain count aggregates
with a ground guard into an existentially quantified first-order formula. This approach is inappli-
cable to more general count aggregates and to sum aggregates, which occur commonly in practice.
Similarly to our approach, Lifschitz (2022) employs an extension of the τ∗ translation (Fandinno,
Lifschitz, Lühne, & Schaub, 2020) to obtain first-order formula representations of programs; this
approach allows some count aggregates with a non-ground guard. However, it is not applicable to
either count aggregates with an inequality comparison or to sum aggregates. Conversely, our first-
order characterization has no such restrictions and can accommodate all types of aggregates defined
in the ASP-Core-2 semantics (Calimeri et al., 2020).

Language Extensions. Bartholomew, Lee, and Meng (2011), Ferraris and Lifschitz (2010), and Lee
and Meng (2012) modify the SM operator (Ferraris et al., 2011) to handle aggregates by extending
the language of second-order logic with new expressions that are used to capture aggregate expres-
sions. Ferraris and Lifschitz (2010) and Lee and Meng (2012) employ the language of second-order
logic extended with generalized quantifiers (Peters & Westerstahl, 2006), while Bartholomew et al.
(2011) extend the logic with a specific aggregate construction. In a similar vein, Asuncion, Chen,
Zhang, and Zhou (2015) also augment the SM operator by extending the language of second-order
logic with aggregate atoms as new syntactic constructs. They show that for finite structures, their
semantics can be characterized by a first-order formula extended with the new aggregate construct.
Vanbesien, Bruynooghe, and Denecker (2022) define the semantics by applying approximation fix-
point theory to first-order logic extended with a new aggregate construct.

In contrast to our approach, these formalisms rely on extensions of the language of classical
logic with special treatment for new syntactic constructs associated with aggregates. As a result,
they cannot leverage the whole body of results that exist for classical logic, something that our ap-
proach allows. This is important for several reasons. Arguably, the classical logic fragment is better
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understood and studied so that we can rely on the body of earlier work in analyzing logic programs.
For instance, there is the potential to use existing first-order theorem provers for verifying properties
of certain programs (Fandinno et al., 2020) and equivalences between programs (Fandinno, Hansen,
Lierler, Lifschitz, & Temple, 2023).

Quantified Equilibrium Logic Cabalar, Fandinno, Fariñas del Cerro, and Pearce (2018) intro-
duce intensional sets as first-class citizens into Quantified Equilibrium Logic (Pearce & Valverde,
2005) with partial functions (Cabalar, 2011) and provide a formalization of aggregates. This corre-
sponds to a useful intuition that aggregates are functions that apply to sets. In the works by Ferraris
and Lifschitz (2010), Bartholomew et al. (2011), Lee and Meng (2012), Lee et al. (2008), Lifschitz
(2022), Asuncion et al. (2015), and Vanbesien et al. (2022) this idea is not explicitly represented in
the target language. Similar to the work by Cabalar et al. (2018), our approach provides a direct
formalization of the idea that aggregates are functions that apply to sets, but it aims to exclusively
use the language of classical logic (instead of adding intensional sets as a new construct in the
language). As stated above this is important for leveraging the whole body of results of the logic.

It is also worth mentioning that, but for the work by Lifschitz (2022), none of the above ap-
proaches have formally related their semantics to the ASP-Core-2 semantics. Thus, it is an open
question whether they actually capture the language used in practice.

3. Preliminaries

In this section, we review the syntax of programs with aggregates (Section 3.1) and the SM opera-
tor (Ferraris et al., 2011) extended to the many-sorted case (Section 3.3).

3.1 Syntax of Programs with Aggregates

We assume a (program) signature with three countably infinite sets of symbols: numerals, symbolic
constants and program variables. We also assume a 1-to-1 correspondence between numerals and
integers; the numeral corresponding to an integer n is denoted by n. Program terms are either
numerals, symbolic constants, variables or either of the special symbols inf and sup. A program
term (or any other expression) is ground if it contains no variables. We assume that a total order on
ground terms is chosen such that

• inf is its least element and sup is its greatest element,

• for any integers m and n, m < n iff m < n, and

• for any integer n and any symbolic constant c, n < c1.

An atom is an expression of the form p(t), where p is a symbolic constant and t is a list of program
terms. A comparison is an expression of the form t ≺ t ′, where t and t ′ are program terms and ≺ is
one of the comparison symbols:

= < > ≤ ≥ (1)

1. Note how there are no restrictions on how symbolic constants are ordered with respect to each other, apart from the
fact that they are ordered.
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Listing 1: Encoding of the graph coloring problem using the basic ASP language.
assign(X,Z) :- vertex(X), color(Z), not not assign(X,Z).

:- vertex(X), not #count{ X,Z : assign(X,Z), color(Z) } = 1.

:- edge(Y,X), assign(Y,Z), assign(X,Z).

An atomic formula is either an atom or a comparison. A basic literal is an atomic formula possibly
preceded by one or two occurrences of not. We consider an expression t ̸= t ′ to be an abbreviation
for basic literal not t = t ′.

An aggregate element has the form

t1, . . . , tk : l1, . . . , lm (2)

where each ti (1 ≤ i ≤ k) is a program term and each li (1 ≤ i ≤ m) is a basic literal. An aggregate
atom is an expression of the form

#op{E} ≺ u (3)

where op is an operation name, E is an aggregate element (2), ≺ is one of the comparison symbols
in (1), and u is a program term, called the guard. We consider operation names2

count sum sum+ min max.

For example, expression

#sum{K,X ,Y : in(X ,Y ), cost(K,X ,Y )}> J

is an aggregate atom. An aggregate literal is an aggregate atom possibly preceded by one or two
occurrences of not. A literal is either a basic literal or an aggregate literal.

A rule is an expression of the form

Head :- B1, . . . ,Bn, (4)

where

• Head is either an atom or symbol ⊥; we often omit symbol ⊥ which results in an empty head;

• each Bi (1 ≤ i ≤ n) is a literal.

We call the symbol :- a rule operator. We call the left-hand side of the rule operator the head, the
right-hand side of the rule operator the body. When n is 0 we call a rule a fact and may drop the rule
operator. When the head of the rule is an atom we call the rule normal. A program is a finite set of
rules. The program in Listing 1 encodes the graph coloring problem with this syntax.

A choice rule is an expression of the form

{A0 : A1, . . . ,Ak} ≺ u :- B1, . . . ,Bn. (5)

2. Operation sum+ is not part of the ASP-Core-2 language, but it is part of the Abstract Gringo language. We
include it here to extend our comparison to the latter.
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Listing 2: Encoding of the graph coloring problem using a choice rule.
{ assign(X,Z) : color(Z) } = 1 :- vertex(X).

:- edge(Y,X), assign(Y,Z), assign(X,Z).

where each Ai is an atomic formula, each Bi is a literal, ≺ is a comparison symbol and u is a numeral;
it is understood as an abbreviation for the following pair of rules

A0 :- A1, . . .Ak, B1, . . . ,Bn, not not A0. (6)

:- B1, . . . ,Bn, not #count{t : A0,A1, . . . ,Ak} ≺ u. (7)

where t is a list of program terms such that A0 is of the form p(t) for some symbolic constant p. As
usual, we allow that “≺ u” or “: A1, . . .Ak,” (or both of them) are omitted from choice rules. If “≺ u”
is omitted, then (7) is omitted; and if “: A1, . . .Ak” is omitted, then A1, . . .Ak is omitted from (6) and
(7).

Usually, the use of choice rules allows for a more compact and readable encoding of a problem.
For example, the program in Listing 2 contains a choice rule and is an abbreviation for the program
in Listing 1 (the last rule in both of these programs coincide).

Aggregate operations Each operation name op is associated with a function ôp that maps every
set of tuples of ground terms to a ground term. If the first member of a tuple t is a numeral n then
we say that integer n is the weight of t, otherwise the weight of t is 0. For any set ∆ of tuples of
ground terms,

• ĉount(∆) is the numeral corresponding to the cardinality of ∆, if ∆ is finite; and sup other-
wise.

• ŝum(∆) is the numeral corresponding to the sum of the weights of all tuples in ∆, if ∆ contains
finitely many tuples with non-zero weights; and 0 otherwise.3 If ∆ is empty, then ŝum(∆) = 0.

• ŝum+(∆) is the numeral corresponding to the sum of the weights of all tuples in ∆ whose
weights are positive, if ∆ contains finitely many such tuples; and sup otherwise.

• m̂in(∆) is sup if ∆ is empty, is inf if ∆ is infinite, or is the least element of the set consisting
of the first members of elements of ∆ if ∆ is finite and non-empty.

• m̂ax(∆) is inf if ∆ is empty, is sup if ∆ is infinite, or is the greatest element of the set consisting
of the first members of elements of ∆ if ∆ is finite and non-empty.

Recursion over aggregates In proposing the new definition of the semantics of programs with
aggregates, we will assume that programs do not have positive recursion over aggregates. As such,
this kind of programs will lead the discourse of this paper. This is a less restrictive assumption than
the one used in the ASP-Core-2 semantics (Calimeri et al., 2020), which requires that programs
have neither positive nor negative recursion over aggregates.

We now define the concept of recursion over aggregates. A predicate symbol is a pair p/n,
where p is a symbolic constant and n is a nonnegative integer. About a program or another syntactic
expression, we say that a predicate symbol p/n occurs in it if it contains an atom of the form
p(t1, . . . , tn). For a program Π, its (directed predicate) dependency graph is defined by

3. The sum of a set of integers is not always defined. We could choose a special symbol to denote this case, we chose
to use 0 following the description of Abstract Gringo (Gebser et al., 2015).
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1. a set of vertices containing all predicate symbols occurring in Π,

2. a set of edges containing an edge (h,b) for every normal rule (4) with h being the predicate
symbol occurring in the atom Head of the rule and b being any predicate symbol in one of
the literals B1, . . . , Bn of the rule.

We say that an occurrence of an aggregate literal Bi in a rule R, of the form (4), is recursive with
respect to a program Π containing R if there is a path from some predicate symbol occurring in Bi to
the predicate symbol occurring in Head in the dependency graph of Π (Harrison & Lifschitz, 2018).
We say that a program Π has recursion over aggregates if there is an occurrence of an aggregate
literal in a rule of Π that is recursive with respect to Π.

We say that an occurrence of a predicate symbol p/n or any other expression is strictly positive
if it is not in the scope of negation. For example, literals

not r(X ,Y,Z)
#sum{Y,Z : not r(X ,Y,Z)} ≥ 0
not not #sum{Y,Z : r(X ,Y,Z)} ≥ 0

contain no strictly positive occurrence of the predicate symbol r/3. For a program Π, its positive
(directed predicate) dependency graph is defined by

1. a set of vertices containing all predicate symbols occurring in Π ,

2. a set of edges containing an edge (h,b) for every normal rule (4) with h being the predicate
symbol occurring in the atom Head of the rule and b being any predicate symbol that has a
strictly positive occurrence in one of the literals B1, . . . , Bn of the rule.

We say that an occurrence of a strictly positive aggregate literal Bi in the body of rule R, of the
form (4), is positively recursive with respect to a program Π containing R if there is a path from
some predicate symbol with a strictly positive occurrence in Bi to the predicate symbol occurring
in Head in the positive dependency graph of Π. We say that a program Π has positive recursion over
aggregates if there is an occurrence of an aggregate literal in a rule of Π that is positively recursive
with respect to Π. Clearly every program with positive recursion over aggregates has recursion
over aggregates. The converse may not be the case. For instance, a program containing any of the
following rules:

r(X ,Y,Z) :- q(X ,Y,Z),#sum{Y,Z : not r(X ,Y,Z)} ≥ 0

r(X ,Y,Z) :- q(X ,Y,Z),not #sum{Y,Z : r(X ,Y,Z)} ≥ 0

has recursion over aggregates but no positive recursion; a program containing a rule

r(X ,Y,Z) :- q(X ,Y,Z),#sum{Y,Z : r(X ,Y,Z)} ≥ 0

has an aggregate with positive recursion.
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3.2 Background on Many-Sorted Second-Order Logic

We start by recalling the standard definition of many-sorted first-order logic. We restate several
definitions here for clarity. The logical primitives consist of binary connectives (∧,∨,→), 0-place
connectives truth and falsity (⊤,⊥), and the quantifiers (∀,∃). Negation and equivalence are as-
sumed to be abbreviations: ¬F stands for F →⊥, and F ↔ G stands for (F → G)∧ (G → F). A
many-sorted signature σ consists of symbols of three kinds—sorts, function constants, and predi-
cate constants. A reflexive and transitive subsort relation is defined on the set of sorts. We define
the arity4 of every function or predicate constant as an n-tuple of sorts (n ≥ 0 for predicate symbols
and n ≥ 1 for function symbols). For the sake of clarity, we write s1 ×·· ·× sn instead of ⟨s1, . . . ,sn⟩
when referring to the arity of predicates and s1 ×·· ·× sn → sn+1 instead of ⟨s1, . . . ,sn,sn+1⟩ when
referring to the arity of functions (here, sn+1 is the value sort of the function constant). A predicate
constant whose arity is the empty tuple is called a proposition. A function constant whose arity
consists only of a value sort s is called an object constant.

We assume that there are infinitely many object variables for each sort and infinitely many
predicate variables for each arity s1 ×·· ·× sn.

A term is defined recursively, as follows:

• object constants and variables of sort s are terms of sort s,

• if a function constant f has arity s1 ×·· ·× sn → sn+1 and each ti is a term of a subsort of si

(1 ≤ i ≤ n), then f (t1, . . . , tn) is a term of sort sn+1.

A atomic formula is an expression of the form

• t1 = t2, where t1 and t2 are terms that share a common supersort, or

• p(t1, . . . , tn), where p is a predicate constant or predicate variable of arity s1 × ·· · × sn and
each ti (1 ≤ i ≤ n) is a term of a subsort of si.

We typically use infix notation for writing atomic formulas whose predicate symbol is a relation (1).
A formula is defined recursively:

• atomic formulas are formulas,

• both 0-place connectives are formulas,

• for any binary connective ⊙, if F and G are formulas, then F ⊙G is a formula,

• for any quantifier Q, if F is a formula and x is a variable, then QxF is a formula.

Example 1. Consider a signature σ with sorts s1 and s2 (s2 is a subsort of s1), function constants
f of arity s1 → s2 and c of arity s1, and predicate constant p of arity s1 × s2. Then, c, f (c), and
f ( f (c)) are terms, and c = f (c), p(c, f (c)) are atomic formulas.

An occurrence of a variable x in a formula F is bound if it occurs in a part of F of the form QxG
with Q being a quantifier; otherwise, it is free in F . An interpretation I of a signature σ consists of
the following:

4. This definition of an arity is consistent with lecture notes on Many-Sorted Logic by Galogero G. Zabra (2006).
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F, G F ∧G F ∨G F → G
true, true true true true
true, false false true false
false, true false true true
false, false false false true

Table 1: Truth values of the binary connectives.

• a nonempty universe |I|s for each sort s,

• for each function constant f of arity s1 ×·· ·× sn → sn+1,
a function f I : |I|s1 ×·· ·× |I|sn → |I|sn+1 ,

• for each proposition p, pI is either true or false,

• for each predicate constant p of arity s1 ×·· ·× sn with n ≥ 1, a subset pI ⊆ |I|s1 ×·· ·× |I|sn .

When sort s1 is a subsort of sort s2, an interpretation additionally satisfies the condition |I|s1 ⊆ |I|s2 .

Names. Given an interpretation I of a signature σ , we extend the signature with names for domain
elements and relations as follows.

• For every universe |I|s, take every distinct element ζ ∈ |I|s and select a fresh symbol ζ ∗ as
the name of ζ .

• For every relation ρ formed as a subset of every possible Cartesian product |I|s1 ×·· ·× |I|sn

given sorts s1, . . . ,sn, select a fresh symbol ρ∗ as the name for this relation.

The signature σ I is obtained from σ by adding all names ζ ∗ as object constants of the corresponding
sort as well as names ρ∗ to the set of predicate constants. The interpretation I can be extended to the
new signature σ I by defining (ζ ∗)I = ζ for all ζ ∈ |I|s and mapping each symbol ρ∗ to its respective
relation ρ .

Semantics. For any term t of σ I that does not contain variables, we recursively define the ele-
ment tI of the universe that is assigned to t by I. If t is an object constant then tI is part of the
interpretation I. For other terms, tI is defined by the equation

f (t1, . . . , tn)I = f I(tI
1, . . . , t

I
n)

for all function constants f of arity s1 ×·· ·× sn → sn+1 with n > 0. The truth value – true or false
– assigned to sentence F by interpretation I is defined as follows:

• (t1 = t2)I = true iff tI
1 is the same as tI

2.

• p(t1, . . . , tn)I = true iff (tI
1, . . . , t

I
n) belongs to pI

• ⊥I = false,⊤I = true

• (F ⊙G)I = F I ⊙GI for every binary connective ⊙ where binary connectives are defined in
Table 1.
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• ∀xF(x)I = true iff x is a variable of sort s and F(ζ ∗)I = true for all ζ ∈ |I|s.

• ∃xF(x)I = true iff x is a variable of sort s and F(ζ ∗)I = true for some ζ ∈ |I|s.

• ∀vF(v)I = true iff v is a predicate variable of arity s1 ×·· ·× sn and F(ρ∗)I = true for all
relations ρ in |I|s1 ×·· ·× |I|sn .

• ∃vF(v)I = true iff v is a predicate variable of arity s1 ×·· ·× sn and F(ρ∗)I = true for some
relation ρ in |I|s1 ×·· ·× |I|sn .

Satisfaction and Models. An interpretation I over signature σ satisfies formula F , written I |= F ,
if F I = true. An interpretation I over signature σ satisfies the set of formulas Γ if I |= F for all
F ∈ Γ. An interpretation I is called a model of F (resp. Γ) if it satisfies F (resp. Γ).

3.3 Operator SM for Many-sorted Signatures

Ferraris et al. (2011) proposed the operator SM as a formal tool for studying the semantics of
logic programs. In their work, a logic program is first identified with a first-order sentence called
the formula representation of the program. Second, the SM operator is applied to this sentence,
transforming it into a second-order logic formula. Models of the resulting formula capture the stable
models of the program’s formula representation (and hence, the logic program’s stable models).
Our goal is to generalize this approach to the case of logic programs with aggregates. For this,
we found it essential to invoke many-sorted logic. In particular, we develop an approach in which
a logic program with aggregates is identified with a many-sorted first-order sentence. Then, as in
pioneering work by Ferraris et al. (2011), the SM operator is applied to this formula representation
to obtain stable models of the associated logic program. Here, we review the generalization of the
SM operator to the many-sorted case.

The definition of the operator SM for a many-sorted signature is a straightforward generalization
of the unsorted case presented by Ferraris et al. (2011). If p and u are predicate constants or variables
of the same arity (note that while the original definition does not account for sort information, here
arity refers to both number and sort of the arguments), then u ≤ p stands for the formula

∀W(u(W)→ p(W)),

where W is a tuple of distinct object variables matching the arity of p and u. If p and u are tuples
p1, . . . , pn and u1, . . . ,un of predicate constants or variables such that each pi and ui have the same
arity, then u ≤ p stands for the conjunction

(u1 ≤ p1)∧·· ·∧ (un ≤ pn),

and u < p stands for (u ≤ p)∧¬(p ≤ u). For any many-sorted first-order formula F and a list p of
predicate constants, by SMp[F ] we denote the second-order formula

F ∧¬∃u
(
(u < p)∧F∗(u)

)
where u is a list of distinct predicate variables u1, . . . ,un of the same length as p, such that the arity
of each ui is the same as the arity of pi, and F∗(u) is defined recursively:

• F∗ = F for any atomic formula F that does not contain members of p,
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• pi(t)∗ = ui(t) for any predicate symbol pi belonging to p and any list t of terms,

• (F ∧G)∗ = F∗∧G∗

• (F ∨G)∗ = F∗∨G∗

• (F → G)∗ = (F∗ → G∗)∧ (F → G)

• (∀xF)∗ = ∀xF∗

• (∃xF)∗ = ∃xF∗

If the list p is empty, then we understand SMp[F ] as F . For a finite theory Γ, we write SMp[Γ] to
represent SMp[F ], where F is the conjunction of all formulas in Γ.

4. Programs with Aggregates as Many-Sorted First-Order Sentences

We start this section by presenting the details of a translation that allows us to identify a logic
program with aggregates with a many-sorted first-order sentence. We then use the SM operator
applied to these formulas to provide the semantics of these logic programs.

4.1 From Programs to First-order Sentences of Two Sorts

We present the translation κ that turns a program Π (whose aggregates lack positive recursion) into
a first-order sentence with equality over a signature σΠ of two sorts5. To define this signature, we
first introduce the concepts of a global variable and a set symbol.

A variable is said to be global in a rule if

1. it occurs in any non-aggregate literal, or

2. it occurs in a guard of any aggregate literal.

For instance, in rule
p(X) :- q(X),#sum{Y,Z : r(X ,Y,Z)} ≥ 1. (8)

the only global variable is X .
A set symbol is a pair E/X, where E is an aggregate element and X is a list of variables occurring

in E. We say that E/X occurs in rule R if this rule contains an aggregate literal with the aggregate
element E and X is the list of all variables in E that are global in R. For instance,

Y,Z : r(X ,Y,Z)/X

is the only set symbol occurring in rule (8). We say that E/X occurs in a program if E/X occurs
in some rule of the program. For the sake of readability, we associate each set symbol E/X with a
different name |E/X|.

5. This translation is similar to the τ∗ translation by Fandinno et al. (2020) in that it translates a fragment of the language
of logic programs into first-order sentences of two sorts. Our translation aims at a different fragment though: logic
programs with aggregates rather than logic programs with arithmetic expressions. For the sake of simplicity, we leave
for future work on how to combine these two orthogonal features of logic programs.
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Predicate or function symbol Arity
>,≥,<,≤ sprg × sprg

count, sum, sum+, min, max sset → sprg

set|E/X| sprg ×·· ·× sprg → sset

Table 2: Predicate and function symbols of the signature σΠ. The function symbols set|E/X| take as
many arguments as the number of global variables in X.

As stated earlier, the signature σΠ is defined over two sorts. The first sort is called the program
sort; all program terms are of this sort. The second sort is called the set sort; it contains entities that
are sets (of tuples of object constants of the program sort). We denote the two sorts in an intuitive
manner: sprg and sset. For a program Π, signature σΠ contains:

a. all ground terms as object constants of the program sort;

b. all predicate symbols occurring in Π as predicate constants with all arguments of sort pro-
gram;

c. the comparison symbols other than equality as predicate constants of arity sprg × sprg;

d. function constants count, sum, sum+, min, max of arity sset → sprg;

e. a function constant set|E/X| of arity sprg ×·· ·× sprg → sset for each set symbol E/X occurring
in program Π. This function symbol takes as many arguments of the program sort as there
are variables in X. If X is the empty list, then set|E/X| is an object constant of sort set.

Table 2 summarizes the bullets above. Intuitively, the result of count is the cardinality of the set
passed as an argument. The result of sum is the sum of weights of all elements from the set passed
as an argument; similarly, the result of sum+ is the sum of all positively weighted elements from the
set. The result of min is the least element from the tuples’ first positions, and max is the greatest.
Finally, set|E/X|(t1, . . . , tk) represents the set of elements corresponding to the aggregate element E
once all global variables in X = X1, . . . ,Xk are replaced by ground terms t1, . . . , tk. We formalize
these claims below. As customary in arithmetic, we use infix notation in constructing atoms that
utilize predicate symbols >,≥,<,≤. Expression t1 ̸= t2 is considered an abbreviation for the for-
mula ¬(t1 = t2). In the following, we use letters X ,Y,Z and their variants to denote variables of sort
sprg and letter S and its variants to denote variables of sort sset. We use their boldface variants to
denote lists of variables of that sort.

We now describe a translation κ that converts a program into a finite set of first-order sentences.
Given a list Z of global variables in some rule R, we define κZ for all elements of R as follows:

• for every atomic formula A occurring outside of an aggregate literal, its translation κZA is A
itself; κZ⊥ is ⊥;

• for an aggregate atom A of the form #op{E} ≺ u, its translation κZ is the atom

op(set|E/X|(X))≺ u

where X is the list of variables in Z occurring in E;
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• for every (basic or aggregate) literal of the form not A its translation κZ(not A) is ¬κZA; for
every literal of the form not not A its translation κZ(not not A) is ¬¬κZA.

We now define the translation κ as follows:

• for every rule R of form (4), its translation κR is the universal closure of the implication

κZB1 ∧·· ·∧κZBn → κZ Head,

where Z is the list of the global variables of R.

• for every program Π, its translation κΠ is the first-order theory containing κR for each rule R
in Π.

Example 2. The result of applying κ to a program consisting of rule (8) and the rules

s(X) :- q(X),#sum{Y : r(X ,Y,Z)} ≥ 1. (9)

t :- #sum{Y,Z : r(X ,Y,Z)} ≥ 1. (10)

q(a). q(b). q(c). (11)

r(a,1,a). r(b,−1,a). r(b,1,a). r(b,1,b). r(c,0,a). (12)

is the first-order theory composed of atoms occurring in facts listed in (11) and (12), and the uni-
versal closure of the following formulas:

q(X)∧ sum
(
sete1(X)

)
≥ 1 → p(X)

q(X)∧ sum
(
sete2(X)

)
≥ 1 → s(X)

sum(sete3)≥ 1 → t

where e1 is the name for the set symbol Y,Z : r(X ,Y,Z)/X; e2 is the name for Y : r(X ,Y,Z)/X; and
e3 is the name for Y,Z : r(X ,Y,Z). Note that the set symbols corresponding to names e1 and e2
have a global variable X. Consequently, function symbols sete1 and sete2 have arity sprg → sset. The
set symbol corresponding to e3 has no global variables. Consequently, sete3 is an object constant
of sort sset.

4.2 Semantics of Programs with Aggregates

For the sake of clarity, we describe the semantics of programs with aggregates in two steps. We
start by assuming some restrictions on the form of interpretations of interest. These interpretations
have fixed meanings for the symbols of signature σΠ introduced in conditions c.-e. of its definition.
In Section 6, we remove these restrictions on symbols count, sum, sum+, min, max, and set|E/X|;
and fix their meaning by providing appropriate axioms. In both cases, we assume the identity as the
interpretation of the object constants and predicate constants stemming from the program’s ground
terms and predicate symbols, respectively. In other words, a program’s ground terms satisfy the
standard name assumption.

Let us consider some additional notation. For a tuple X of distinct variables, a tuple x of ground
terms of the same length as X, and an expression α that contains variables from X, αX

x denotes
the expression obtained from α by substituting x for X. An agg-interpretation I is a many-sorted
interpretation that satisfies the following conditions:
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1. the domain |I|sprg is the set containing all ground terms of program sort (or ground program
terms, for short);

2. I interprets each ground program term as itself;

3. I interprets predicate symbols >,≥,<,≤ according to the total order chosen earlier;

4. universe |I|sset is the set of all sets of non-empty tuples that can be formed with elements
from |I|sprg ;

5. if E/X is a set symbol, where E is an aggregate element of form (2), Y is the list of all
variables occurring in E that are not in X, and x and y are lists of ground program terms
of the same length as X and Y respectively, then set|E/X|(x)I is the set of all tuples of
form ⟨(t1)XY

xy , . . . ,(tk)XY
xy ⟩ such that I satisfies (l1)XY

xy ∧·· ·∧ (lm)XY
xy ;

6. for term tset of sort sset, count(tset)
I is ĉount(tI

set);

7. for term tset of sort sset, sum(tset)
I is ŝum(tI

set);

8. for term tset of sort sset, sum+(tset)
I is ŝum+(tI

set);

9. for term tset of sort sset, min(tset)
I is m̂in(tI

set);

10. for term tset of sort sset, max(tset)
I is m̂ax(tI

set);

Recall that symbols ĉount through m̂ax used in conditions 6 through 10 were defined in Section 3.1.
Note how an agg-interpretation satisfies the standard name assumption for object constants of the
program sort, but not for object constants and function constants of the set sort.

We say that an agg-interpretation I is a stable model of program Π if it satisfies the second-order
sentence SMp[κΠ] with p being the list of all predicate symbols occurring in Π (note that this
excludes predicate constants for the comparisons >,≥,<,≤).

In general, answer set solvers do not provide a complete first-order interpretation corresponding
to a computed stable model. Rather, they list the set of ground atoms corresponding to it. Formally,
for an agg-interpretation I, by Ans(I), we denote the set of ground atoms that are satisfied by I and
whose predicate symbol is not a comparison. If I is a stable model of Π, we say that Ans(I) is an
answer set of Π.

Example 3. Take Π1 to denote a program composed of rules (8-12). Let I be an agg-interpretation
over σΠ1 such that

qI = {a,b,c}
rI = {(a,1,a),(b,−1,a),(b,1,a),(b,1,b),(c,0,a)}.

(13)
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Conditions 5 and 7 imply that this agg-interpretation also satisfies the following statements

sete1(a)I = {(1,a)}
sete1(b)I = {(−1,a),(1,a),(1,b)}
sete1(c)I = {(0,a)}
sete2(a)I = {(1)}
sete2(b)I = {(−1),(1)}
sete2(c)I = {(0)}
setI

e3 = {(1,a),(−1,a),(1,b),(0,a)}

sum(sete1(a))I = 1

sum(sete1(b))I = 1

sum(sete1(c))I = 0

sum(sete2(a))I = 1

sum(sete2(b))I = 0

sum(sete2(c))I = 0

sum(sete3)
I = 1

(14)

Such an agg-interpretation I is a stable model of program Π1 when pI = {a,b}, sI = {a}, and tI = true.
It turns out, this program has a unique answer set

{q(a), q(b), q(c),

r(a,1,a), r(b,−1,a),r(b,1,a), r(b,1,b), r(c,0,a),

p(a), p(b), s(a), t }.

5. Relation with Abstract Gringo and ASP-Core-2 Semantics

In this section, we establish the correspondence between the semantics of programs with aggre-
gates introduced in the previous section and the Abstract Gringo (Gebser et al., 2015) and
ASP-Core-2 (Calimeri et al., 2020) semantics. Both of these semantics can be stated in terms
of infinitary formulas. The next subsection recalls the necessary definitions.

5.1 Background on Infinitary Formulas

We recall some definitions of infinitary logic (Truszczyński, 2012). We denote a propositional sig-
nature (a set of propositional atoms) as σ . For every nonnegative integer r, (infinitary propositional)
formulas of rank r are defined recursively:

• every ground atom in σ is a formula of rank 0,

• if H is a set of formulas, and r is the smallest nonnegative integer that is greater than the ranks
of all elements of H , then H ∧ and H ∨ are formulas of rank r (denoting the conjunction
and disjunction of all formulas in set H , respectively),

• if F and G are formulas, and r is the smallest nonnegative integer that is greater than the ranks
of F and G, then F → G is a formula of rank r.

We write {F,G}∧ as F ∧G, {F,G}∨ as F ∨G, and /0∨ as ⊥.
Subsets of a propositional signature σ will be called interpretations. The satisfaction relation

between an interpretation A and an infinitary formula is defined recursively:

• for every ground atom A from σ , A |= A if A belongs to A ,

• A |= H ∧ if for every formula F in H , A |= F ,

• A |= H ∨ if there is a formula F in H such that A |= F ,
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• A |= F → G if A ̸|= F or A |= G.

An interpretation satisfies a set H of formulas if it satisfies every formula in H . We say that a
set A of atoms is a minimal model of an infinitary formula F if A |= F and there is no B that
satisfies both B |= F and B ⊂ A .

Stable Models The definitions of the Abstract Gringo and ASP-Core-2 semantics rely on
two different definitions of stable models, so-called FT-stable and FLP-stable models (Harrison &
Lifschitz, 2019).

The FT-reduct FA of an infinitary formula F with respect to a set A of atoms is defined recur-
sively. If A ̸|= F then FA is ⊥; otherwise,

• for every ground atom A, AA is A

• (H ∧)A = {GA | G ∈ H }∧,

• (H ∨)A = {GA | G ∈ H }∨,

• (G → H)A is GA → HA .

We say that a set A of ground atoms is an FT-stable model of an infinitary formula F if it is a
⊆-minimal model of FA .

FLP-stable models are defined for sets of implications rather than arbitrary formulas. Let H
be a set of infinitary formulas of the form G → H, where H is a disjunction of propositional atoms
from σ . The FLP-reduct FLP(H ,A ) of H w.r.t. an interpretation A is the set of all formulas
G → H from H such that A satisfies G. A set A of ground atoms is an FLP-stable model of H
if it is a ⊆-minimal model of FLP(H ,A ).

5.2 Relation with Abstract Gringo

We now establish the relation between the semantics of programs with aggregates proposed in Sec-
tion 4.2 and the Abstract Gringo semantics (Gebser et al., 2015). This semantics captures the
behavior of the answer set solver CLINGO when it evaluates a program with aggregates. Later, we
derive the relation with the ASP-Core-2 (Calimeri et al., 2020) semantics from the already-known
link between the Abstract Gringo and ASP-Core-2 semantics (Harrison & Lifschitz, 2019).

The Abstract Gringo semantics of logic programs uses a translation that turns a program
into a set of infinitary propositional formulas (Gebser et al., 2015). The FT-stable models of the
resulting set of infinitary propositional formulas define this semantics.

We now present a simplified version of the Abstract Gringo translation which is equivalent
to the original in the studied fragment. A rule or an aggregate (in a rule) is called closed if it has
no global variables. An instance of a rule R is any rule that can be obtained from R by substituting
ground terms for all global variables.

For a closed aggregate element E of form (2) with Y being the list of non-global variables
occurring in it, ΨE denotes the set of tuples y of ground program terms of the same length as Y.
Let E be an aggregate atom of form (3), ∆ be a subset of ΨE and [∆] = {tY

y | y ∈ ∆} with t being
the tuple ⟨t1, . . . , tk⟩. Then, ∆ justifies an aggregate atom if relation ≺ holds between ĉount([∆])(
resp. ŝum([∆]), ŝum+([∆]), m̂in([∆]) and m̂ax([∆])

)
and u. For example, let E1 denote an aggregate

element 3,X ,Y : p(X ,Y ), then ΨE1 is the set of all tuples of ground program terms of length 2.
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Let ∆1 be a subset of ΨE1 composed of tuples {⟨a,b⟩,⟨5,b⟩}. Then, [∆1] = {⟨3,a,b⟩,⟨3,5,b⟩}. As
a result, ∆1 justifies a sample aggregate atom

#sum{3,X ,Y : p(X ,Y )} ≥ 5,

but ∆1 does not justify another sample aggregate atom

#sum{3,X ,Y : p(X ,Y )} ≥ 7.

The Abstract Gringo translation τ is defined as follows:

1. for every ground atom A, its translation τA is A itself; τ⊥ is ⊥,

2. for every ground comparison t1 ≺ t2, its translation τ(t1 ≺ t2) is ⊤ if the relation ≺ holds
between terms t1 and t2 according to the total order selected above and ⊥ otherwise;

3. for aggregate atom A of form (3), τA is formula

∧
∆∈χ

∧
y∈∆

lYy →
∨

y∈ΨE\∆

lYy

 (15)

where χ is the set of subsets ∆ of ΨE that do not justify A, and l stands for the conjunction τl1∧
·· ·∧ τlm;

4. for every (basic or aggregate) literal L of form not A, its translation τL is ¬τA; if L is of
form not not A, its translation τL is ¬¬τA;

5. for every closed rule R of form (4), its translation τR is the implication

τB1 ∧·· ·∧ τBn → τHead;

6. for every non-closed rule R, its translation τR is the conjunction of the result of applying τ to
all its instances;

7. for every program Π, its translation τΠ is the infinitary theory containing τR for each rule R
in Π.

A set A of ground atoms is a gringo answer set of a program Π if A is an FT-stable model of τΠ.

Theorem 1. The answer sets of any program (whose aggregates have no positive recursion) coin-
cide with its gringo answer sets.

5.3 Relation with ASP-Core-2 Semantics

Similarly to the Abstract Gringo semantics, the ASP-Core-2 semantics relies on a translation
of a program into an infinitary formula. Then, FLP-stable models of the resulting formula are used
to characterize the ASP-Core-2 semantics of the considered program. Originally, this semantics
relied on a translation different from the one used in Abstract Gringo. Harrison and Lifschitz
(2019) illustrated that in the context of FLP-stable models both translations are interchangeable.
Note that the ASP-Core-2 semantics is slightly more restrictive in the use of default negation – it
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Predicate or function symbol Arity
∈ stuple × sset

+ sint × sint → sint

/0 sset

tuplek sprg ×·· ·× sprg → stuple
rem sset × stuple → sset

first stuple → sprg

weight stuple → sint

Table 3: Predicate and function symbols for representing aggregate atoms. We assume that k ≥ 1.

does not allow double negated literals; and it does not allow the use of operation sum+. Also, as
mentioned earlier, the ASP-Core-2 semantics is introduced for programs that have no recursion
over aggregates. We refer to programs satisfying these stated restrictions as core programs. In this
context, we can say that a set A of ground atoms is a core answer set of a core program Π if A is
an FLP-stable model of τΠ. That is, the essential difference between gringo and core answer sets
is their reliance on FT-stable and FLP-stable models, respectively. The Main Theorem by Harrison
and Lifschitz (2019) states that for a class of programs that includes core programs the FLP-stable
models coincide with the FT-stable models.

A direct consequence of the Main Theorem in (Harrison & Lifschitz, 2019) is the fact that
the gringo answer sets of any core program coincide with its core answer sets. Consequently, by
Theorem 1 we derive that for core programs all three semantics discussed in the paper coincide.

Theorem 2. The answer sets of any core program coincide with its core answer sets (and gringo
answer sets).

6. Axiomatization of Aggregates

In this section we show that within the definition of agg-interpretations conditions 5-10 can be
removed from the meta-logic level by adding new logical sentences to the theory representing a
logic program. This provides higher mathematical rigor and allows us to build object-level proofs
to reason about programs with aggregates.

We introduce an extended signature σ∗
Π

that expands σΠ with new symbols and new sorts. The
new sorts are sint and stuple that we refer to as integer and tuple, respectively. Table 3 lists the new
symbols and their associated sorts. We also assume countably infinite sets of integer and tuple
variables (variables of sorts sint and stuple). We use the letter N and its variants to denote integer
variables and the letter T and its variants to denote tuple variables. Letters V , W and their variants
denote variables, where the sort is explicitly mentioned.

As customary in mathematics, we use infix notation for the function symbol + and the pred-
icate symbol ∈. Informally, tuplek(t1, . . . , tk) is a constructor for the k-tuple containing program
terms t1, . . . , tk; atomic formula ttuple ∈ tset holds if and only if tuple ttuple belongs to set tset; rem(tset, ttuple)
encodes the set obtained by removing tuple ttuple from set tset; first(ttuple) is the first element of tu-
ple ttuple; and weight(ttuple) encodes the weight of tuple ttuple (recall that the syntactic object ttuple is
meant to be interpreted as an object of sort stuple). Note that when the first element c of a tuple ttuple
is a symbolic constant, weight(ttuple) is 0 but first(ttuple) is c. This choice could be made differently,
but we follow this convention to capture the Abstract Gringo and ASP-Core-2 semantics.
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For signature σ∗
Π

we extend the set of conditions that an agg-interpretation I satisfies:

11. the domain |I|sint is the set of all numerals;

12. I interprets m+n as m+n,

13. universe |I|stuple is the set of all tuples of form ⟨d1, . . . ,dm⟩ with m ≥ 1 and each di ∈ |I|sprg ;

14. I interprets each tuple term of form tuplek(t1, . . . , tk) as tuple ⟨tI
1, . . . , t

I
k⟩;

15. I interprets object constant /0 as the empty set /0;

16. I satisfies t1 ∈ t2 if and only if tuple tI
1 belongs to set tI

2;

17. rem(tset, ttuple)
I is the set obtained by removing tuple tI

tuple from set tI
set;

18. first(ttuple)
I is the first element of tI

tuple.

19. weight(ttuple)
I is the weight of tI

tuple.

Note that |I|sset is the power set of |I|stuple . Also, each agg-interpretation is extended in a unique way:
there is a one-to-one correspondence between the agg-interpretations over σΠ and σ∗

Π
. In the sequel,

we identify each agg-interpretation in signature σΠ with its extension in σ∗
Π

.
In the remainder of this section, we show how an agg-interpretation can be “axiomatized” in a

theory that interprets symbols for arithmetic, tuples, sets, and program object constants in a stan-
dard way. Formally, a first-order interpretation I is called standard when it satisfies conditions 1-4
and 11-16. Such an interpretation satisfies the standard name assumption for ground program terms
and tuples, the standard interpretation of arithmetic symbols, and the standard interpretation of the
set-theoretic membership predicate. It does not assign any special meaning to symbols count, sum,
sum+, min, max, rem, first, weight, or any of the functions constants of the form set|E/X|. It is
obvious that every agg-interpretation is also a standard interpretation, but not vice-versa.

In the following subsections, we show that agg-interpretations can be characterized as standard
interpretations that satisfy a particular class of sentences. The subsections cover various condi-
tions of agg-interpretations. Theorem 3 states a key theoretical result that binds the stated findings
together. The Main Theorem closes this section by relating this key result to core programs.

6.1 Axiomatizing Set Symbols (Condition 5)

Let us start by considering condition 5 of the agg-interpretation definition. It associates a set sym-
bol E/X, where E has the form (2), with a unique set. We characterize this set by the sentence

∀XT
(
T ∈ set|E/X|(X)↔∃Y(T = tuplek(t1, . . . , tk)∧ l1 ∧·· ·∧ lm)

)
(16)

where Y is the list of all the variables occurring in E that are not in X.

Example 4. Recall program Π1 introduced in Section 4.2 and the aggregate symbol Y,Z : r(X ,Y,Z)/X
named e1. For symbol e1, sentence (16) has the form

∀XT
(

T ∈ sete1(X)↔∃Y Z
(
T = tuple2(Y,Z)∧ r(X ,Y,Z)

))
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For a sample standard interpretation I over signature σ∗
Π1

satisfying conditions in (13) and this
sentence, sete1(b)I is set {(−1,a),(1,a),(1,b)}. This set is identical to the one listed in (14) for an
agg-interpretation satisfying (13). For aggregate symbol Y,Z : r(X ,Y,Z) named e3, sentence (16)
has the form

∀T (T ∈ sete3 ↔∃XY Z (T = tuple2(Y,Z)∧ r(X ,Y,Z)))

and, for the same interpretation, we can see that sete3 is the set containing tuples corresponding
to tuple2(Y,Z) such that I satisfies r(X ,Y,Z) for some X. Consequently, setI

e3 is set

{(1,a),(−1,a),(1,b),(0,a)}.

Once more this set is identical to the one listed in (14).

The conclusions of Example 4 hint at a general result stated next.

Proposition 1. Let I be a standard interpretation. Then, I satisfies condition 5 if and only if it
satisfies sentence (16) for every function symbol of form set|E/X|.

As another example, consider the second rule in Listing 1. The result of applying the transla-
tion κ to this rule is the universal closure of the following first-order formula:

vertex(X)∧¬count(sete4(X)) = 1 →⊥

where e4 is the name associated with set symbol X ,Z : assign(X ,Z),color(Z)/X . For symbol e4,
sentence (16) has the form

∀XT (T ∈ sete4(X)↔∃Z (T = tuple2(X ,Z)∧assign(X ,Z)∧ color(Z))) .

6.2 Axiomatizing of Tuple Operations (Conditions 17, 18, and 19)

The meaning of function symbols rem, first, and weight provided by conditions 17, 18, and 19
of the definition of agg-interpretations can be fixed in standard interpretations using the following
sentences:

∀ST S′
(
rem(S,T ) = S′ ↔∀T ′(T ′ ∈ S′ ↔ (T ′ ∈ S∧T ′ ̸= T )

))
(17)

∀X1 . . .Xk
(
first(tuplek(X1, . . . ,Xk)) = X1

)
(18)

∀NX2 . . .Xk
(
weight(tuplek(N,X2, . . . ,Xk)) = N

)
(19)

∀X1 . . .Xk((¬∃N X1 = N)→ weight(tuplek(X1,X2, . . . ,Xk)) = 0) (20)

Sentences (18-20) are axiom schemata and should be included for every function symbol tuplek
occurring in the program.

Proposition 2. Let I be a standard interpretation. Then,

• I satisfies condition 17 if and only if it satisfies sentence (17);

• I satisfies condition 18 if and only if it satisfies all sentences of form (18); and

• I satisfies condition 19 if and only if it satisfies all sentences of form (19-20).
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6.3 Axiomatizing count (Condition 6)

Formalizing condition 6 requires determining when a set is finite or not, that is, we need a for-
mula Finite(tset) that holds if and only if the set represented by tset is finite. We can formalize this
idea using a second-order formula, which states that there is a natural number N and an injective
function from tset into the set {i∈N | i≤N}. Before formalizing this statement, let us introduce some
auxiliary definitions. Given a term tset of sort sset and a function symbol f , we define Injective( f , tset)
as the formula

∀T1T2 (T1 ∈ tset ∧T2 ∈ tset ∧ f (T1) = f (T2)→ T1 = T2.)

Intuitively, formula Injective( f , tset) represents the fact that the restriction of function f to the set
corresponding to the elements of the set corresponding to term tset is injective. If the image of f is
of sort sprg and t1 and t2 are also terms of sort sprg, we define Image( f , tset, t1, t2) as the formula:

∀T (T ∈ tset → t1 ≤ f (T )∧ f (T )≤ t2)

Formula Image( f , tset, t1, t2) holds when the image of the restriction of function f to the set corre-
sponding to tset is between the values represented by terms t1 and t2. Expression Finite(tset) stands
for the second-order formula

∃ f (Injective( f , tset)∧∃N Image( f , tset,0,N))

where f is a function variable of arity stuple → sint. Intuitively, this expression states the already
mentioned statement: there is a natural number N and an injective function from tset into the set {i ∈
N | i ≤ N}.

For a term tset of the set sort, we define formula FiniteCount(tset) as

∀T
(
T ∈ tset →∃N

(
count(rem(tset,T )) = N ∧ count(tset) = N +1

))
Intuitively, this sentence states that the number of elements of any non-empty finite set is the result
of adding one to any set obtained from it by removing a single element.

Using these formulas we can formalize condition 6 with the help of the following three sen-
tences:

count( /0) = 0 (21)

∀S (Finite(S)→ FiniteCount(S)) (22)

∀S (¬Finite(S)→ count(S) = sup) (23)

Proposition 3. Let I be an interpretation that satisfies all conditions for being an agg-interpretation
except conditions 6-10. Then, I satisfies condition 6 if and only if it satisfies sentences (21-23).

Note that the statements of Propositions 1 and 2 concern standard interpretations. The state-
ment of Proposition 3 (and propositions in the following subsections) concerns interpretations
that satisfy all conditions for being an agg-interpretation except conditions 6-10. Such interpre-
tations differ from standard ones only by a requirement that they have to satisfy condition 5 of the
agg-interpretation definition. Alternatively, due to Proposition 1 such interpretations satisfy sen-
tence (16).
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6.4 Axiomatizing sum (Condition 7)

The axiomatization of aggregates with the operation sum is similar to the case of count, but requires
characterizing that the set of tuples with non-zero weight is finite (instead of the set of arbitrary
tuples). Given a term tset of sort sset and a function symbol f , we define InjectiveWeight( f , tset) as
the formula

∀T1T2
(
T1 ∈ tset ∧T2 ∈ tset ∧weight(T1) ̸= 0∧
weight(T2) ̸= 0∧ f (T1) = f (T2)→ T1 = T2

)
.

Similar to Injective( f , tset), this formula represents the fact that the restriction of function f to the
set of elements of tset with non-zero weight is injective.

If the image of f is of sort sprg and t1 and t2 are also terms of sort sprg, we define ImageWeight( f , tset, t1, t2)
as formula

∀T
(
T ∈ tset ∧weight(T ) ̸= 0 → t1 ≤ f (T )∧ f (T )≤ t2

)
.

Similar to Image( f , tset, t1, t2), this formula represents the fact that the image of the restriction of
function f to the set of elements of tset with non-zero weight is an integer between the integers
represented by terms t1 and t2. Expression FiniteWeight(tset) stands for the second-order formula

∃ f
(
InjectiveWeight( f , tset)∧∃N ImageWeight( f , tset,0,N)

)
where f is a function variable of arity stuple → sint. For a term tset of the set sort, we define for-
mula FiniteSum(tset) as

∀T
(
T ∈ tset →∃N(sum(rem(tset,T )) = N∧

sum(tset) = N +weight(T ))
)

Intuitively, this sentence states that the sum of elements of any finite non-empty set is the result
of adding the weight of any of its elements to the sum of elements of the set obtained from it by
removing that element.

We can define sum to have arity sset → sint and simplify the formula that stands for FiniteSum(tset)
as follows:

∀T
(
T ∈ tset → sum(tset) = sum(rem(tset,T ))+weight(T )

)
Note that a similar simplification cannot be made for count, for example, because sometimes it
returns sup, which is not of sort int. We also define ZeroWeight(tset) as

∀T (T ∈ tset → weight(T ) = 0)

which holds when all members of tset have zero-weight.
Using these formulas we can formalize condition 7 with the help of the following three sen-

tences:

∀S
(
ZeroWeight(S)→ sum(S) = 0

)
(24)

∀S (FiniteWeight(S)→ FiniteSum(S)) (25)

∀S
(
¬FiniteWeight(S)→ sum(S) = 0

)
(26)

In particular, note that (24) entails sum( /0) = 0.

Proposition 4. Let I be an interpretation that satisfies all conditions for being an agg-interpretation
except conditions 6-10. Then, I satisfies condition 7 if and only if it satisfies sentences (24-26).
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6.5 Axiomatizing sum+ (Condition 8)

Axiomatizing sum+ is similar to the case of sum captured in previous subsection. We adapt to the
condition where only positive weights are to be considered. We define formula FinitePositive(tset)
which holds when tset contains finitely many tuples with positive weight. We construct this formula
in a similar way to FiniteWeight(S), by first defining InjectivePositive and ImagePositive. For a
term tset of sort sset and a function symbol f , let InjectivePositive( f , tset) denote the formula

∀T1T2
(
T1 ∈ tset ∧T2 ∈ tset ∧weight(T1)> 0∧
weight(T2)> 0∧ f (T1) = f (T2)→ T1 = T2

)
When the image of f is of sort sprg and t1 and t2 are also terms of sort sprg, then ImagePositive( f , tset, t1, t2)
denotes the formula

∀T
(
T ∈ tset ∧weight(T )> 0 → t1 ≤ f (T )∧ f (T )≤ t2

)
.

Expression FinitePositive(tset) stands for the second-order formula

∃ f
(
InjectivePositive( f , tset)∧∃N ImagePositive( f , tset,0,N)

)
where f is a function variable of arity stuple → sint. Finally, we must account for the case when none
of the tuples in our set tset have positive weight with the formula NonPositiveWeight(tset):

∀T (T ∈ tset → weight(T )≤ 0)

Let FinitePositiveSum(tset) be the formula

∀T
(
T ∈ tset ∧weight(T )> 0 →∃N(sum+(rem(tset,T )) = N∧

sum+(tset) = N +weight(T ))
)

Now we formalize condition 8 as follows:

∀S
(
NonPositiveWeight(S)→ sum+(S) = 0

)
(27)

∀S (FinitePositive(S)→ FinitePositiveSum(S)) (28)

∀S
(
¬FinitePositive(S)→ sum+(S) = sup

)
(29)

Proposition 5. Let I be an interpretation that satisfies all conditions for being an agg-interpretation
except conditions 6-10. Then, I satisfies condition 8 if and only if it satisfies sentences (27-29).

6.6 Axiomatizing min and max (Conditions 9 and 10)

The axiomatization of min and max are simpler than previous cases because we do not need to define
their value recursively. We define FiniteMin(tset) and FiniteMax(tset), respectively, as follows

∀T
(
T ∈ tset ∧¬∃T ′(T ′ ∈ tset ∧first(T ′)< first(T )

)
→ min(tset) = first(T )

)
∀T
(
T ∈ tset ∧¬∃T ′(T ′ ∈ tset ∧first(T ′)> first(T )

)
→ max(tset) = first(T )

)
.

The following sentences formalize condition 9:

min( /0) = sup (30)

∀S (Finite(S)→ FiniteMin(S)) (31)

∀S (¬Finite(S)→ min(S) = inf ) (32)
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Proposition 6. Let I be an interpretation that satisfies all conditions for being an agg-interpretation
except conditions 6-10. Then, I satisfies condition 9 if and only if it satisfies sentences (30-32).

Similarly, condition 10 is formalized using the following sentences:

max( /0) = inf (33)
∀S (Finite(S)→ FiniteMax(S)) (34)
∀S (¬Finite(S)→ max(S) = sup) (35)

Proposition 7. Let I be an interpretation that satisfies all conditions for being an agg-interpretation
except conditions 6-10. Then, I satisfies condition 10 if and only if it satisfies sentences (33-35).

The theorem below follows directly from Propositions 1-7.

Theorem 3. A set M of ground atoms is an answer set of a program Π if and only if there exists
some standard model I of SMp[κΠ] that satisfies all sentences of form (16-35) and M = Ans(I).
Symbol p refers to the list of all predicate symbols occurring in Π.

6.7 Main Theorem

Combining Theorems 2 and 3, we obtain our main result: the axiomatization of aggregates accord-
ing to the ASP-Core-2 semantics.

Theorem 4. A set M of ground atoms is a core answer set of a core program Π if and only if there ex-
ists some standard model I of SMp[κΠ] that satisfies all sentences of form (16-35) and M = Ans(I).
Symbol p refers to the list of all predicate symbols occurring in Π.

If we relax the syntactic conditions of the ASP-Core-2 and we allow double negated literals
and non-positive recursive aggregates, we obtain that our axiomatization coincides with Abstract

Gringo semantics. The following result parallels the Main Theorem, and follows directly from
Theorems 1 and 3.

Theorem 5. A set M of ground atoms is a gringo answer set of a program Π without positive
recursive aggregates if and only if there exists some standard model I of SMp[κΠ] that satisfies
all sentences of form (16-35) and M = Ans(I). Symbol p refers to the list of all predicate symbols
occurring in Π.

7. First-Order Characterization

There is a wide class of programs without aggregates for which the second-order SM operator can be
replaced by a first-order formalization. This includes completion in the case of tight programs (Fer-
raris et al., 2011) or, more generally, loop formulas (Lee & Meng, 2011) and ordered completion
for finite structures (Asuncion, Lin, Zhang, & Zhou, 2012). In particular, the Completion The-
orem by Ferraris et al. (2011, Theorem 11) only applies to one-sorted formulas in the so-called
Clark normal form that are tight. Recently, a more general notion of “locally tight” was introduced
by Fandinno and Lifschitz (2023). In that work, the authors generalized completion to the case of
many-sorted formulas that go beyond Clark normal form. The Main Lemma of the paper stated that
when the positive dependency graph of these formulas do not have infinite walks, then the models of
completion coincide with the stable models (as understood here) of the formula. There is a price to
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pay for using the notion of locally tight, as the task of verifying whether a formula is locally tight is,
in general, undecidable. Here we define tightness for the kind of formulas considered by Fandinno
and Lifschitz (2023). This allows us to state a formal result for the equivalence of completion and
programs with aggregates when they are tight.

7.1 Completion and Tightness

For a set p of predicate symbols, a nondisjunctive implication is a formula that has the form

∀̃(F → G), (36)

where G is an atomic formula or a formula that does not contain predicate symbols in p. Given this
implication, we say that it defines a predicate symbol p if G is an atomic formula with predicate
symbol p and p belongs to p. We say that this implication is a constraint if G does not contain
predicate symbols in p.

Let Γ be a finite set of nondisjunctive implications. If the argument sorts of a predicate symbol p
in p are s1 . . . ,sn, and the members of Γ defining p are

∀̃(Fi → p(ti)) i = 1, . . . ,k,

then the completed definition of p in Γ is the sentence

∀V

(
p(V)↔

k∨
i=1

∃Ui (Fi ∧V = ti)

)
, (37)

where V is an n-tuple of fresh variables of sorts s1, . . . ,sn, and Ui is the list of all variables that are
free in Fi → p(ti). The expression V = ti stands here for the conjunction of n equalities between the
corresponding members of the tuples V and ti.

The completion COMPp[Γ] of Γ is the conjunction of the completed definitions in Γ of all
predicate symbols p in p and all constraints of Γ.

Example 5. If p is the list containing only the predicate symbol assign/1, then the completion of
the program in Listing 1 is equivalent in first-order logic to the following sentences:

∀X Z(assign(X ,Z)↔ vertex(X)∧ color(Z)∧¬¬assign(X ,Z))

∀X(vertex(X)∧¬count(setasg(X)) = 1 →⊥)

∀X Y Z(edge(Y,X)∧assign(Y,Z)∧assign(X ,Z)→⊥)

where asg is the name for the set symbol X ,Y : assign(X ,Y ), color(Y )/X.

The following result is an immediate consequence of Lemma 4 by Fandinno and Lifschitz (2023).

Theorem 6. For any finite set Γ of nondisjunctive implications and list p of predicate symbols, the
implication

SMp[Γ]→ COMPp[Γ]

is logically valid.

Combining this Theorem with our Main Theorem and Theorem 5, we obtain the following
results for core and gringo answer sets.

1001



FANDINNO, HANSEN, & LIERLER

Corollary 1. For a core program Π, if a set M of ground atoms is a core answer set of Π, then
there exists some standard model I of COMPp[κΠ] that satisfies all sentences of form (16-35) and
M = Ans(I). Symbol p refers to the list of all predicate symbols occurring in Π.

Corollary 2. For a program Π (without positive recursive aggregates), if a set M of ground atoms
is a gringo answer set of Π, then there exists some standard model I of COMPp[κΠ] that satisfies
all sentences of form (16-35) and M = Ans(I). Symbol p refers to the list of all predicate symbols
occurring in Π.

The converse of Theorem 6 is not true in general, but it holds for the class of tight theories.
For any finite set Γ of nondisjunctive implications, the predicate dependency graph of Γ with

respect to a list p of predicate symbols is the directed graph that

• has all predicates of p as its vertices, and

• has an edge from p to q if there is a formula of the form of (36) in Γ with p in the consequent
and a strictly positive occurrence of q in the antecedent.

We say that Γ is tight with respect to p if the predicate dependency graph of Γ with respect to p is
acyclic.

Theorem 7. For any tight finite set Γ of nondisjunctive implications and list of predicate symbols p,
the equivalence

SMp[Γ]↔ COMPp[Γ]

is logically valid.

Theorem 7 is a consequence of the Main Lemma by Fandinno and Lifschitz (2023). The proof
of this result relies on the observation that, for any tight program, its infinite dependency graph does
not have infinite walks. Combining this theorem with our Main Theorem and Theorem 5, we obtain
the following characterizations for the ASP-Core-2 and Abstract Gringo semantics in terms of
completion.

Corollary 3. Let Π be a core program such that κΠ is tight. Then, a set M of ground atoms is a
core answer set of Π if and only if there exists some standard model I of COMPp[κΠ] that satisfies
all sentences of form (16-35) and M = Ans(I). Symbol p refers to the list of all predicate symbols
occurring in Π.

Corollary 4. Let Π be a program (without positive recursive aggregates) such that κΠ is tight.
Then, a set M of ground atoms is a gringo answer set of Π if and only if there exists some standard
model I of COMPp[κΠ] that satisfies all sentences of form (16-35) and M = Ans(I). Symbol p refers
to the list of all predicate symbols occurring in Π.

7.2 First-Order Axioms for Aggregates

Even when we can replace the SM operator by the completion operator as done in Corollaries 1- 4,
our translation still relies on second-order formulas because some axioms added to characterize
agg-interpretations by means of standard interpretations are second-order formulas. To see this,
consider the quantification over function symbols in the formulas Finite(tset), FiniteWeight(tset)
and FinitePositive(tset). These formulas are necessary to distinguish between finite and infinite
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Second-order Sentences First-order Replacements
(22-23) (38)
(25-26) (39)
(28-29) (40)
(31-32) (41)
(34-35) (42)

Table 4: First-order characterizations.

sets. In practice, the standard ASP-Core-2 states that “to promote declarative programming as
well as practical system implementation, ASP-Core-2 programs are supposed to comply with the
restrictions.” These restrictions include, among others, the requirement that programs have finite
answer sets and result only in finite sets of aggregate elements (Calimeri et al., 2020, Sections 2
and 5).

Formally, we say that an interpretation I has finite aggregates if sets of the form set|E/X|(x)I are
finite for every set symbol E/X and any list x of ground program terms of the same length as X. A
program Π has finite aggregates if all standard models of SM[κΠ] have finite aggregates.

In the rest of this section, we focus on programs with finite aggregates and we disregard how
this property is obtained. Under these conditions, we are able to provide an axiomatization that
bypasses the need for second-order formulas. Consequently, in the case of tight programs, the result
on completion and this new axiomatization paves the way to capture the semantics of programs with
aggregates by means of first-order logic. As mentioned earlier, this is an interesting fragment from
a practical point of view.

Given two terms tset, t ′set of the set sort, we define the formula Subset(tset, t ′set) as

∀T
(
T ∈ tset → T ∈ t ′set

)
stating that tset is a subset of t ′set. In the case of programs that have finite aggregates, we can replace
our second-order sentences with the following first-order ones, where E/X is an aggregate symbol
(see Table 4):

∀XS
(
Subset(S,set|E/X|(X))→ FiniteCount(S)

)
(38)

∀XS
(
Subset(S,set|E/X|(X))→ FiniteSum(S)

)
(39)

∀XS
(
Subset(S,set|E/X|(X))→ FinitePositiveSum(S)

)
(40)

FiniteMin(set|E/X|(X)) (41)

FiniteMax(set|E/X|(X)) (42)

Intuitively, each pair of second-order sentences has the same meaning as their first-order re-
placement, but with some restrictions. First, this formalization is appropriate only if the interpre-
tation of set|E/X|(x) results in a finite set. Furthermore, the interpretation of count, sum and sum+

is only fixed for subsets of sets corresponding to terms of the form set|E/X|(x). Hence, there may
be non-standard interpretations that satisfy these sentences. These non-standard interpretations may
assign values that do not correspond to their intended meaning to some sets, but we can guarantee
that they assign the intended meaning to all symbols of the sort set that occur in the program trans-
lation. The reason to include all subsets in these sentences is that FiniteCount(S), FiniteSum(S),
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Listing 3: An instance of the graph coloring problem containing three colors and a graph with three
vertices and three edges.

color(r). color(g). color(b).

vertex (1). vertex (2). vertex (3).

edge (1,2). edge (2,3). edge (3,1).

and FinitePositiveSum(S) recursively refer to some of their subsets. Since FiniteMin and FiniteMax
do not refer to their subsets, we don’t need to include all subsets. The following result shows that in
the case of programs with finite aggregates we can use the introduced first-order axiomatization.

Theorem 8. A set M of ground atoms is an answer set of some program Π with finite aggre-
gates iff there exists some standard model I of SMp[κΠ] that satisfies all sentences of form (16-
21,24,27,30,33) and all sentences of form (38-42), and M = Ans(I).

Combining this theorem with our Main Theorem, Theorem 5, and Theorem 7 we obtain the
following characterizations for the ASP-Core-2 and Abstract Gringo semantics in terms of first-
order formulas.

Corollary 5. Let Π be a core program with finite aggregates such that κΠ is tight. A set M of ground
atoms is a core answer set of Π if and only if there exists some standard model I of COMPp[κΠ]
that satisfies all sentences of form (16-21,24,27,30,33) and all sentences of form (38-42), and M =
Ans(I). Symbol p refers to the list of all predicate symbols occurring in Π.

Corollary 6. Let Π be a program (without positive recursive aggregates) with finite aggregates such
that κΠ is tight. A set M of ground atoms is a gringo answer set of Π if and only if there exists
some standard model I of COMPp[κΠ] that satisfies all sentences of form (16-21,24,27,30,33) and
all sentences of form (38-42), and M = Ans(I). Symbol p refers to the list of all predicate symbols
occurring in Π.

Example 6. Let Π be the program obtained by adding facts in Listing 3 to the program in List-
ing 1 and let p be the list of all predicate symbols in Π. Then, the completion of Π, in symbols
COMPp[κΠ], is the result of adding the following formulas to the set of formulas in Example 5:

∀X (color(X)↔ (X = r∨X = g∨X = b))

∀X (vertex(X)↔ (X = 1∨X = 2∨X = 3))

∀X Y (edge(X ,Y )↔ (X = 1∧Y = 2∨X = 2∧Y = 3∨X = 3∧Y = 1))

Let ∆ denote the set of axioms of form (16-21), (24), (27), (30), (33) and (38-42). Since κΠ is tight,
Corollary 6 guarantees that we can compute the gringo answer sets of Π by computing the standard
models of the first-order theory COMPp[κΠ]∪∆. Let I be a standard interpretation such that

edgeI = {(1,2),(2,3),(3,1)} vertexI = {1,2,3}
colorI = {r,g,b} assignI = {(1,r),(2,g),(3,b)}

and I |= ∆. Then, among other axioms, I satisfies

∀XT
(

T ∈ setasg(X)↔∃Y
(
T = tuple2(X ,Y )∧assign(X ,Y )∧ color(Y )

))
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and, thus, it follows that

set|asg/X |(1)
I = {(1,r)} set|asg/X |(2)

I = {(2,g)} set|asg/X |(3)
I = {(3,b)}

Similarly, I satisfies

∀X S
(
Subset(S,set|asg/X |(X))→ FiniteCount(S)

)
and, thus, it follows that

count(set|asg/X |(1))
I = 1 count(set|asg/X |(2))

I = 1 count(set|asg/X |(3))
I = 1

This standard interpretation also satisfies all formulas in COMPp[κΠ]. Then, Ans(I) (the set of
atoms satisfied by I whose predicate symbol occurs in p) is

{edge(1,2), edge(2,3), edge(3,1), vertex(1), vertex(2), vertex(3),

color(r), color(g), color(b), assign(1,r), assign(2,g), assign(3,b)}

which corresponds to an answer set of Π.

8. Discussion and Conclusions

In this paper, we provided a characterization of the semantics of programs with aggregates that by-
passes grounding. This is achieved by introducing a translation from logic programs to many-sorted
first-order sentences together with an axiomatization in second-order logic. Interestingly, the in-
troduced semantics coincide with the ASP-Core-2 semantics (Calimeri et al., 2020) for programs
that obey the restrictions (lack of recursive over aggregates and double negated literals) imposed
by the ASP-Core-2 standard. If we lift some restrictions and allow double negated literals and
aggregates with recursion over negation, our semantics coincide with the semantics of the widely
used solver CLINGO (Gebser et al., 2015). Furthermore, aggregates over infinite sets do not occur
in practice (Calimeri et al., 2020) and, in this case, the second-order axiomatization can be replaced
by first-order sentences.

Our work contributes to the understanding of aggregates in ASP and, in particular, it is the first
to formalize that aggregates, as defined by the ASP-Core-2 standard, agree with the practitioner’s
intuition that they represent functions applied to sets. It also provides an easy way to introduce
new aggregate operations in the formalization, such as product or average, by simply adding the
corresponding axioms for the new operation.

Our work also paves the way for the use of first-order theorem provers for reasoning about this
class of programs, something that, to the best of our knowledge, was not possible before our char-
acterization. A line of future work is directed to exploit this fact for the formal verification of ASP
programs. The latest progress in this direction is represented by the ANTHEM system (Fandinno
et al., 2020), and its extension, ANTHEM-P2P (Fandinno et al., 2023). These systems transform
programs into their formula representations using a variant of the translation presented in Section 4,
then capture the semantics of the corresponding programs using completion, as described in Sec-
tion 7. The resolution theorem prover VAMPIRE (Kovács & Voronkov, 2013) uses the resulting
completions to confirm the adherence of a program to a first-order specification (in the ANTHEM

system), or to confirm the equivalent external behavior of two programs under a set of assump-
tions (in the ANTHEM-P2P system). Extending ANTHEM to programs with aggregates will require
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combining our characterization of aggregates with the characterization of arithmetic expressions
already present in ANTHEM, and provide a suitable axiomatization that characterizes standard inter-
pretations. VAMPIRE already possesses the capacity to reason about integer arithmetic. Therefore,
the main challenge is to provide VAMPIRE with an appropriate background theory of sets. Another
open question is how to use first-order theorem provers to reason about non-tight programs, which
is a matter of ongoing research.

Another future line of work is to extend our characterization to programs with positive recursion
through aggregates. This will require different trade-offs to accommodate the different competing
semantics. However, a characterization of aggregates without any restrictions on recursion would
allow us to extend the definition of strong equivalence (Lifschitz, Pearce, & Valverde, 2001) to
programs with aggregates. This is a powerful tool for simplifying and refactoring components of
ASP programs in isolation, that is, without reference to the enclosing program. Importantly, strong
equivalence does not require completion and, thus, it is not limited to tight programs.
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Appendix A. Proof of the Results

In this appendix, we provide formal support for the paper’s claims. The appendix is organized
as follows. Section A.1 is a proof of Theorem 1. This result establishes the relationship of our
proposed definition of stable models (defined in terms of agg-interpretations) to gringo answer sets
(defined in terms of a translation to infinitary propositional logic). This is a helpful intermediate
step, but it is limited by how generous assumptions 5-10 of agg-interpretations are. Section A.2
justifies replacing these assumptions with axiomatizations and much more restrictive assumptions
(standard interpretation assumptions 11-19). Sections A.3-A.6 prove that our proposed axioms
correctly characterize the behavior of aggregate function symbols ĉount, ŝum, ŝum+, m̂in, and m̂ax.
These results culminate in a proof of Theorem 3 (Section A.7), which connects our definition of
answer sets (in terms of agg-interpretations) to their definition in terms of more restrictive standard
interpretations. Finally, Section A.7 establishes that the second-order characterization of aggregate
behavior can be replaced with a first-order axiomatization in the case of finite aggregates.

A.1 Proof of Theorem 1

We now provide a proof of the result relating the proposed semantics of programs with aggregates
with the Abstract Gringo semantics. To do so, we first review earlier results on infinitary ground-
ing and splitting.

A.1.1 INFINITARY GROUNDING

If d is a tuple d1, . . . ,dn of elements of domains of I then d∗ stands for the tuple d∗
1 , . . . ,d

∗
n of their

names. If t is a tuple t1, . . . , tn of ground terms then tI stands for the tuple tI
1, . . . , t

I
n of values assigned

to them by I.
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Let p,q be a partition of the predicate symbols in the signature. Then, the grounding of a
first-order sentence with respect to an interpretation I and a set p of predicate symbols is defined
recursively as follows:

• grp
I (⊥) =⊥;

• if formula is an atomic formula then

– for p ∈ p, grp
I (p(t1, . . . , tk)) = p((tI

1)
∗, . . . ,(tI

k)
∗);

– for p ∈ q, grp
I (p(t1, . . . , tk)) =⊤ if p((tI

1)
∗, . . . ,(tI

k)
∗) ∈ Iq;

and grp
I (p(t1, . . . , tk)) =⊥ otherwise;

– grp
I (t1 = t2) =⊤ if tI

1 = tI
2 and ⊥ otherwise;

• grp
I (F ⊗G) = grp

I (F)⊗grp
I (G) if ⊗ is ∧, ∨, or →;

• grp
I (∃X F(X)) = {grp

I (F(u∗)) | u ∈ |I|s}∨ if X is a variable of sort s;

• grp
I (∀X F(X)) = {grp

I (F(u∗)) | u ∈ |I|s}∧ if X is a variable of sort s.

For a first-order theory Γ, we define grp
I (Γ)= {grp

I (F) |F ∈Γ}∧. The proof of the following Lemma
is analogous to the proof of Theorem 5 by Truszczyński (2012). See Proposition 1 by Fandinno et al.
(2020) for more details.

Lemma 1. Let Γ be a first-order formula and I be some standard interpretation. Then I is a model
of SMp[Γ] iff Ans(I) is an FT-stable model of grp

I (Γ).

A.1.2 SPLITTING THEOREM FOR INFINITARY PROPOSITIONAL FORMULAS

We start by recalling that the set of strictly positive atoms of an infinitary formula F , denoted Pos(F),
is defined recursively:

• Pos(A) = {A} for an atom A,

• Pos(H ∧) = Pos(H ∨) =
⋃

H∈H Pos(H),

• Pos(G → H) = Pos(H).

The set of positive nonnegated atoms and the set of negative nonnegated atoms of an infinitary
formula F , denoted Pnn(F) and Nnn(F), are recursively defined:

• Pnn(A) = {A} for an atom A,

• Pnn(H ∧) = Pnn(H ∨) =
⋃

H∈H Pnn(H),

• Pnn(G → H) = /0 if H is ⊥; and Nnn(G)∪Pnn(H) otherwise.

• Nnn(A) = /0 for an atom A,

• Nnn(H ∧) = Nnn(H ∨) =
⋃

H∈H Nnn(H),

• Nnn(G → H) = /0 if H is ⊥; and Pnn(G)∪Nnn(H) otherwise.
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The set of rules of an infinitary formula F , denoted Rules(F), is defined as follows:

• Rules(A) = /0 for an atom A,

• Rules(H ∧) = Rules(H ∨) =
⋃

H∈H Rules(H),

• Rules(G → H) = {G → H}∪Rules(H).

For any infinitary formula F and a set S of ground atoms, its S-dependency graph is a directed graph
such that:

(a) its vertices are the ground atoms in S, and

(b) for every rule (Body → Head) in Rules(F), every atom B ∈ Pnn(Body) and every atom
H ∈ Pos(Head), it includes the edge (H,B).

For an infinitary formula F and set S of ground atoms, by Choice(F,S) we denote the conjunction
of all disjunctions of form A∨¬A for ground atoms occurring in F that do not belong to S. We
say that a set A of ground atoms is an S-infinitary stable model of a formula F if it is an FT-stable
model of F ∧Choice(F,S). Given a set S of ground atoms, a partition ⟨S1,S2⟩ of S is infinitely
separable with respect to an infinitary formula F if every infinite walk of its S-dependency graph
visits either S1 or S2 finitely many times. Then, we have the following result (Harrison & Lifschitz,
2016, Infinitary Splitting Theorem).

Lemma 2. Let F1,F2 be infinitary formulas and ⟨S1,S2⟩ be a partition of some set S of atoms
that is infinitely separable with respect to F1 ∧F2. Let A be a set of atoms. If S2 ∩ Pos(F1) = /0
and S1 ∩Pos(F2) = /0, then A is an S-infinitary stable model of F1 ∧F2 iff it is both an S1-infinitary
stable model of F1 and an S2-infinitary stable model of F2.

A.1.3 AUXILIARY RESULTS

We now show how Lemma 2 can be used to turn any program without recursive aggregates into a
program in which all aggregate atoms occur in the scope of negation.

Given a program Π and an aggregate atom A occurring in Π, we partition the predicate symbols
occurring in Π into two sets t(Π,A) and b(Π,A) as follows. Let b(Π,A) be the set of all predicate
symbols p/n occurring in Π such that there is a path in the program’s dependency graph from any
predicate symbol occurring in A to p/n. Let t(Π,A) be the set of all predicate symbols occurring
in Π but those in b(Π,A). Let ba(Π,A) be the set of all ground atoms of form p(t) such that p/n
belongs to b(Π,A) and t is an n-tuple of ground program terms. Let br(Π,A) be the set of all
rules of Π whose head contains a predicate symbol that belongs to b(Π,A). Similarly, for ta(Π,A)
and tr(Π,A).

Lemma 3. For any program Π without positively recursive aggregates, pair ⟨ta(Π,A), ba(Π,A)⟩ is
infinitely separable with respect to τΠ.

Proof. Let S = ta(Π,A)∪ ba(Π,A) be the set of all ground atoms corresponding to the predi-
cate symbols occurring in τΠ. Suppose, for the sake of contradiction, that there is an infinite
walk A1,A2, . . . that visits both ta(Π,A) and ba(Π,A) infinitely many times, that is, both {i | Ai ∈
ta(Π,A)} and {i | Ai ∈ ba(Π,A)} are infinite sets.
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Take any Ai ∈ ba(Π,A) and A j ∈ ta(Π,A) such that j > i. Note that such Ai and A j must exist
because the walk visits both sets infinitely many times. Let pi and p j be the predicate symbols
occurring in Ai and A j, respectively. Since there is a path from Ai to A j in the S-dependency graph
of τΠ, there is a path from pi to p j in the program dependency graph of Π. Furthermore, by
construction, Ai in ba(Π,A) implies pi in b(Π,A), which in its turn implies that there is a path in
the positive dependency graph from some predicate symbol q to pi such that q occurs in A. These
two facts together imply that there is a path in the positive dependency graph from some predicate
symbol q to p j. This implies that p j belongs to b(Π,A) and, thus, that A j belongs to ba(Π,A). This
is a contradiction with the fact that A j ∈ ta(Π,A).

Lemma 4. Let Π be a program without positively recursive aggregates, A be an occurrence of
some aggregate atom, and Πb and Πt be the sets of all rules whose head contains a predicate
symbol in b(Π,A) and t(Π,A), respectively. Then, a set A of atoms is a gringo answer set of Π iff
it is both a ba(Π,A)-infinitary stable model of τΠb and a ta(Π,A)-infinitary stable model of τΠt .

Proof. By definition, A is a gringo answer set of Π iff A is an FT-stable model of τΠ= τΠb∧τΠt .
From Lemma 3, it follows that ⟨ta(Π,A), ba(Π,A)⟩ is infinitely separable with respect to τΠ. Fur-
thermore, by construction we get Pos(Πt)⊆ ta(Π,A) and Pos(Πb)⊆ ba(Π,A) and that sets ta(Π,A)
and ba(Π,A) are disjoint. Hence, Pos(Πb)∩ ta(Π,A) = /0 and ba(Π,A)∩Pos(Πt) = /0 hold and the
lemma statement follows now directly from Lemma 2.

Lemma 5. Let Π be a program and let Π′ be the result of replacing some occurrence A of an
aggregate atom by not not A. Let S be a set of ground atoms that contains no atom occurring in τA.
Then, the S-infinitary stable models of τΠ and τΠ′ coincide.

Proof. Recall that, by definition, a set A of atoms is an S-infinitary stable model of τΠ iff A is
an FT-stable model of τΠ∧Choice(τΠ,S). Furthermore, since no atom occurring in τA belongs
to S, it follows that the excluded middle axiom B∨¬B belongs to Choice(τΠ,S) for every atom B
occurring in τA. Hence, we can replace τA by ¬¬τA without changing the FT-stable models.

Lemma 6. Let Π be a program without positively recursive aggregates and let Π′ be the result of
replacing each aggregate atom A not in the scope of negation by not not A. Then, the gringo answer
sets of Π and Π′ coincide.

Proof. We just need to prove it for a single occurrence A of some aggregate atom and the result
follows then by induction in the number of occurrences of aggregate atoms not in the scope of nega-
tion. Let R be the rule of Π containing occurrence A, rule R′ be the result of replacing occurrence A
not in the scope of negation by not not A in R and Π′ = (Π \ {R})∪{R′} be the result of replac-
ing occurrence A by not not A in Π. Let Πb and Πt be the set of all rules whose head contains a
predicate symbol in b(Π,A) and t(Π,A), respectively. Π′

b and Π′
t are constructed similarly. Note

that rule R belongs to Πt because aggregates in Π are not positively recursive and that this implies
that Πb = Π′

b. Note also that ba(Π,A) = ba(Π′,A) and ta(Π,A) = ta(Π′,A). Then, from Lemmas 4
and 5, it follows that a set of atoms A is a gringo answer set of Π

iff A is both a ba(Π,A)-infinitary stable model of τΠb and a ta(Π,A)-infinitary stable model of τΠt

iff A is both a ba(Π′,A)-infinitary stable model of τΠ′
b and a ta(Π′,A)-infinitary stable model

of τΠ′
t

iff A is a gringo answer set of Π′.
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Theorem 1 follows directly from Lemma 1 and the following auxiliary results.

Lemma 7. Let I be an agg-interpretation and op be either count, sum, sum+, min, or max. Then, I
satisfies op(set|E/X|(x))≺ u iff Ans(I) satisfies

∧
∆∈χ

∧
y∈∆

lXY
xy →

∨
y∈ΨEXx

\∆

lXY
xy

 (43)

where χ is the set of subsets ∆ of ΨEX
x

that do not justify aggregate atom op{EX
x } ≺ u and Y is the

list of variables occurring in E that do not occur in X.

Proof. Let ∆I = {y ∈ ΨEX
x
| I |= lXY

xy } and HI be the formula∧
y∈∆I

lXY
xy →

∨
y∈ΨE\∆I

lXY
xy

Then, Ans(I) ̸|= HI and set|E/X|(x)I = {tXY
xy | y ∈ ∆I}= [∆I]. Consequently, we have

Ans(I) |= (43) iff HI is not a conjunctive term of (43)

iff ∆I justifies op(set|E/X|(x))≺ u

iff I |= op([∆I]
∗)≺ u

iff I |= op(set|E/X|(x))≺ u

Lemma 8. Let Π be a program in which all aggregate atoms occur in the scope of negation and
let I be an agg-interpretation. Then, Ans(I) is an FT-stable model of τΠ iff it is an FT-stable model
of grp

I (κΠ).

Proof. Recall that comparisons do not belong to p in the definition of the stable models of a pro-
gram. Then, it is easy to see that τΠ can be obtained from grp

I (κΠ) by replacing each occurrence
of ¬op(set|E/X|(x)) ≺ u, where op ∈ {count,sum,sum+,min,max}, by ¬(43): Here χ is the set of
subsets ∆ of ΨEX

x
that do not justify op(set|E/X|(x)). Hence, it is enough to show that(

¬op(set|E/X|(x)
)
≺ u)Ans(I) = (¬(43))Ans(I)

For this it is enough to show that I satisfies op(set|E/x|(X)) ≺ u iff Ans(I) satisfies (43), which
follows from Lemma 7.

A.1.4 PROOF OF THE THEOREM

Proof of Theorem 1. Let Π be a program without positively recursive aggregates and let Π′ be the
result of replacing each aggregate atom A not in the scope of negation by not not A. Let I be an
agg-interpretation and A = Ans(I). Then,

A is a gringo answer set of Π

iff A is a gringo answer set of Π′ (Lemma 6)
iff A is an FT-stable model of τΠ′ (by definition)
iff A is an FT-stable model of grp

I (κΠ′) (Lemma 8)
iff I |= SMp[κΠ′] and A = Ans(I) (Lemma 1)
iff I |= SMp[κΠ] and A = Ans(I) (see below)
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iff A is an answer set of Π. (by definition)
For the missing step, recall that comparison symbols do not belong to p. Therefore, we can replace
any atom of form t ≺ t ′ with ≺ a comparison symbol by ¬¬(t ≺ t ′) without changing the models
of SMp[κΠ], that is, I |= SMp[κΠ′] iff I |= SMp[κΠ].

A.2 Proof of Propositions 1-2

Lemma 9. Let E be an aggregate element of the form (2) with free variables V and bound vari-
ables W and let I be a standard interpretation. Let v be a list of ground terms of sort sprg of the
same length as V, l′i = (li)V

v and t ′i = (ti)V
v . Then, I satisfies

∀T
(
T ∈ set|E|(v)↔∃W (T = tuplem(t

′
1, . . . , t

′
m)∧ l′1 ∧·· ·∧ l′n)

)
(44)

iff set|E|(v)I is the set of all tuples of the form ⟨(t ′′1 )I, . . . ,(t ′′m)
I⟩ s.t. I satisfies l′′1 ∧ ·· · ∧ l′′n with

t ′′i = (t ′i)
W
w and l′′i = (l′i)

W
w and w a list of ground terms of sort sprg of the same length as W.

Proof. Left-to-right. Assume that I satisfies (44). Pick any domain element dtuple of sort stuple.
Since I is a standard interpretation, dtuple belongs to set|E|(v)I iff I satisfies ∈ (d∗

tuple,set|E|(v)).
Furthermore, since I satisfies (44), the latter holds iff there is a list c of domain elements of sort sprg
such that

dtuple = tuplem(t
′′
1 , . . . , t

′′
m)

I = ⟨(t ′′1 )I , . . . ,(t ′′m)
I⟩

and I satisfies l′′1 ∧·· ·∧ l′′n with w = c∗.
Right-to-left. Assume that set|E|(v)I is the set of all tuples of the form ⟨(t ′′1 )I, . . . ,(t ′′m)

I⟩ such
that I satisfies l′′1 ∧·· ·∧ l′′n for some list w of ground terms of sort sprg of the same length as W. We
need to show that I satisfies (44). Pick any domain element dtuple of sort stuple and we will show that
I satisfies

d∗
tuple ∈ sets|E|(d∗)↔∃W

(
d∗

tuple = tuplem(t
′
1, . . . , t

′
m)∧ l′1 ∧·· ·∧ l′n

)
(45)

Since I is a standard interpretation, it follows that
I satisfies ∈ (d∗

tuple,set|E|(d∗))

iff dtuple belongs to set|E|(d∗)I

iff there exists w such that dtuple = ⟨(t ′′1 )I, . . . ,(t ′′m)
I⟩ and I satisfies l′′1 ∧·· ·∧ l′′n

iff I satisfies ∃W(d∗
tuple = tuplem(t

′
1, . . . , t

′
m)∧ l′1 ∧·· ·∧ l′n).

Proof of Proposition 1. Pick any list c of domain elements of sort sprg and let v = c∗. Then, the
result follows directly from Lemma 9.

Lemma 10. Let I be a standard interpretation, dset, dtuple, and eset be domain elements of sorts sset,
stuple, and sset, respectively. Then,

dset \{dtuple}= eset (46)

holds iff formula

∀T ′(T ′ ∈ e∗set ↔ (T ′ ∈ d∗
set ∧T ̸= d∗

tuple)
)

(47)

is satisfied by I.
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Proof. Left-to-right. Assume that (46) holds and pick an arbitrary domain element ctuple of sort
stuple. We need to show that

c∗tuple ∈ e∗set ↔ (c∗tuple ∈ d∗
set ∧ c∗tuple ̸= d∗

tuple) (48)

is satisfied by I. Since I is a standard interpretation, it follows that
I satisfies c∗tuple ∈ e∗set

iff ctuple ∈ eset

iff ctuple ∈ dset \{dtuple}
iff ctuple ∈ dset and ctuple /∈ {dtuple}
iff ctuple ∈ dset and ctuple ̸= dtuple
iff I satisfies c∗tuple ∈ d∗

set ∧ c∗tuple ̸= d∗
tuple.

Right-to-left. Assume that (47) holds. We will show that (46) holds as well. Pick any element ctuple
from the tuple domain. Then, since I is a standard interpretation, it follows that

ctuple ∈ eset

iff I satisfies c∗tuple ∈ e∗set
iff I satisfies c∗tuple ∈ d∗

set ∧ c∗tuple ̸= d∗
tuple

iff ctuple ∈ dset and ctuple ̸= dtuple
iff ctuple ∈ dset and ctuple /∈ {dtuple}
iff ctuple ∈ dset \{dtuple}. Therefore, (46) holds.

Lemma 11. Let I be a standard interpretation. Then, I satisfies condition 17 of agg-interpretations
iff it satisfies sentence (17).

Proof. Left to right. Assume that I satisfies condition 17 of aggregate interpretations. We now show
that I is a model of (17). Pick arbitrary domain elements dset,eset ∈ |I|sset and dtuple ∈ |I|stuple . Then,

I satisfies rem(d∗
set,d

∗
tuple) = e∗set

iff (rem(d∗
set,d

∗
tuple))

I = eset

iff dset \{dtuple} = eset (condition 17)
iff I satisfies (47) (Lemma 10).
Therefore, I satisfies (17).

Right to left. Assume now that I is a model of (17). We now show that I satisfies condition 17 of
aggregate interpretations. Pick any term tset of sort sset and any term ttuple of sort stuple. Let tI

set = dset
and tI

tuple = dtuple. Then, by definition,

rem(tset, ttuple)
I = rem(tI

set, t
I
tuple)

I

= rem(dset,dtuple)
I = eset

(49)

for some set eset ∈ |I|sset (given that I is a standard interpretation, e is a set of elements of |I|stuple).
We need to show that (46) holds. Note that, since I is a model of (17), it satisfies (47) and the result
follows immediately by Lemma 10.

Lemma 12. Let I be a standard interpretation. Then, I satisfies condition 18 of agg-interpretations iff
it satisfies all sentences of the form (18).

Proof. Left to Right. Assume I satisfies condition 18. Choose arbitrary domain elements d1, . . . ,dk
of sort sprg and take term ttuple = tuplek(d

∗
1 , . . . ,d

∗
k ). By condition 14 of standard interpretations, it
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follows that tI
tuple = dtuple. Then, by assumption, we get that

first(ttuple)
I = first(tuplek(d

∗
1 , . . . ,d

∗
k ))

I = firstI(⟨d1, . . . ,dk⟩) = d1.

Therefore,
I |= ∀X1 . . .Xk

(
first(tuplek(X1, . . . ,Xk)) = X1

)
Right to Left. Assume I |= ∀X1 . . .Xk

(
first(tuplek(X1, . . . ,Xk)) = X1

)
for any k. Choose arbitrary

domain elements d1, . . . ,dk of sort sprg. Then

I |= first(tuplek(d
∗
1 , . . . ,d

∗
k )) = d∗

1

By condition 14 of standard interpretations, tuplek(d
∗
1 , . . . ,d

∗
k )

I = ⟨d1, . . . ,dk⟩, for some domain
element dtuple of sort stuple. Thus, I satisfies condition 18.

Lemma 13. Let I be a standard interpretation and d1,d2 . . . ,dn be domain elements of sort sprg.
Then, I satisfies

(∃N d∗
1 = N)→ weight(tuplek(d

∗
1 ,d

∗
2 . . . ,d

∗
n)) = d∗

1 (50)
(¬∃N d∗

1 = N)→ weight(tuplek(d
∗
1 ,d

∗
2 . . . ,d

∗
n)) = 0. (51)

iff weight(tuplek(d1,d2 . . . ,dn))
I is the weight of tuplek(d1,d2 . . . ,dn) in the sense of condition 19.

Proof. Assume first that d1 is an integer. Then, I does not satisfy formula ¬∃N d∗
1 = N and, thus, it

satisfies (51). Hence, it is enough to show that I satisfies

weight(tuplek(d
∗
1 ,d

∗
2 . . . ,d

∗
n)) = d∗

1 . (52)

iff weight(tuplek(d1,d2 . . . ,dn))
I is the weight of tuplek(d

∗
1 ,d

∗
2 . . . ,d

∗
n)

I . Since I is a standard inter-
pretation, it follows that tuplek(d

∗
1 ,d

∗
2 . . . ,d

∗
n)

I is ⟨d1,d2 . . . ,dn⟩. Since d1 is an integer, the weight
of tuplek(d

∗
1 ,d

∗
2 . . . ,d

∗
n)

I is d1. Hence, the above holds.
Assume now that d1 is not an integer. Then, I does not satisfy ∃N d∗

1 = N and, thus, it satis-
fies (50). Hence, it is enough to show that I satisfies

weight(tuplek(d
∗
1 ,d

∗
2 . . . ,d

∗
n)) = 0. (53)

iff weight(tuplek(d1,d2 . . . ,dn))
I is the weight of tuplek(d

∗
1 ,d

∗
2 . . . ,d

∗
n)

I . Indeed, since I is a stan-
dard interpretation, tuplek(d

∗
1 ,d

∗
2 . . . ,d

∗
n)

I is ⟨d1,d2 . . . ,dn⟩. Since d1 is not integer, the weight
of tuplek(d

∗
1 ,d

∗
2 . . . ,d

∗
n)

I is 0.

Lemma 14. Let I be a standard interpretation. Then, I satisfies condition 19 iff it satisfies all
sentences of form (19-20).

Proof. Left-to-right. From Lemma 13, I satisfies condition 19 of aggregate interpretations iff I
satisfies sentences

∀X1∀X2 . . .∀Xn
(
(∃N X1 = N)→ weight(tuplek(X1,X2, . . . ,Xn)) = X1

)
(54)

∀X1∀X2 . . .∀Xn
(
(¬∃N X1 = N)→ weight(tuplek(X1,X2, . . . ,Xn)) = 0

)
.

Now, it is enough to note that (19) and (54) are equivalent in first order logic.

Proof of Proposition 2. This proposition is just a summary of Lemmas 11, 12 and 14.
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A.3 Proof of Proposition 3

Lemma 15. Let I be a standard interpretation and tset be a term of sort sset. Then, I satisfies
formula Finite(tset) iff set tI

set is finite, that is, iff there is a bijection between this set and a set of
natural numbers of form {i ∈ N | i ≤ n} for some natural number n.

Proof. First note that I |= Finite(tset)
iff

(∃ f (Injective( f , tset)∧∃NImage( f , tset,0,N)))I = true

iff there exists a function f such that

Injective( f , tset)
I = true

and
(∃NImage( f , tset,0,N))I = true

Furthermore, Injective( f , tset)
I = true

iff arbitrary domain elements v1 ∈ |I|stuple ,v2 ∈ |I|stuple satisfy

(v∗1 ∈ t∗set ∧ v∗2 ∈ t∗set ∧ f (v∗1) = f (v∗2)→ v∗1 = v∗2)
I = true

iff for arbitrary domain elements v1 ∈ |I|stuple ,v2 ∈ |I|stuple ,
if v1 ∈ tI

set and v2 ∈ tI
set and f I(v1) = f I(v2)

then v1 = v2
iff the restriction of f I to tI

set is an injective function.

Similarly, (∃NImage( f , tset,0,N))I = true
iff there exists a natural number m such that Image( f , tset,0,m)I = true
iff there exists a natural number m such that, for an arbitrary domain element dtuple ∈ |I|stuple , m
satisfies

(d∗
tuple ∈ tset → 0 ≤ f (d∗

tuple)∧ f (d∗
tuple)≤ m)I = true

iff there exists a natural number m such that, for arbitrary domain elements dtuple ∈ |I|stuple ,
if dtuple ∈ tI

set then 0 ≤ f I(dtuple)≤ m
iff there exists a natural number m such that every dtuple ∈ tI

set satisfies 0 ≤ f I(dtuple)≤ m.

That is, Finite(tset)
I = true iff there is a natural number m and a function f : tI

set −→ {i ∈ N | i ≤ m}
that is injective. Hence, we need to prove that the following two statements are equivalent:

1. there is a natural number m and a
function f : tI

set −→ {i ∈ N | i ≤ m} that is injective, and

2. there is a natural number n and a
function g : tI

set −→ {i ∈ N | i ≤ n} that is bijective.

It is clear the the latter implies the former, so we only need to prove that the former implies the
latter. We proceed by induction in the number of elements l in {i ∈ N | i ≤ m} that are not in the
image of f .
Base case. If l = 0, then f is a bijection and we just define g and n as f and m, respectively.
Induction step. Otherwise, there exists some natural number i≤m such that f (dtuple) ̸= i for all dtuple
in tI

set. We define natural number n′ as m−1 and function g′ as follows:
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• g′(dtuple)
def= f (dtuple) for each dtuple ∈ tI

set such that f (dtuple)≤ n′;

• for each dtuple ∈ tI
set such that f (dtuple) = m > n′, we define g′(dtuple)

def= i.

Since f is injective, function g′ is also injective. Furthermore, g′(dtuple) ≤ n′ holds for every dtuple
in tI

set. Note that, if i > n′, then every dtuple ∈ tI
set satisfies f (dtuple) ≤ n′. Since there are strictly

less elements in {i ∈ N | i ≤ n′} that are not in the image of g′ than l, the statement follows by the
induction hypothesis.

Lemma 16. Let I be a standard interpretation that satisfies conditions 5, 17 and 19 for being an
agg-interpretation. Let tset be a term of sort sset such that tI

set contains finitely many and at least one
tuple and such that I satisfies

count(d∗
set)

I is the cardinality of dset (55)

for every domain element dset of sort sset which has strictly less tuples than tI
set. Then, I satisfies

formula

∀T
(
T ∈ tset →∃N

(
count(rem(tset,T )) = N ∧ count(tset) = N +1

))
(56)

iff

count(tset)
I is the cardinality of tI

set (57)

Proof. Let dset be the set obtained by removing some arbitrary domain element dtuple ∈ tI
set from

tI
set. Note that, by assumption, tI

set has at least one tuple. Note also that, by assumption tI
set has

finitely many tuples and, thus, dset is finite. Therefore, its cardinality is a natural number n, that is,
count(d∗

set)
I = n and the cardinality of tI

set is n+1. Furthermore, since I is a standard interpretation
and dtuple belongs to tI

set, it follows that I satisfies d∗
tuple ∈ tset. Hence, it is enough to show that I also

satisfies formula

∃N
(
count(rem(tset,d∗

tuple)) = N ∧ count(tset) = N +1
)

(58)

iff count(tset)
I = n+1. Note also that, since I satisfies condition 17, it follows that

rem(tset,d∗
tuple)

I = tI
set \{dtuple}= dset

and, thus, formula (58) can be rewritten as

∃N (count(d∗
set) = N ∧ count(tset) = N +1) (59)

Hence, it is enough to show that I also satisfies formula (59) iff count(tset)
I = n+1. This immedi-

ately follows by observing that count(d∗
set)

I = n.

Lemma 17. Let I be a standard interpretation that satisfies conditions 5, 17 and 19 for being an
agg-interpretation and sentence (21). Let tset be a term of sort sset such that tI

set contains finitely
many tuples. Then, I satisfies formula

∀T
(
T ∈ tset →∃N

(
count(rem(tset,T )) = N ∧ count(tset) = N +1

))
(60)

for every domain element dset of sort sset which is a subset of tI
set iff

count(d∗
set)

I is the cardinality of dset (61)

for every domain element dset of sort sset which is a subset of tI
set.
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Proof. The proof follows by induction assuming that the lemma statement holds for all domain
elements that have strictly fewer tuples.

Base case. In the case that dset contains no tuples, since I is a standard interpretation it follows
that the antecedent of (60) is never satisfied, which means I satisfies (60). By condition 15 of
standard interpretations and by the fact that I satisfies sentence (21), count(tset)

I = 0 and so the
lemma statement holds. Note that tI

set is the only subset of itself as we assume it to be empty.

The induction step follows directly from Lemma 16.

Lemma 18. Let I be a standard interpretation that satisfies conditions 5, 17 and 19 for being an
agg-interpretation and sentence (21). Then, I satisfies sentence (22) iff

count(d∗
set)

I is the cardinality of dset (62)

for every domain element dset of sort sset that contains a finite number of tuples.

Proof. Left-to-right. Assume I satisfies sentence (22) and choose arbitrary domain element dset ∈
|I|sset with a finite number of tuples. Since dset is finite, it follows that each eset that is a subset of dset

is also finite. By Lemma 15, this implies that I satisfies Finite(e∗set) for each eset that is a subset of
dset. Furthermore, since I satisfies sentence (22), it follows that any eset satisfying Finite(e∗set) also
satisfies FiniteCount(e∗set). From Lemma 17, this, plus the fact that I satisfies sentence (21), implies
that count(e∗set)

I is the cardinality of eset for each eset. In particular, this implies that I satisfies (62).
Right-to-Left. Assume count(d∗

set)
I is the cardinality of dset for an arbitrary domain element dset

of sort sset. Now assume that I satisfies Finite(d∗
set). By Lemma 15, dset contains a finite number

of tuples and thus, every subset eset of dset also contains a finite number of tuples. By the lemma
assumption, this implies that

count(e∗set)
I is the cardinality of eset

for every domain element eset of sort sset which is a subset of dset. From Lemma 17, this implies
that I satisfies formula

∀T
(
T ∈ e∗set →∃N

(
count(rem(e∗set,T )) = N ∧ count(e∗set) = N +1

))
(63)

for every subset eset of dset. In particular, this implies that I satisfies FiniteCount(d∗
set) and, thus,

that I satisfies (22).

Proof of Proposition 3. Left-to-Right. Assume that I satisfies condition 6 of agg-interpretations
and we will show that I satisfies sentences (21-23). Since I is a standard interpretation that satisfies
condition 6, it follows that I interprets count(tset) as ĉount(tI

set). This also implies that /0I
= /0 and,

thus, count( /0)I = 0. Therefore, I satisfies (21).
Let us now show that I satisfies (22). Pick an arbitrary domain element d∗

set of sort sset and
assume that I satisfies Finite(d∗

set). We need to show that I satisfies FiniteCount(d∗
set). From

Lemma 15, it follows that dset is finite. Recall that, by definition, ĉount(dset) is the cardinality
of dset. From Lemma 18, this implies that I satisfies FiniteCount(d∗

set) and so sentence (22) holds.
Finally, let us now show that I satisfies (23). Pick an arbitrary domain element dset of sort sset

and assume that I does not satisfy Finite(d∗
set). By Lemma 15, this implies that dset is infinite.

Since I satisfies condition 6, it follows that I satisfies count(d∗
set) = sup. Therefore, I satisfies (23).
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Right-to-left. Assume that I satisfies sentences (21-23) and we will show that it satisfies condi-
tion 6 of agg-interpretations. Pick any term tset of sort sset. If tI

set is infinite, then (23) implies that
count(tset)

I = sup. If tI
set is finite, then by Lemma 18 and the fact that I satisfies (22) it follows that

count(tset)
I is the cardinality of tI

set. Thus, interpretation I satisfies condition 6.

A.4 Proof of Proposition 4

Lemma 19. Let I be a standard interpretation and tset be a term of sort sset. Then, I satisfies
formula FiniteWeight(tset) iff set {d ∈ tI

set | I |=weight(d∗) ̸= 0} is finite, that is, iff there is a bijection
between this set and a set of natural numbers of form {i ∈ N | i ≤ n} for some natural number n.

Proof. First note that I |= FiniteWeight(tset)
iff

(∃ f
(
InjectiveWeight( f , tset) ∧∃NImageWeight( f , tset,0,N)

)
)I = true

iff there exists a function f ′ such that

InjectiveWeight( f ′, tset)
I = true

and

(∃NImageWeight( f ′, tset,0,N))I = true

Furthermore, InjectiveWeight( f ′, tset)
I = true

iff arbitrary domain elements v1 ∈ |I|stuple and v2 ∈ |I|stuple satisfy

(v∗1 ∈ t∗set ∧ v∗2 ∈ t∗set∧
weight(v∗1) ̸= 0∧weight(v∗2) ̸= 0∧
f ′(v∗1) = f ′(v∗2)→ v∗1 = v∗2)

I = true
(64)

iff for arbitrary domain elements v1 ∈ |I|stuple ,v2 ∈ |I|stuple

if v1 ∈ tI
set and v2 ∈ tI

set and the weights of v1 and v2 are both non-zero and f I(v1) = f I(v2),
then v1 = v2

iff the restriction of f ′I to the set of elements of tI
set with non-zero weights is an injective function.

Similarly, (∃NImageWeight( f ′, tset,0,N))I = true
iff there exists a natural number m such that

ImageWeight( f ′, tset,0,m)I = true

iff there exists a natural number m such that, for arbitrary domain element dtuple ∈ |I|stuple , m satisfies

(d∗
tuple ∈ t∗set ∧weight(d∗

tuple) ̸= 0 → 0 ≤ f (d∗
tuple)∧ f (d∗

tuple)≤ m)I = true (65)

iff there exists a natural number m such that, for arbitrary domain element dtuple ∈ |I|stuple ,
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if dtuple ∈ tI
set and the weight of dtuple is non-zero,

then 0 ≤ f ′I(dtuple)≤ m
iff there exists a natural number m s.t. every dtuple ∈ tI

set with non-zero weight satisfies 0 ≤ f ′I(dtuple)≤ m.

Hence, I |= FiniteWeight(tset) iff there exists a natural number m and an injective function f from
the set {d ∈ tI

set | I |= weight(d∗) ̸= 0} (the set of elements in tI
set with non-zero weights) to {i ∈ N |

i ≤ m}. As was the case with Lemma 15, we need to prove that the following two statements are
equivalent (omitting the trivial right to left direction):

1. there is a natural number m and function f : {d ∈ tI
set | I |=weight(d∗) ̸= 0}−→{i∈N | i≤m}

that is injective, and

2. there is a natural number n and function g : {d ∈ tI
set | I |= weight(d∗) ̸= 0} −→ {i ∈N | i ≤ n}

that is bijective.

We proceed by induction in the number of elements l in {i ∈ N | i ≤ m} that are not in the image
of f .
Base case. If l = 0, then f is a bijection and we just define g and n as f and m, respectively.
Induction step. Otherwise, there exists some natural number i≤m such that f (dtuple) ̸= i for all dtuple
in {d ∈ tI

set | I |= weight(d∗) ̸= 0}. We define natural number n′ as m−1 and function g′ as follows:

• g′(dtuple)
def= f (dtuple) for each dtuple ∈ {d ∈ tI

set | I |= weight(d∗) ̸= 0} such that f (dtuple)≤ n′;

• for each dtuple ∈{d ∈ tI
set | I |=weight(d∗) ̸= 0} such that f (dtuple)> n′, we define g′(dtuple)

def= i.

Since f is injective, function g′ is also injective. Furthermore, g′(dtuple) ≤ n′ holds for every dtuple
in {d ∈ tI

set | I |= weight(d∗) ̸= 0}. If i > n′, then every dtuple ∈ {d ∈ tI
set | I |= weight(d∗) ̸= 0}

satisfies f (dtuple) ≤ n′. Since there are strictly less elements in {i ∈ N | i ≤ n′} that are not in the
image of g′ than l, the statement follows by the induction hypothesis.

Lemma 20. Let I be a standard interpretation that satisfies conditions 5, 17 and 19 for being an
agg-interpretation. Let tset be a term of sort sset such that tI

set contains finitely many and at least one
tuple with non-zero weight and such that I satisfies

sum(d∗
set)

I = ∑{weight(d∗
tuple)

I | dtuple ∈ dset and weight(d∗
tuple)

I ̸= 0} (66)

for every domain element dset of sort sset which has strictly less non-zero tuples than tI
set. Then, I

satisfies formula

∀T
(
T ∈ tset ∧weight(T ) ̸= 0 →∃N

(
sum(rem(tset,T )) = N ∧ sum(tset) = N +weight(T )

))
(67)

iff

sum(tset)
I = ∑{weight(d∗

tuple)
I | dtuple ∈ tI

set and weight(d∗
tuple)

I ̸= 0} (68)

Proof. Let dset be the set obtained by removing some arbitrary domain element dtuple that belongs
to tI

set from tI
set such that dtuple has non-zero weight. Note that, by assumption, tI

set has at least one
non-zero weight tuple. Note also that, by assumption tI

set has finitely many non-zero weight tuples
and, thus, (68) holds iff

sum(tset)
I = weight(d∗

tuple)
I +∑{weight(d∗)I | d ∈ dset and weight(d∗)I ̸= 0}
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iff

sum(tset)
I = weight(d∗

tuple)
I + sum(d∗

set)
I (69)

Furthermore, since I is a standard interpretation that satisfies condition 19 and dtuple is a non-zero
weight tuple that belongs to tI

set, it follows that I satisfies d∗
tuple ∈ tset ∧weight(d∗

tuple) ̸= 0. Hence, it
is enough to show that I satisfies formula

∃N(sum(rem(tset,d∗
tuple)) = N ∧ sum(tset) = N +weight(d∗

tuple)) (70)

iff (69) holds. Note also that, since I satisfies condition 17, it follows that

rem(tset,d∗
tuple)

I = tI
set \{dtuple}= dset

and, thus, formula (70) can be rewritten as

∃N(sum(d∗
set) = N ∧ sum(tset) = N +weight(d∗

tuple)) (71)

Therefore, we just need to show that I satisfies formula (71) iff (69) holds. It is easy to see that (71)
implies (69). Note also that sum(d∗

set)
I is an integer and, thus, (69) also implies (71).

Lemma 21. Let I be a standard interpretation that satisfies conditions 5, 17 and 19 for being an
agg-interpretation and sentence (24). Let tset be a term of sort sset such that tI

set contains finitely
many tuples with non-zero weights. Then, I satisfies formula

∀T
(
T ∈ d∗

set ∧weight(T ) ̸= 0 →∃N
(
sum(rem(d∗

set,T )) = N ∧ sum(d∗
set) = N +weight(T )

))
(72)

for every domain element dset of sort sset which is a subset of tI
set iff

sum(d∗
set)

I = ∑{weight(d∗
tuple)

I | dtuple ∈ dset and weight(d∗
tuple)

I ̸= 0} (73)

for every domain element dset of sort sset which is a subset of tI
set.

Proof. The proof follows by induction assuming that the lemma statement holds for all domain
elements that have strictly fewer tuples with non-zero weights.

Base case. In the case where tI
set does not have any tuple with non-zero weight, since I is a standard

interpretation, it follows that I satisfies (72). This also implies that I satisfies

∀T (T ∈ tset → weight(T ) = 0)

and, thus, sum(d∗
set)

I = 0 holds for every domain element dset of sort sset which is a subset of tI
set.

Hence, the lemma statement holds.

The induction step follows directly from Lemma 20.

Lemma 22. Let I be a standard interpretation that satisfies conditions 5, 17 and 19 for being an
agg-interpretation and sentence (24). Let tset be a term of sort sset such that tI

set contains finitely
many tuples with non-zero weights. Then, I satisfies formula

∀T
(
T ∈ d∗

set →∃N
(
sum(rem(d∗

set,T )) = N ∧ sum(d∗
set) = N +weight(T )

))
(74)

for every domain element dset of sort sset which is a subset of tI
set iff

sum(d∗
set)

I = ∑{weight(d∗
tuple)

I | dtuple ∈ dset and weight(d∗
tuple)

I ̸= 0} (75)

for every domain element dset of sort sset which is a subset of tI
set.
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Proof. Right-to-left. From Lemma 21, it follows (75) holds for every domain element dset of sort sset

which is a subset of tI
set iff I satisfies (72) for every domain element dset of sort sset which is a subset

of tI
set. Furthermore, (74) entails (72) in first order logic.

Left-to-right. Note (74) is equivalent to the conjunction of (72) and

∀T
(
T ∈ d∗

set ∧weight(T ) = 0 →∃N
(
sum(rem(d∗

set,T )) = N ∧ sum(d∗
set) = N +weight(T )

))
(76)

Assume that (75) holds for every domain element dset of sort sset which is a subset of tI
set. Then,

from Lemma 21, interpretation I satisfies (72) for every domain element dset of sort sset which is a
subset of tI

set. Furthermore, for standard interpretations, (76) is equivalent to

∀T
(
T ∈ d∗

set ∧weight(T ) = 0 →∃N (sum(rem(d∗
set,T )) = N ∧ sum(d∗

set) = N)
)

Pick any domain element dtuple of sort stuple s.t. I satisfies dtuple ∈ d∗
set ∧weight(dtuple) = 0. We need

to show

sum(d∗
set)

I = sum(rem(dset,dtuple))
I (77)

which follows from the fact that (75) holds for every domain element dset of sort sset which is a
subset of tI

set and that dset and rem(dset,dtuple)
I have the same tuples with non-zero weights.

Lemma 23. Let I be a standard interpretation that satisfies conditions 5, 17 and 19 for being an
agg-interpretation and sentence (24). Then, I satisfies sentence (25) iff

sum(e∗set)
I = ∑{weight(d∗

tuple)
I | dtuple ∈ eset, weight(d∗

tuple)
I ̸= 0} (78)

for every domain element eset of sort sset that contains a finite number of non-zero weight tuples.

Proof. Left-to-right. Assume first that I satisfies sentence (25). Pick any domain element eset of
sort sset that contains a finite number of non-zero weight tuples. Then, I satisfies FiniteWeight(d∗

set)
for every subset dset of eset (Lemma 19) and, since it satisfies (25), it follows that I satisfies FiniteSum(d∗

set)
for every subset dset of eset. Since I also satisfies (24), we get that it satisfies (74) for every domain
element dset of sort sset which is a subset of eset. From Lemma 22, this implies that (78) holds.

Right-to-left. Pick any domain element eset of sort sset and assume that I satisfies FiniteWeight(e∗set).
From Lemma 19, this implies that eset contains a finite number of tuples with non-zero weights and,
thus, so does any subset dset of eset. By hypothesis, this implies that

sum(d∗
set)

I = ∑{weight(d∗
tuple)

I | dtuple ∈ dset and weight(d∗
tuple)

I ̸= 0}

holds for every subset dset of eset. From Lemma 22, this implies that I satisfies

∀T
(
T ∈ d∗

set →∃N
(
sum(rem(d∗

set,T )) = N ∧ sum(d∗
set) = N +weight(T )

))
for every subset dset of eset. In particular, this implies that I satisfies

d∗
tuple ∈ e∗set →∃N

(
sum(rem(e∗set,T )) = N ∧ sum(e∗set) = N +weight(T )

)
Therefore, I satisfies (25).
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Proof of Proposition 4. Left-to-right. Assume first that I satisfies condition 7 and we will show
that I satisfies sentences (24-26). Since I is a standard interpretation, sum(tset)

I = 0 holds for any tset

without non-zero weight tuples and, thus, I satisfies (24). Furthermore, from Lemma 23, I satis-
fies (25). Finally, to show that I satisfies (26), pick any domain element dset of sort sset and assume
that I does not satisfy FiniteWeight(d∗

set). From Lemma 19, this implies that dset contains an infinite
number of tuples with non-zero weights and, since I satisfies condition 7, it follows that I satis-
fies sum(d∗

set) = 0. Therefore, I satisfies (26).

Right-to-left. Assume that I satisfies sentences (24-26) and we will show that it satisfies condi-
tion 7. Pick any term tset of sort sset. If tI

set contains no tuples with non-zero weights, (24) implies
that sum(tset) = 0. Similarly, if tI

set contains an infinite number of tuples with non-zero weights, (26)
implies that sum(tset) = 0. It only remains to be shown that, if tI

set contains a finite number of tuples
with non-zero weights, then

sum(tset)
I = ∑{weight(d∗

tuple)
I | dtuple ∈ tI

set and weight(d∗
tuple)

I ̸= 0} (79)

which follows from Lemmas 19 and 23 and the fact that I satisfies (25).

A.5 Proof of Proposition 5

Lemma 24. Let I be a standard interpretation and tset be a term of sort sset. Then, I satisfies
formula FinitePositive(tset) iff set {d ∈ tI

set | I |= weight(d∗) > 0} is finite, that is, iff there is a
bijection between this set and a set of natural numbers of form {i ∈ N | i ≤ n} for some natural
number n.

Proof. The proof is analogous to the proof of Lemma 19.

Lemma 25. Let I be a standard interpretation that satisfies conditions 5, 17 and 19 for being an
agg-interpretation. Let tset be a term of sort sset such that tI

set contains finitely many and at least one
tuple with positive weight and such that I satisfies

sum+(d∗
set)

I = ∑{weight(d∗
tuple)

I | dtuple ∈ dset and weight(d∗
tuple)

I > 0} (80)

for every domain element dset of sort sset which has strictly less positive tuples than tI
set. Then, I

satisfies formula

∀T
(
T ∈ tset ∧weight(T )> 0 →

∃N
(
sum+(rem(tset,T )) = N ∧ sum+(tset) = N +weight(T )

)) (81)

iff

sum+(tset)
I = ∑{weight(d∗

tuple)
I | dtuple ∈ tI

set and weight(d∗
tuple)

I > 0} (82)

Proof. The proof is analogous to the proof of Lemma 20.

Lemma 26. Let I be a standard interpretation that satisfies conditions 5, 17 and 19 for being an
agg-interpretation and sentence (27). Let tset be a term of sort sset such that tI

set contains finitely
many tuples with positive weights. Then, I satisfies formula

∀T
(
T ∈ d∗

set ∧weight(T )> 0 →
∃N
(
sum+(rem(d∗

set,T )) = N ∧ sum+(d∗
set) = N +weight(T )

)) (83)
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for every domain element dset of sort sset which is a subset of tI
set iff

sum+(d∗
set)

I = ∑{weight(d∗
tuple)

I | dtuple ∈ dset, weight(d∗
tuple)

I > 0} (84)

for every domain element dset of sort sset which is a subset of tI
set.

Proof. The proof is analogous to the proof of Lemma 21.

Lemma 27. Let I be a standard interpretation that satisfies conditions 5, 17 and 19 for being an
agg-interpretation and sentence (27). Then, I satisfies sentence (28) iff

sum+(e∗set)
I = ∑{weight(d∗

tuple)
I | dtuple ∈ eset and weight(d∗

tuple)
I > 0} (85)

for every domain element eset of sort sset that contains a finite number of positive weight tuples.

Proof. The result follows from Lemma 26 in a similar way that Lemma 23 follows from Lemma 22.

Proof of Proposition 5. Left-to-right. Assume first that I satisfies condition 8 and we will show
that I satisfies sentences (27-29). Since I is a standard interpretation, sum+(tset)

I = 0 holds for
any tset without positive weight tuples and, thus, I satisfies (27). Furthermore, from Lemma 27, I
satisfies (28). Finally, to show that I satisfies (29), pick any domain element dset of sort sset and
assume that I does not satisfy FinitePositive(d∗

set). From Lemma 24, this implies that dset contains
an infinite number of tuples with positive weights and, since I satisfies condition 8, it follows that I
satisfies sum+(d∗

set) = sup. Therefore, I satisfies (29).

Right-to-left. Assume that I satisfies sentences (27-29) and we will show that it satisfies condi-
tion 8. Pick any term tset of sort sset. If tI

set contains no tuples with positive weights, (27) implies
that sum+(tset) = 0. Similarly, if tI

set contains an infinite number of tuples with positive weights,
(29) implies that sum+(tset) = sup. It only remains to be shown that, if tI

set contains a finite number
of tuples with positive weights, then

sum+(tset)
I = ∑{weight(d∗

tuple)
I | dtuple ∈ tI

set and weight(d∗
tuple)

I > 0} (86)

which follows from Lemmas 24 and 27 and the fact that I satisfies (28).

A.6 Proof of Propositions 6-7

Lemma 28. Let I be an interpretation that satisfies all conditions for being an agg-interpretation ex-
cept conditions 6-8 and 10, and let tset be a term of sort sset. If I |=Finite(tset) then I |=FiniteMin(tset).

Proof. By Lemma 15, tI
set is a finite set. Pick any domain element dtuple of sort stuple. Case 1. dtuple

does not belong to tI
set. Then, the antecedent of FiniteMin(tset) is false. Case 2. dtuple belongs to tI

set.
Due to the definition of m̂in for non-empty finite sets, m̂in(tI

set) is the least element of the set

{X1 | ⟨X1, . . . ,Xk⟩ ∈ tI
set}. (87)

Assume that I |=¬∃T ′(T ∈ tset∧first(T ′)< first(d∗
tuple)). Otherwise, the antecedent of FiniteMin(tset)

does not hold. By conditions 13, 16, and 18 of agg-interpretations, there is no tuple ⟨d1, . . . ,dk⟩ ∈ tI
set

such that d1 < first(d∗
tuple)

I . This implies that first(d∗
tuple)

I is the least element of the set (87).
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Thus, m̂in(tI
set) is first(d∗

tuple)
I . By condition 9, m̂in(tI

set) is min(tset)
I and consequently, min(tset)

I is
first(d∗

tuple)
I . Hence, I satisfies

∀T
(
T ∈ tset ∧¬∃T ′(T ′ ∈ tset ∧first(T ′)< first(T )

)
→ min(tset) = first(T )

)
that is, I |= FiniteMin(tset).

Lemma 29. Let I be an interpretation that satisfies all conditions for being an agg-interpretation
except conditions 6-10, and let tset be a term of sort sset. Further assume that

I |= ∀S (Finite(S)→ FiniteMin(S))

and that tI
set is finite and non-empty. Then I satisfies the condition that min(tset)

I is the least element
of the set (87).

Proof. Since tI
set is finite, by Lemma 15 it follows that I |= Finite(tset). Thus, I |= FiniteMin(tset) as

well. That is, I satisfies

∀T
(
T ∈ tset ∧¬∃T ′(T ′ ∈ tset ∧first(T ′)< first(T )

)
→ min(tset) = first(T )

)
By assumption and condition 4 of agg-interpretations, it follows that tI

set contains at least one tuple
and thus, there exists a tuple dtuple = ⟨d1, . . . ,dk⟩ in tI

set such that d1 is the least element of the set (87).
Since dtuple belongs to set tI

set and I |= FiniteMin(tset), it follows that I satisfies

d∗
tuple ∈ tset ∧¬∃T ′(T ′ ∈ tset ∧first(T ′)< d∗

1
)
→ min(tset) = d∗

1

For the sake of contradiction, suppose that I satisfies

∃T ′(T ′ ∈ tset ∧first(T ′)< d∗
1
)

Then, there is d′
tuple = ⟨e1, . . . ,ek⟩ such that I satisfies

d′∗
tuple ∈ tset ∧ e∗1 < d∗

1

This implies that e1 belongs to set (87) and that e1 < d1, which is a contradiction with the fact that d1
is the least element of the set (87). Therefore, I satisfies

¬∃T ′(T ′ ∈ tset ∧first(T ′)< first(d∗
tuple)

)
and, thus, I satisfies that min(tset) = d∗

1 . From this, it follows that min(tset)
I is the least element of

the set (87).

Proof of Proposition 6. Left-to-right. Assume I satisfies condition 9. Then, for any domain ele-
ment dset, if dset is empty, m̂in(dset) is sup. Since I is a standard interpretation, /0I

= /0. Thus,

min(d∗
set)

I = min( /0)I = m̂in( /0) = sup .

Now choose an arbitrary term dset of sort sset and assume I |= Finite(d∗
set). By Lemma 28, I |=

FiniteMin(d∗
set). Choose an arbitrary domain element dset of sort sset such that I ̸|= Finite(d∗

set). By

1023



FANDINNO, HANSEN, & LIERLER

Lemma 15, dset is not a finite set. Due to the definition of m̂in for infinite sets, m̂in(dset) is inf .
Thus,

min(d∗
set)

I = minI(dset) = m̂in(dset) = inf .

Therefore, I satisfies sentences (30-32).

Right-to-left. Assume I satisfies sentences (30-32). Since /0I
= /0 and I satisfies sentence (30),

minI( /0) is sup. This satisfies the first condition of m̂in. Now choose a domain element dset that is
finite and non-empty. By Lemma 29, min(d∗

set)
I is the least element of the set of elements consisting

of the first members of elements from dset. This satisfies the second condition of m̂in. Finally,
choose a domain element dset that is infinite. Then, by Lemma 15, I ̸|= Finite(dset). Since I satisfies
sentence (32), I |= min(d∗

set) = inf . Therefore, minI(dset) is inf . This satisfies the last condition of
m̂in. Therefore, I satisfies condition 9.

Lemma 30. Let I be an interpretation that satisfies all conditions for being an agg-interpretation
except conditions 6-9, and let tset be a term of sort sset. In this case, if I |= Finite(tset) then I |=
FiniteMax(tset).

Proof. The proof is symmetric to the proof of Lemma 28.

Lemma 31. Let I be an interpretation that satisfies all conditions for being an agg-interpretation
except conditions 6-10, and let tset be a term of sort sset. Further assume that

I |= ∀S (Finite(S)→ FiniteMax(S))

and that tI
set is finite and non-empty. Then I satisfies the condition that max(tset)

I is the greatest
element of the set (87).

Proof. The proof is symmetric to the proof of Lemma 29.

Proof of Proposition 7. Left-to-right. Assume I satisfies condition 10. By assumption, for any
domain element dset, if dset is empty, m̂ax(dset) is inf . Since I is a standard interpretation, /0I

= /0.
Thus,

max(d∗
set)

I = max( /0)I = m̂ax( /0) = inf .

Now choose an arbitrary term dset of sort sset and assume I |= Finite(d∗
set). By Lemma 30, I |=

FiniteMax(d∗
set). Choose an arbitrary domain element dset of sort sset such that I ̸|= Finite(d∗

set). By
Lemma 15, dset is not a finite set. Due to the definition of m̂ax for infinite sets, m̂ax(dset) is sup.
Thus,

max(d∗
set)

I = maxI(dset) = m̂ax(dset) = sup .

Therefore, I satisfies sentences 30-32.
Right-to-left. Assume I satisfies sentences 33-35. Choose an arbitrary domain element dset such that
dset is empty. Recall that /0I

= /0. Since I satisfies sentence 33, maxI( /0) is inf . This satisfies the first
condition of m̂ax.
Now choose an arbitrary domain element dset such that dset is finite and non-empty. By Lemma 31,
max(d∗

set)
I is the greatest element of the set of elements consisting of the first elements of dset. This

satisfies the second condition of m̂ax.
Now choose an arbitrary domain element dset such that dset is infinite. Then, by Lemma 15, I ̸|=
Finite(dset). Since I satisfies sentence 35, I |= max(d∗

set) = sup. Therefore, minI(dset) is sup. This
satisfies the last condition of m̂ax. Therefore, I satisfies condition 10.
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A.7 Proof of Theorem 3

Proof of Theorem 3. A set M of ground atoms is an answer set of Π

iff there is an agg-interpretation I that is a model of SMp[κΠ]
and M = Ans(I)

iff there is a standard interpretation I that is a model of SMp[κΠ] satisfying conditions 5-10 and
17-19, and M = Ans(I)

iff there is standard interpretation I that is a model of SMp[κΠ] satisfying conditions 5 and 17-19,
and sentences (21-35), and M = Ans(I) (Propositions 3-7)

iff there is a standard interpretation I that is a model of SMp[κΠ] satisfying sentences (16-35)
and M = Ans(I) (Propositions 1 and 2)

A.8 Proof of Theorem 8

The lemmas of this section all make the following assumptions. Let E be an aggregate element.
Let I be a standard interpretation that satisfies conditions 5, 17-19 for being an agg-interpretation
and sentences (21,24,27,30,33) and (38-42). Let J be an agg-interpretation that agrees with I in the
interpretation of all symbols but the function symbols sum, count, sum+, min, and max. Note that,
since I and J agree on the interpretation of all symbols except the aggregate symbols, set|E|(t)I =
set|E|(t)J for any list t of terms of sort sprg of the correct length.

Lemma 32. If set|E|(t)I contains finitely many tuples, then count(set|E|(t))I = count(set|E|(t))J

holds for any list t of terms of sort sprg of the correct length.

Proof. Since I satisfies sentence (38), it follows that I satisfies FiniteCount(dset) for every domain
element dset of sort sset that is a subset of set|E|(t). Equivalently, I satisfies sentence (60) for every
dset ⊆ set|E|(t). From Lemma 17 and the fact that J is an agg-interpretation, this implies

count(set|E|(t))I = |set|E|(t)I |= |set|E|(t)J |= count(set|E|(t))J

Lemma 33. If set|E|(t)I contains finitely many tuples with non-zero weights, then sum(set|E|(t))I =
sum(set|E|(t))J holds for any list t of terms of sort sprg of the correct length.

Proof. Since I satisfies sentence (39), it follows that I satisfies FiniteSum(dset) for every domain
element dset of sort sset that is a subset of set|E|(t). From Lemma 22 and the fact that J is an
agg-interpretation, this implies

sum(set|E|(t))I = ∑{weight(d∗
tuple)

I | dtuple ∈ set|E|(t)I and weight(d∗
tuple)

I ̸= 0}
= ∑{weight(d∗

tuple)
J | dtuple ∈ set|E|(t)J and weight(d∗

tuple)
J ̸= 0}

= sum(set|E|(t))J

Lemma 34. If set|E|(t)I contains finitely many tuples with positive weights, then sum+(set|E|(t))I =
sum+(set|E|(t))J holds for any list t of terms of sort sprg of the correct length.
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Proof. Since I satisfies sentence (40), it follows that I satisfies FinitePositiveSum(dset) for every
domain element dset of sort sset that is a subset of set|E|(t). From Lemma 26 and the fact that J is an
agg-interpretation, this implies

sum+(set|E|(t))I = ∑{weight(d∗
tuple)

I | dtuple ∈ set|E|(t)I and weight(d∗
tuple)

I > 0}
= ∑{weight(d∗

tuple)
J | dtuple ∈ set|E|(t)J and weight(d∗

tuple)
J > 0}

= sum+(set|E|(t))J

Lemma 35. If set|E|(t)I contains finitely many tuples, then min(set|E|(t))I = min(set|E|(t))J holds
for any list t of terms of sort sprg of the correct length.

Proof. Case 1: set|E|(t)I contains at least one tuple. Since I satisfies sentence (41), it follows that I
satisfies FiniteMin(set|E|(t)). By assumption, set|E|(t)I contains at least one tuple, therefore, there
exists a tuple dtuple in set|E|(t)I such that d1 is the least element of the set

{X1|⟨X1, . . . ,Xk⟩ ∈ set|E|(t)I} (88)

and I satisfies

dtuple ∈ set|E|(t)∧¬∃T ′(T ′ ∈ set|E|(t)∧first(T ′)< d∗
1)→ min(set|E|(t)) = d∗

1

For the sake of contradiction, suppose that I satisfies

∃T ′(T ′ ∈ set|E|(t)∧first(T ′)< d∗
1
)

Then, there exists ctuple = ⟨e1, . . . ,ek⟩ such that I satisfies

c∗tuple ∈ set|E|(t)∧ e∗1 < d∗
1

This implies that e1 belongs to set (88) and that e1 < d1, which is a contradiction with the fact that d1
is the least element of the set (88). Therefore, I satisfies

¬∃T ′(T ′ ∈ set|E|(t)∧first(T ′)< first(d∗
tuple)

)
and, thus, I satisfies that min(set|E|(t)) = d∗

1 . From this, it follows that min(set|E|(t))I is the least
element of the set (88). Since I and J agree on the interpretation of all symbols except the aggregate
function symbols,

{X1|⟨X1, . . . ,Xk⟩ ∈ set|E|(t)I}= {X1|⟨X1, . . . ,Xk⟩ ∈ set|E|(t)J} (89)

and since J is an agg-interpretation, min(set|E|(t))J is also the least element of this set. Conse-
quently, set|E|(t)I = min(set|E|(t))J

Case 2: set|E|(t)I contains no tuples. Since I is a standard interpretation, set|E|(t)I = /0. By assump-
tion, I satisfies sentence 30 and J is an agg-interpretation, thus,

min(set|E|(t))I = sup = min(set|E|(t))J
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Lemma 36. If set|E|(t)I contains finitely many tuples, then max(set|E|(t))I = max(set|E|(t))J holds
for any list t of terms of sort sprg of the correct length.

Proof. The proof is symmetric to the proof of Lemma 35.

Proof of Theorem 8. Left-to-right. Assume that M is an answer set of some program Π. Then,
from Theorem 3, there is some standard model I of SMp[κΠ] that satisfies all sentences of forms (16-
35) and M = Ans(I). Hence, it only remains to be shown that I satisfies all sentences of forms (38-
42). Pick any aggregate element E, any list d of domain elements of sort sprg and any domain
element dset of sort sset and assume that I satisfies Subset(d∗

set,set|E|(d∗)).
Now we will show that I satisfies

FiniteCount(d∗
set), FiniteSum(d∗

set), FinitePositiveSum(d∗
set),

FiniteMin(set|E|(d∗)), and FiniteMax(set|E|(d∗)).
Note that I satisfies the following sentences:

Finite(d∗
set)→ FiniteCount(d∗

set) (since I |= (22))
FiniteWeight(d∗

set)→ FiniteSum(d∗
set) (since I |= (25))

FinitePositive(d∗
set)→ FinitePositiveSum(d∗

set) (since I |= (28))
Finite(set|E|(d∗))→ FiniteMin(set|E|(d∗)) (since I |= (31))
Finite(set|E|(d∗))→ FiniteMax(set|E|(d∗)) (since I |= (34))
Furthermore, since Π has finite aggregates, it follows that I has finite aggregates and, thus,

that set|E|(d∗)I is finite. Since dset is a subset of set|E|(d∗)I , it is also finite. From Lemma 15, I sat-
isfies Finite(set|E|(d∗)), and so I must also satisfy FiniteMin(set|E|(d∗)), and FiniteMax(set|E|(d∗)).
From Lemma 15, this implies that I satisfies Finite(d∗

set), and so I must also satisfy FiniteCount(d∗
set),

FiniteMin(set|E|(d∗)) and FiniteMax(set|E|(d∗)). From Lemma 19, the above also implies that I sat-
isfies FiniteWeight(d∗

set), and so I must also satisfy FiniteSum(d∗
set). From Lemma 24, this also im-

plies that I satisfies FinitePositive(d∗
set), and consequently I must also satisfy FinitePositiveSum(d∗

set).
Therefore, I satisfies all sentences of forms (38-42).

Right-to-left. Assume that I is a standard model of SMp[κΠ] that satisfies all sentences of form (16-
21,24,27,30,33,38-42) and M = Ans(I). From Proposition 2, interpretation I satisfies conditions 5,
17-19 for being an agg-interpretation. Let J be an agg-interpretation that agrees with I in the in-
terpretation of all symbols but count, sum, sum+, min, and max. Further assume that countJ , sumJ ,
sum+J , minJ , and maxJ are defined according to conditions 6, 7, 8, 9, and 10, respectively. Then,
J is an agg-interpretation and M = Ans(I) = Ans(J). It only remains to be shown that J satis-
fies SMp[κΠ]. Since I and J only differ in the interpretation of the aggregate function symbols, and
in SMp[κΠ] these function symbols only occur when applied to terms of form set|E|(t), it is enough
to show that the sentences

count(set|E|(t))I = count(set|E|(t))J

sum(set|E|(t))I = sum(set|E|(t))J

sum+(set|E|(t))I = sum+(set|E|(t))J

min(set|E|(t))I = min(set|E|(t))J

max(set|E|(t))I = max(set|E|(t))J

hold for every aggregate element E and list t of terms of sort sprg of the correct length. Since I sat-
isfies (16), from Proposition 1 it follows that it satisfies condition 5 for being an agg-interpretation.
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This also implies that
set|E|(t)I = set|E|(t)J

Furthermore, since Π has finite aggregates, these two sets are finite. In addition, since I satisfies (17-
20), from Proposition 2, it follows that it satisfies conditions 17-19. Therefore, the result follows
from Lemmas 32-36.
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