
Axiomatization of Aggregates in Answer Set Programming

Paper #3880

Abstract

The paper presents a characterization of logic programs with
aggregates based on a many-sorted generalization of opera-
tor SM that refers neither to grounding nor to fixpoints. This
characterization introduces new function symbols for aggre-
gate operations and aggregate elements, whose meaning can
be fixed by adding appropriate axioms to the result of the SM
transformation. We prove that for programs without positive
recursion through aggregates our semantics coincides with
the semantics of the answer set solver clingo.

Introduction
Answer set programming (ASP; Lifschitz 2008) is a form
of declarative logic programming well-suited for solving
knowledge-intensive search problems. Its success relies on
the combination of a rich knowledge representation lan-
guage with efficient solvers for finding solutions to problems
expressed in this language (Lifschitz 2019). One of the most
useful constructs of this language are aggregates: intuitively,
these are functions that apply to sets. The semantics of ag-
gregates has been extensively studied in the literature (Si-
mons, Niemelä, and Soininen 2002; Dovier, Pontelli, and
Rossi 2003; Pelov, Denecker, and Bruynooghe 2007; Son
and Pontelli 2007; Ferraris 2011; Faber, Pfeifer, and Leone
2011; Gelfond and Zhang 2014, 2019; Cabalar et al. 2019).
In most cases, papers rely on the idea of grounding — a
process in which all variables are replaced by variable-free
terms. Thus, first a program with variables is transformed
into a propositional one, then the semantics of the proposi-
tional program is defined. This makes reasoning about pro-
grams with variables cumbersome. For instance, it prohibits
using first-order theorem provers for verifying properties
about programs as advocated by Fandinno et al. (2020).

To the best of our knowledge, only two approaches
defined the semantics of aggregates without referring to
grounding. Lee, Lifschitz, and Palla (2008) translate cer-
tain count aggregates with a ground guard into an existen-
tially quantified first-order formula. Yet, this approach is in-
applicable to more general count aggregates as well as to
the common sum aggregates. Cabalar et al. (2018) introduce

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

intensional sets as first class citizens into Quantified Equi-
librium Logic (Pearce and Valverde 2005) with partial func-
tions (Cabalar 2011) and provide a formalisation of aggre-
gates that directly corresponds to the idea that aggregates are
functions that apply to sets. This approach is truly general: it
covers arbitrary aggregates including nested ones. The price
for the generality of this formalism is complexity.

Similar to the work by Cabalar et al. (2018), our approach
provides a direct formalisation of the idea that aggregates
are functions that apply to sets, but it aims to exclusively use
the language of classical logic (instead of adding intensional
sets as a new construct in the language). To achieve this
goal, we assume two restrictions. First, aggregates cannot
be nested and second, there cannot exist positive recursion
through aggregates. Note, in practice solvers cannot process
nested aggregates anyway. Regarding the second restriction,
solvers may process programs with recursion through aggre-
gates. Yet, different solvers may compute distinct answers
for the same input program. For the sake of uncontrover-
sial semantics, the ASP-Core-2 standard does not consider
recursion through aggregates (Calimeri et al. 2012).

In this paper, we introduce a translation from logic pro-
grams to second-order logic formulas and define the seman-
tics of aggregates using two equivalent characterizations.
The expressive power of the answer set semantics cannot
be captured by first-order logic, making second-order logic
the prime candidate for this task. The first characterization
uses a simpler language, where we restrict the considered
interpretations at the meta-logic level. The second charac-
terization fixes the meaning of some symbols in this lan-
guage by providing an axiomatization at the object-level.
The first characterization is easier to understand, while the
second provides greater mathematical precision. In many
cases we can replace second-order formulas by first-order
formulas (Ferraris, Lee, and Lifschitz 2011; Lee and Meng
2011). Here we show that for programs with aggregates that
apply to finite sets, we can replace the second-order axiom-
atization of aggregates by a first-order one. This paves the
way for using first-order theorem provers to reason about
programs with aggregates; to the best of our knowledge this
was not yet possible. The restriction to finite aggregates is
not a practical limitation as solvers cannot deal with infinite
sets. In the studied fragment, our semantics coincides with
the semantics of solver clingo (Gebser et al. 2015a).

Preliminaries
Syntax of programs with aggregates. We assume a (pro-
gram) signature with three countably infinite sets of sym-
bols: numerals, symbolic constants and program variables.
We also assume a 1-to-1 correspondence between numer-
als and integers; the numeral corresponding to an integer n
is denoted by n. Program terms are either numerals, sym-
bolic constants, variables or either of the special symbols inf
and sup. A program term (or any other expression) is ground
if it contains no variables. We assume that a total order on
ground terms is chosen such that

• inf is its least element and sup is its greatest element,
• for any integers m and n, m < n iff m < n, and
• for any integer n and any symbolic constant c, n < c.

An atom is an expression of the form p(t), where p is a sym-
bolic constant and t is a list of program terms. A comparison
is an expression of the form t ≺ t′, where t and t′ are pro-
gram terms and ≺ is one of the comparison symbols:

= 6= < > ≤ ≥ (1)

An atomic formula is either an atom or a comparison. A ba-
sic literal is an atomic formula possibly preceded by one or
two occurrences of not. An aggregate element has the form

t1, . . . , tk : l1, . . . , lm (2)

where each ti (1 ≤ i ≤ k) is a program term and each li
(1 ≤ i ≤ m) is a basic literal. An aggregate atom is of form

#op{E} ≺ u (3)

where op is an operation name, E is an aggregate ele-
ment, ≺ is one of the comparison symbols in (1), and u
is a program term, called guard. We consider operation
names names count and sum. For example, expression
#sum{K,X, Y : in(X,Y), cost(K,X, Y)} > J is an ag-
gregate atom. An aggregate literal is an aggregate atom pos-
sibly preceded by one or two occurrences of not. A literal is
either a basic literal or an aggregate literal.

A rule is an expression of the form

Head :- B1, . . . , Bn, (4)

where

• Head is either an atom or symbol ⊥; we often omit sym-
bol ⊥ which results in an empty head;

• each Bi (1 ≤ i ≤ n) is a literal.

We call the symbol :- a rule operator. We call the left hand
side of the rule operator the head, the right hand side of the
rule operator the body. When the head of the rule is an atom
we call the rule normal. A program is a finite set of rules.

We assume that aggregates do not have positive recur-
sion. This is a less restrictive assumption than the one
used in the ASP-Core-2 semantics (Calimeri et al. 2012),
which requires aggregates have neither positive nor nega-
tive recursion. Formally, a predicate symbol is a pair p/n,
where p is a symbolic constant and n is a nonnegative
integer. About a program or another syntactic expression,

we say that a predicate symbol p/n occurs in it if it con-
tains an atom of the form p(t1, . . . , tn). We say that an oc-
currence of a predicate symbol p/n in a literal is strictly
positive if it is not in the scope of negation. For exam-
ple, literals not r(X,Y, Z), #sum{Y,Z : not r(X,Y, Z)}
and not #sum{Y,Z : r(X,Y, Z)} contain no strictly posi-
tive occurrence of r/3. For a program Π, its (directed predi-
cate) dependency graph is defined by

1. a set of vertices containing all predicate symbols occur-
ring in Π ,

2. a set of edges containing an edge (h, b) for every normal
rule (4) with h being the predicate symbol occurring in
atom Head of the rule and b being any predicate symbol
that has a strictly positive occurrence in one of the literals
B1 . . .Bn of the rule.

The aggregates in Π have no positive recursion if, for every
normal rule R of form (4), there is no path in the program’s
dependency graph from any predicate symbol with a strictly
positive occurrence in an aggregate element of one of the
literals B1 . . .Bn in R to the predicate symbol occurring
in Head of R. For instance, a program consisting of rule
r(X,Y, Z) :- q(X,Y, Z),#sum{Y,Z : not r(X,Y, Z)}
has no aggregate with positive recursion; a program consist-
ing of r(X,Y, Z) :- q(X,Y, Z),#sum{Y, Z : r(X,Y, Z)}
has an aggregate with positive recursion.

Each operation name op is associated with a function ôp
that maps every set of tuples of ground terms to a ground
term. If the first member of a tuple t is a numeral n then we
say that integer n is the weight of t, otherwise the weight
of t is 0. For any set ∆ of tuples of ground terms,

• ĉount(∆) is the numeral corresponding to the cardinal-
ity of ∆, if ∆ is finite; and sup otherwise.

• ŝum(∆) is the numeral corresponding to the sum of the
weights of all tuples in ∆, if ∆ contains finitely many
tuples with non-zero weights; and 0 otherwise.1 If ∆ is
empty, then ŝum(∆) = 0.

Operator SM for many-sorted signature. Here, we re-
call the standard definition of many-sorted first-order logic.
A signature σ consists of function and predicate constants
and a set of sorts. The arity of every function or predicate
constant is a tuple of sorts; the arity of function constants
is a nonempty tuple. A predicate constant whose arity is the
empty tuple is called a proposition. We assume that there
are infinitely many variables for each sort. Atomic formulas
are built similar to the standard unsorted logic with the re-
striction that in a term f(t1, . . . , tn) (an atom p(t1, . . . , tn),
respectively), the sort of term ti must be a subsort of the i-
th argument of f (of p, respectively). In addition t1 = t2
is an atomic formula if the sorts of t1 and t2 have a com-
mon supersort. A many-sorted interpretation I has a non-
empty universe |I|s for each sort s. When sort s1 is a subsort
of sort s2, an interpretation additionally satisfies the condi-
tion |I|s1 ⊆ |I|s2 . The notion of satisfaction is analogous to

1The sum of a set of integers is not always defined. We could
choose a special symbol to denote this case, we chose to use 0 fol-
lowing the description of abstract gringo (Gebser et al. 2015b).

2

the unsorted case with the restriction that an interpretation
maps a term to an element in the universe of its associated
sort.

The following symbols are considered to be the logical
primitives:

∧ ∨ → ⊥ ∀ ∃
Negation, truth and equivalence are assumed to be abbrevi-
ations: F → ⊥ stands for ¬F , ⊥ → ⊥ stands for >, and
(F → G) ∧ (G → F) stands for F ↔ G. The definition
of the operator SM for a many-sorted signature is a straight-
forward generalization of the unsorted case (Ferraris, Lee,
and Lifschitz 2011). If p and u are predicate constants or
variables of the same arity (note that while the original defi-
nition does not account for sort information, here arity refers
to both number and sort of the arguments) then u ≤ p stands
for the formula

∀W(u(W)→ p(W)),

where W is a tuple of distinct object variables matching
the arity of p and u. If p and u are tuples p1, . . . , pn
and u1, . . . , un of predicate constants or variables such that
each pi and ui have the same arity, then u ≤ p stands for
the conjunction

(u1 ≤ p1) ∧ · · · ∧ (un ≤ pn),

and u < p stands for (u ≤ p) ∧ ¬(p ≤ u). For any many-
sorted first-order formula F and a list p of predicate con-
stants, by SMp[F] we denote the second-order formula

F ∧ ¬∃u
(
(u < p) ∧ F ∗(u)

)
where u is a list of distinct predicate variables u1, . . . , un of
the same length as p, such that the arity of each ui is the
same as the arity of pi, and F ∗(u) is defined recursively:

• F ∗ = F for any atomic formula F that does not contain
members of p,

• pi(t)∗ = ui(t) for any predicate symbol pi belonging
to p and any list t of terms,

• (F ∧G)∗ = F ∗ ∧G∗

• (F ∨G)∗ = F ∗ ∨G∗

• (F → G)∗ = (F ∗ → G∗) ∧ (F → G)

• (∀xF)∗ = ∀xF ∗

• (∃xF)∗ = ∃xF ∗

If the list p is empty, then we understand SMp[F] as F .
For a finite theory Γ, we write SMp[Γ] to represent SMp[F],
where F is the conjunction of all formulas in Γ.

Programs with aggregates as many-sorted
first-order sentences

In this section we present the translation τ∗ that turns a pro-
gram Π (whose aggregates lack positive recursion) into a
first-order sentence with equality over a signature σΠ of two
sorts. We start by defining this signature. To do so, we must
first introduce the concepts of a global variable and an ag-
gregate symbol.

A variable is said to be global in a rule if

1. it occurs in any non-aggregate literal, or
2. it occurs in a guard of any aggregate literal.
For instance, in rule

p(X) :- q(X),#sum{Y,Z : r(X,Y, Z)} ≥ 1. (5)

the only global variable is X .
An aggregate symbol is a pair E/X, where E is an ag-

gregate element and X is a list of variables occurring in E.
We say that E/X occurs in rule R if this rule contains an
aggregate literal with the aggregate element E and X is the
list of all variables in E that are global in R. For instance,
Y,Z : r(X,Y, Z)/X is the only aggregate symbol occurring
in rule (5). We say thatE/X occurs in a program ifE/X oc-
curs in some rule of the program. For the sake of readability
we associate each aggregate symbol E/X with a different
name |E/X|.

As stated earlier, the signature σΠ is defined over two
sorts. The first sort is called the program sort; all program
terms are of this sort. The second sort is called the set sort;
it contains entities that are sets (of tuples of object constants
of the program sort). We denote the two sorts in an intuitive
manner: sprg and sset . For a program Π, signature σΠ con-
tains:
1. all ground terms as object constants of the program sort;
2. all predicate symbols occurring in Π as predicate con-

stants with all arguments of sort program;
3. the comparison symbols other than equality and inequal-

ity as predicate constants of arity sprg × sprg ;
4. function constants count and sum of arity sset → sprg ;
5. for each aggregate symbol E/X occurring in Π, a func-

tion constant set |E/X| of arity sprg × · · · × sprg → sset .
This function symbol takes as many arguments of the
program sort as there are variables in X. If X is the empty
list, then set |E/X| is an object constant.

Intuitively, the result of count is the cardinality of the
set passed as an argument; the result of sum is the
sum of all elements of the set passed as an argument;
and set |E/X|(t1, . . . , tk) represents the set of elements cor-
responding to the aggregate element E once all global
variables in X = X1, . . . , Xk are replaced by ground
terms t1, . . . , tk. We formalize these claims below.

As customary in arithmetic we use infix notation in con-
structing atoms that utilize predicate symbols >,≥, <,≤.
Expression t1 6= t2 is considered an abbreviation for the
formula ¬(t1 = t2). In the following, we use letters X,Y, Z
and their variants to denote variables of sort sprg and letter S
and its variants to denote variables of sort sset . We use their
bold face variants to denote lists of variables of that sort.

We now describe a translation τ∗ that converts a program
into a finite set of first-order sentences. Given a list Z of
global variables in some rule R, we define τ∗Z for all ele-
ments of R as follows:
1. for every atomic formula A occurring outside of an ag-

gregate literal, its translation τ∗Z is A itself; τ∗Z⊥ is ⊥;
2. for an aggregate atom A of form #count{E} ≺ u

or #sum{E} ≺ u, its translation τ∗Z is the atom
count(set |E/X|(X)) ≺ u or sum(set |E/X|(X)) ≺ u

3

respectively, where X is the list of variables in Z occur-
ring in E;

3. for every (basic or aggregate) literal of the form not A
its translation τ∗Z(not A) is ¬τ∗ZA; for every literal of the
form not not A its translation τ∗Z(not not A) is ¬¬τ∗ZA.

We now define the translation τ∗ as follows:

4. for every rule R of form (4), its translation τ∗R is the
universal closure of the implication

τ∗ZB1 ∧ · · · ∧ τ∗ZBn → τ∗Z Head ,

where Z is the list of the global variables of R.
5. for every program Π, its translation τ∗Π is the first-order

theory containing τ∗R for each rule R in Π.
For example, the result of applying τ∗ to a program consist-
ing of rule (5) and the rules

s(X) :- q(X),#sum{Y : r(X,Y, Z)} ≥ 1. (6)
t :- #sum{Y,Z : r(X,Y, Z)} ≥ 1. (7)
q(a). q(b). q(c). (8)
r(a, 1, a). r(b,−1, a). r(b, 1, a). r(b, 1, b). r(c, 0, a). (9)

is the first-order theory composed of the universal closure of
the following formulas:

q(X) ∧ sum(sete1(X)) ≥ 1 → p(X) (10)
q(X) ∧ sum(sete2(X)) ≥ 1 → s(X) (11)
sum(sete3) ≥ 1 → t (12)
q(a) q(b) q(c) (13)
r(a, 1, a) r(b,−1, a) r(b, 1, a) r(b, 1, b) r(c, 0, a) (14)

where e1 and e2 are the names for aggregate symbols
Y,Z : r(X,Y, Z)/X and Y : r(X,Y, Z)/X , respectively;
e3 is the name for an aggregate symbol Y,Z : r(X,Y, Z)
Note that the aggregate symbols corresponding to names e1
and e2 have a global variable X . Consequently, function
symbols sete1 and sete2 have arity sprg → sset . The ag-
gregate symbol corresponding to e3 has no global variables.
Consequently, sete3 is an object constant of sort sset .

Semantics of programs with aggregates. For the sake of
clarity, we describe the semantics of programs with aggre-
gates in two steps. We start by assuming some restrictions
on the form of interpretations of interest. These interpreta-
tions have fixed meanings for the symbols of signature σΠ

introduced in conditions 3-5. In the next section, we remove
these restrictions on symbols count , sum and set |E/X| and
fix their meaning by providing appropriate axioms. In both
cases, we assume that the interpretation of the symbolic con-
stants is the identity.

Consider additional notation. For a tuple X of distinct
variables, a tuple x of ground terms of the same length as X,
and an expression α that contains variables from X, αX

x
denotes the expression obtained from α by substituting x
for X. An agg-interpretation I is a many-sorted interpreta-
tion that satisfies the following conditions:

1. the domain |I|sprg is the set containing all ground terms
of program sort (or ground program terms, for short);

2. I interprets each ground program term as itself;

3. I interprets predicate symbols >,≥, <,≤ according to
the total order chosen earlier;

4. universe |I|sset is the set of all sets of non-empty tuples
that can be formed with elements from |I|sprg ;

5. if E/X is an aggregate symbol, where E is an aggre-
gate element of form (2), Y is the list of all variables
occurring in E that are not in X, and x and y are
lists of ground program terms of the same length as X
and Y respectively, then set |E/X|(x)I is the set of all
tuples of form 〈(t1)XY

xy , . . . , (tk)XY
xy 〉 such that I satis-

fies (l1)XY
xy ∧ · · · ∧ (lm)XY

xy ;

6. count(tset)
I is ĉount(tIset);

7. sum(tset)
I is ŝum(tIset);

An agg-interpretation satisfies the standard name assump-
tion for object constants of the program sort, but not for ob-
ject constants and function symbols of the set sort.

We say that an agg-interpretation I is a stable model
of program Π if it satisfies the second-order sentence
SMp[τ∗Π] with p being the list of all predicate symbols oc-
curring in Π (note that this excludes predicate constants for
the comparisons >,≥, <,≤).

In general, ASP solvers do not provide a complete first-
order interpretation corresponding to a computed stable
model. Rather, they list the set of ground atoms correspond-
ing to it. Formally, for an agg-interpretation I , by Ans(I),
we denote the set of ground atoms that are satisfied by I and
whose predicate symbol is a program one. If I is a stable
model of Π, we say that Ans(I) is an answer set of Π.

For example, take Π1 to denote a program composed of
rules (5-9). Let I be an agg-interpretation over σΠ1 such that

qI = {a, b, c}

rI = {(a, 1, a), (b,−1, a), (b, 1, a), (b, 1, b), (c, 0, a)}.
(15)

Conditions 5 and 7 imply that this agg-interpretation also
satisfies the following statements

sete1(a)
I = {(1, a)}

sete1(b)
I = {(−1, a), (1, a), (1, b)}

sete1(c)
I = {(0, a)}

sete2(a)
I = {(1)}

sete2(b)
I = {(−1), (1)}

sete2(c)
I = {(0)}

setIe3 = {(1, a),(−1, a),(1, b),(0, a)}

sum(sete1(a))
I = 1

sum(sete1(b))
I = 1

sum(sete1(c))
I = 0

sum(sete2(a))
I = 1

sum(sete2(b))
I = 0

sum(sete2(c))
I = 0

sum(sete3)
I = 1

(16)

Such agg-interpretation I is a stable model of program Π1

when pI = {a, b}, sI = {a}, and tI = true. It turns out,
this program has a unique answer set

{ q(a), q(b), q(c), r(a, 1, a), r(b,−1, a), r(b, 1, a),
r(b, 1, b), r(c, 0, a), p(a), p(b), s(a), t }.

4

Axiomatization of Aggregates
In this section we show that conditions 5-7 characteriz-
ing agg-interpretations can be removed from the meta-logic
level by adding new logical sentences to the theory repre-
senting a logic program. This provides the higher mathemat-
ical rigor and allows us to build object level proofs to reason
about programs with aggregates.

We introduce an extended signature σ∗Π that expands σΠ

with new symbols and new sorts. The new sorts are sint
and stuple that we refer to as integer and tuple, respectively.
We also assume countably infinite sets of integer and tuple
variables (variables of sorts sint and stuple). We use the let-
ter N and its variants to denote integer variables and the let-
ter T and its variants to denote tuple variables. Letters V,W
and their variants denote variables where the sort is explic-
itly mention.

For program Π, in addition to the symbols of σΠ, signa-
ture σ∗Π contains:

• the binary function symbol + of arity sint × sint → sint
to represent arithmetic addition;

• a function symbol tuplek/k for every natural number k
such that an aggregate element of form (2) occurs in Π;
its arity is sprg × · · · × sprg → stuple ;

• object constant ∅ of sort sset to represent the empty set;
• the binary predicate symbol ∈ of arity stuple × sset to

represent set membership;
• the function symbol rem of arity sset × stuple → sset ;
• the function symbol weight of arity stuple → sint .

As customary in mathematics, we use infix notation for the
function symbol + and the predicate symbol ∈. Informally,
tuplek(t1, . . . , tk) is a constructor for the k-tuple containing
program terms t1, . . . , tk; atomic formula ttuple ∈ tset holds
iff tuple ttuple belongs to set tset ; rem(tset , ttuple) encodes
the set obtained by removing tuple ttuple from set tset ; and
weight(ttuple) encodes the weight of tuple ttuple (recall that
the syntactic object ttuple is meant to be interpreted as an
object of sort stuple).

Formally, for this extended signature, we extend the set of
conditions that an agg-interpretation I satisfies:

8. the domain |I|sint is the set of all numerals;
9. I interprets m+ n as m+ n,

10. universe |I|stuple is the set of all tuples of form
〈d1, . . . , dm〉 with m ≥ 1 and each di ∈ |I|sprg ;

11. I interprets each tuple term of form tuplek(t1, . . . , tk) as
the tuple 〈tI1, . . . , tIk〉.

12. I interprets object constant ∅ as the empty set ∅;
13. I satisfies t1 ∈ t2 iff tuple tI1 belongs to set tI2;
14. rem(tset , ttuple)I is the set obtained by removing tu-

ple tItuple from set tIset ; and

15. weight(ttuple)I is the weight of tItuple .

Note that |I|sset is the power set of |I|stuple . Also, each
agg-interpretation is extended in a unique way: there is a
one-to-one correspondence between the agg-interpretations

over σΠ and σ∗Π. In the sequel, we identify each
agg-interpretation in signature σΠ with its extension in σ∗Π.

In the remainder of this section, we show how an
agg-interpretation can be “axiomatized” in a theory that in-
terprets symbols for arithmetic, tuples, sets, and program ob-
ject constants in a standard way. Formally, a first-order inter-
pretation I is called standard when it satisfies conditions 1-4
and 8-13. Such an interpretation satisfies the standard name
assumption for ground program terms and tuples, the stan-
dard interpretation of arithmetic symbols, and the standard
interpretation of the set theoretic membership predicate. It
does not assign any special meaning to symbols count ,
sum , rem , weight , and any of the functions symbols of the
form set |E/X|. It is obvious that every agg-interpretation is
also a standard interpretation, but not vice-versa.

We now show that agg-interpretations can be character-
ized as standard interpretations that satisfy a particular class
of sentences. To begin with, consider condition 5 of the
agg-interpretation definition. It associates an aggregate sym-
bol E/X, where E has the form (2), with a unique set. We
characterize this set with the sentence

∀X T
(
T ∈ set |E/X|(X)↔
∃Y

(
T = tuplek(t1, . . . , tk) ∧ l1 ∧ · · · ∧ lm

))
,

(17)

where Y is the list of all the variables occurring in E that
are not in X. For instance, recall program Π1 and the aggre-
gate symbol Y, Z : r(X,Y, Z)/X named e1 (introduced in
the previous section). For this symbol, sentence (17) has the
form

∀XT
(
T ∈ sete1(X)↔
∃Y Z

(
T = tuple2(Y,Z) ∧ r(X,Y, Z)

)) (18)

For a standard interpretation I over signature σ∗Π1
satis-

fying conditions (15) and formula (18), sete1(b)I is the
set {(−1, a), (1, a), (1, b)}. This set is identical to the one
stated in (16) for an agg-interpretation satisfying condi-
tions (15). This observation hints at a general result:
Proposition 1. Let I be a standard interpretation. Then, I
satisfies condition 5 iff it satisfies sentence (17) for every
function symbol of form set |E/X|.

Similarly, the meaning of function symbols rem
and weight provided by conditions 14 and 15 of the defi-
nition of agg-interpretations can be fixed in standard inter-
pretations using the following sentences:

∀STS′
(
rem(S, T) = S′ ↔
∀T ′
(
T ′ ∈ S′ ↔ (T ′ ∈ S ∧ T ′ 6= T)

)) (19)

∀NX2 . . . Xk weight(tuplek(N,X2, . . . , Xk)) = N
)

(20)

∀X1X2 . . . Xk
(
(¬∃N X1 = N)→
weight(tuplek(X1, X2, . . . , Xk)) = 0

)
.

(21)

Proposition 2. Let I be a standard interpretation. Then,
• I satisfies condition 14 iff it satisfies sentence (19); and
• I satisfies condition 15 iff it satisfies all sentences of

form (20-21).
Formalizing condition 6 requires determining when a set

is finite or not, that is, we need a formula Finite(tset) that

5

holds if and only if the set represented by tset is finite. We
can formalize this idea using a second-order formula, which
states that there is a natural number n and an injective func-
tion from tset into the set {i ∈ N | i ≤ n}. Before formal-
izing this statement, let us introduce some auxiliary defini-
tions. Given a term tset of sort sset and a function symbol f ,
we define Injective(f, tset) as the formula

∀T1T2 (T1 ∈ tset ∧ T2 ∈ tset ∧ f(T1) = f(T2)→ T1 = T2.)

Intuitively, formula Injective(f, tset) represents the fact that
the restriction of function f , whose domain is the set cor-
responding to tset , is injective. If the image of f is of
sort sprg and t1 and t2 are also terms of sort sprg , we de-
fine Image(f, tset , t1, t2) as the formula:

∀T (T ∈ tset → t1 ≤ f(T) ∧ f(T) ≤ t2)

Formula Image(f, tset , t1, t2) holds when the image of
the restriction of function f , whose domain is the set
corresponding to tset , is between t1 and t2. Expres-
sion Finite(tset) stands for the second-order formula

∃f (Injective(f, tset) ∧ ∃N Image(f, tset , 0, N))

where f is a function variable of arity stuple → sint .
For a term tset of the set sort, we define for-
mula FiniteCount(tset) as

∀T
(
T ∈ tset →
∃N

(
count(rem(tset , T)) = N ∧ count(tset) = N + 1

))
Using these formulas we can formalize condition 6 with

the help of the following three sentences:

count(∅) = 0 (22)
∀S (Finite(S)→ FiniteCount(S)) (23)
∀S (¬Finite(S)→ count(S) = sup) (24)

Proposition 3. Let I be an interpretation that satisfies all
conditions for being an agg-interpretation except condi-
tions 6 and 7. Then, I satisfies condition 6 iff it satisfies
sentences (22-24).

The axiomatization of aggregates with the operation sum
is similar, but requires characterizing that the set of tuples
with non-zero weight is finite (instead of the set of arbitrary
tuples). Given a term tset of sort sset and a function sym-
bol f , we define InjectiveWeight(f, tset) as the formula

∀T1T2

(
T1 ∈ tset ∧ T2 ∈ tset ∧ weight(T1) 6= 0∧
weight(T2) 6= 0 ∧ f(T1) = f(T2)→ T1 = T2

)
If the image of f is of sort sprg and t1 and t2 are also terms of
sort sprg , we define ImageWeight(f, tset , t1, t2) as formula

∀T
(
T ∈ tset ∧ weight(T) 6= 0→ t1 ≤ f(T) ∧ f(T) ≤ t2

)
.

Expression FiniteWeight(tset) stands for the second-order
formula

∃f
(
InjectiveWeight(f, tset) ∧ ∃N ImageWeight(f, tset , 0, N)

)
where f is a function variable of arity stuple → sint . For a
term tset of the set sort, we define formula FiniteSum(tset)
as

∀T
(
T ∈ tset → ∃N(sum(rem(tset , T)) = N∧

sum(tset) = N + weight(T))
)

We can define sum to have arity sset → sint and simplify
formula that stands for FiniteSum(tset) as follows

∀T
(
T ∈ tset → sum(tset) = sum(rem(tset , T)) + weight(T)

)
Note that a similar simplification cannot be made for count
because sometimes it returns sup, which is not of sort int.
We also define ZeroWeight(tset) as

∀T (T ∈ tset → weight(T) = 0)

which holds when all members of tset have zero-weight.
Using these formulas we can formalize condition 7 with

the help of the following three sentences:

∀S
(
ZeroWeight(S)→ sum(S) = 0

)
(25)

∀S (FiniteWeight(S)→ FiniteSum(S)) (26)

∀S
(
¬FiniteWeight(S)→ sum(S) = 0

)
(27)

In particular, note that (25) entails sum(∅) = 0.

Proposition 4. Let I be an interpretation that satisfies all
conditions for being an agg-interpretation except condi-
tions 6 and 7. Then, I satisfies condition 7 iff it satisfies
sentences (25-27).

The theorem below follows directly from Propositions 1– 4.
Symbol p refers to the list of all predicate symbols occurring
in Π.

Theorem 1. A set of ground atoms M is an answer set
of a program Π iff there exists some standard model I
of SMp[τ∗Π] that satisfies all sentences of form (17-27)
and M = Ans(I).

First-order Characterization
There is a wide class of programs without aggregates for
which the second-order SM operator can be replaced by a
first-order formalization. This includes completion in the
case of tight programs (Ferraris, Lee, and Lifschitz 2011)
or, more generally, loop formulas (Lee and Meng 2011).
The same replacement also works for our translation for pro-
grams with aggregates. Yet the resulting formula, when we
consider the axiomatization approach, is not a first-order for-
mula due to the quantification over function symbols in for-
mulas Finite(tset) and FiniteWeight(tset). These formu-
las are necessary to distinguish between finite and infinite
sets. However, in practice, ASP solvers impose restrictions
on programs that ensure that programs have finite answer
sets and finite aggregates.

Formally, we say that an interpretation I has finite aggre-
gates if set set |E/X|(x)I is finite for every aggregate sym-
bolE/X and any list x of ground program terms of the same
length as X. A program Π has finite aggregates if all stan-
dard models of SM[Π] have finite aggregates. In the rest of
this section, we focus on programs with finite aggregates and
we disregard how this property is obtained.

Given two terms tset , t′set of the set sort, we define the
formula Subset(tset , t′set) as

∀T
(
T ∈ tset → T ∈ t′set

)
6

stating that tset is a subset of t′set . In the case of pro-
grams that have finite aggregates, we can replace sen-
tences (23,24;26,27) by the sentences of the form

∀X S
(
Subset(S, set |E/X|(X))→ FiniteCount(S)

)
(28)

∀X S
(
Subset(S, set |E/X|(X))→ FiniteSum(S)

)
(29)

where E/X is an aggregate symbol. Intuitively, sentences
(28) and (29) have the same meaning as pairs of sen-
tences (23,24) and (26,27), respectively, but with some re-
strictions. First, this formalization is appropriate only if
the interpretation of set |E/X|(x) results in a finite set.
Furthermore, the interpretation of count and sum is only
fixed for subsets of sets corresponding to terms of the
form set |E/X|(x). Hence, there may be non standard in-
terpretations that satisfy these sentences, which interpret
those symbols differently than their intended meaning when
applied to other sets. Interestingly, those sets do not cor-
respond to any term in the theories we are interested in.
The reason to include all subsets in these sentences is
that FiniteCount(S) and FiniteSum(S) recursively refer
to some of their subsets. The following result shows that in
the case of programs with finite aggregates we can use intro-
duced first-order axiomatization.
Theorem 2. A set of ground atoms M is an answer set
of some program Π with finite aggregates iff there is some
standard model I of SMp[τ∗Π] that satisfies all sentences
of form (17-22,25,28,29) and M = Ans(I).

Relation with Abstract Gringo
The abstract gringo semantics of logic programs use a trans-
lation which turns a program into a set of infinitary proposi-
tional formulas (Gebser et al. 2015a). These semantics cap-
ture the behavior of the answer set solver clingo when it
evaluates a program with aggregates. For space reasons, we
refer to this work for formal definitions of infinitary propo-
sitional formulas and stable models of these formulas.

We now present a simplified version of the abstract gringo
translation which is equivalent to the original in the studied
fragment. A rule or an aggregate (in a rule) is called closed if
it has no global variables. An instance of a ruleR is any rule
that can be obtained fromR by substituting ground terms for
all global variables.

For a closed aggregate element E of form (2) with Y
being the list of non-global variables occurring in it, ΨE

denotes the set of tuples y of ground program terms of
the same length as Y. Let E be an aggregate atom of
form (3), ∆ be a subset of ΨE and [∆] = {tYy | y ∈ ∆}
with t being the tuple 〈t1, . . . , tk〉. Then, ∆ justifies an
aggregate atom if relation ≺ holds between ĉount([∆])
(resp. ŝum([∆])) and u. For example, if E is aggre-
gate element 3, X, Y : p(X,Y), then ΨE is the set of
all tuples of ground program terms of length 2. If ∆
is {〈a, b〉, 〈5, b〉}, then [∆] = {〈3, a, b〉, 〈3, 5, b〉}. Thus, ∆
justifies aggregate atom #sum{3, X, Y :p(X,Y)} ≥ 5, but
not #sum{3, X, Y :p(X,Y)} ≥ 7.

The abstract gringo translation τ is defined as follows:
1. for every ground atom A, its translation τA is A itself;
τ⊥ is ⊥,

2. for every ground comparison t1 ≺ t2, its transla-
tion τ(t1 ≺ t2) is > if the relation ≺ holds between
terms t1 and t2 according to the total order selected above
and ⊥ otherwise;

3. for aggregate atom A of form (3), τA is formula∧
∆∈χ

∧
y∈∆

lYy →
∨

y∈ΨE\∆

lYy

 (30)

where χ is the set of subsets ∆ of ΨE that do not jus-
tify A, and l stands for the conjunction τ l1 ∧ · · · ∧ τ lm;

4. for every (basic or aggregate) literal L of form not A,
its translation τL is ¬τA; if L is of form not not A, its
translation τL is ¬¬τA;

5. for every closed rule R of form (4), its translation τR is
the implication

τB1 ∧ · · · ∧ τBn → τHead ;

6. for every non-closed ruleR, its translation τR is the con-
junction of the result of applying τ to all its instances;

7. for every program Π, its translation τΠ is the infinitary
theory containing τR for each rule R in Π.

A set of ground atoms A is a gringo answer set of a pro-
gram Π if A is a stable model of τΠ in infinitary proposi-
tional logic.
Theorem 3. The answer sets of any program (whose aggre-
gates have no positive recursion) coincide with its gringo
answer sets.

Conclusions and Future Work
In this paper, we have provided a characterization of the se-
mantics of programs with aggregates that bypasses ground-
ing. This is achieved by introduction of a translation from
logic programs to many-sorted first-order sentences together
with an axiomatization in second-order logic. Interestingly,
in the studied fragment (programs whose aggregates have no
positive recursion), our semantics coincides with the seman-
tics of the widely used solver clingo (Gebser et al. 2015a).
Furthermore, for many practical programs the second-order
axiomatization can be replaced by first-order sentences. This
paves the way for the use of first-order theorem provers for
reasoning about this class of programs, something that, to
the best of our knowledge, was not possible before our char-
acterization. The potential utility of this contribution is best
showcased by anthem: a proof assistant that relies on the
theorem prover vampire (Kovács and Voronkov 2013) to
check the correctness of clingo programs. Currently, this
tool can only be applied to programs without aggregates.
This paper opens the door to extend this tool to programs
that contain aggregates without positive recursion. This is
one of the directions for our future research. Another future
line of work is to extend our characterization to programs
with positive recursion through aggregates. This is some-
thing that requires further study as there are several com-
peting semantics. In addition, we plan to investigate how
the methodology for constructing formal arguments about
the correctness of logic programs as advocated in (Cabalar,
Fandinno, and Lierler 2020) can be extended to programs
with aggregates.

7

References
Cabalar, P. 2011. Functional answer set programming. The-
ory and Practice of Logic Programming, 11(2-3): 203–233.
Cabalar, P.; Fandinno, J.; Fariñas del Cerro, L.; and Pearce,
D. 2018. Functional ASP with Intensional Sets: Application
to Gelfond-Zhang Aggregates. Theory and Practice of Logic
Programming, 18(3-4): 390–405.
Cabalar, P.; Fandinno, J.; and Lierler, Y. 2020. Modular An-
swer Set Programming as a Formal Specification Language.
Theory and Practice of Logic Programming, 20: 767–782.
Cabalar, P.; Fandinno, J.; Schaub, T.; and Schellhorn, S.
2019. Gelfond-Zhang aggregates as propositional formulas.
Artificial Intelligence, 274: 26–43.
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski, R.;
Krennwallner, T.; Leone, N.; Ricca, F.; and Schaub, T. 2012.
ASP-Core-2: Input language format.
Dovier, A.; Pontelli, E.; and Rossi, G. 2003. Intensional
Sets in CLP. In Palamidessi, C., ed., Logic Programming,
19th International Conference, ICLP 2003, Mumbai, India,
December 9-13, 2003, Proceedings, volume 2916 of Lecture
Notes in Computer Science, 284–299. Springer.
Faber, W.; Pfeifer, G.; and Leone, N. 2011. Semantics and
Complexity of Recursive Aggregates in Answer Set Pro-
gramming. Artificial Intelligence, 175(1): 278–298.
Fandinno, J.; Lifschitz, V.; Lühne, P.; and Schaub, T. 2020.
Verifying Tight Logic Programs with anthem and vampire.
Theory and Practice of Logic Programming, 5(20): 735–
750.
Ferraris, P. 2011. Logic programs with propositional con-
nectives and aggregates. ACM Transactions on Computa-
tional Logic, 12(4): 25.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2011. Stable mod-
els and circumscription. Artificial Intelligence, 175(1): 236–
263.
Fox, D.; and Gomes, C., eds. 2008. Proceedings of the
Twenty-third National Conference on Artificial Intelligence
(AAAI’08). AAAI Press.
Gebser, M.; Harrison, A.; Kaminski, R.; Lifschitz, V.; and
Schaub, T. 2015a. Abstract Gringo. Theory and Practice of
Logic Programming, 15(4-5): 449–463.
Gebser, M.; Harrison, A.; Kaminski, R.; Lifschitz, V.; and
Schaub, T. 2015b. Abstract Gringo. theory and Practice of
Logic Programming, 15(4-5): 449–463.
Gelfond, M.; and Zhang, Y. 2014. Vicious Circle Principle
and Logic Programs with Aggregates. Theory and Practice
of Logic Programming, 14(4-5): 587–601.
Gelfond, M.; and Zhang, Y. 2019. Vicious Circle Princi-
ple, Aggregates, and Formation of Sets in ASP Based Lan-
guages. Artificial Intelligence, 275: 28–77.
Harrison, A.; and Lifschitz, V. 2016. Stable models for in-
finitary formulas with extensional atoms. Theory Pract. Log.
Program., 16(5-6): 771–786.
Kovács, L.; and Voronkov, A. 2013. First-Order Theorem
Proving and Vampire. In Sharygina, N.; and Veith, H., eds.,
Proceedings of the Twenty-fifth International Conference on

Computer Aided Verification (CAV’13), volume 8044 of Lec-
ture Notes in Computer Science, 1–35. Springer-Verlag.
Lee, J.; Lifschitz, V.; and Palla, R. 2008. A Reductive Se-
mantics for Counting and Choice in Answer Set Program-
ming. In (Fox and Gomes 2008), 472–479.
Lee, J.; and Meng, Y. 2011. First-Order Stable Model Se-
mantics and First-Order Loop Formulas. J. Artif. Intell. Res.,
42: 125–180.
Lifschitz, V. 2008. What Is Answer Set Programming? In
(Fox and Gomes 2008), 1594–1597.
Lifschitz, V. 2019. Answer Set Programming. Springer
Publishing Company, Incorporated, 1st edition. ISBN
3030246574.
Pearce, D.; and Valverde, A. 2005. A First Order Nonmono-
tonic Extension of Constructive Logic. Studia Logica, 30(2-
3): 321–346.
Pelov, N.; Denecker, M.; and Bruynooghe, M. 2007. Well-
founded and stable semantics of logic programs with aggre-
gates. Theory and Practice of Logic Programming, 7(3):
301–353.
Simons, P.; Niemelä, I.; and Soininen, T. 2002. Extending
and implementing the stable model semantics. Artificial In-
telligence, 138(1-2): 181–234.
Son, T.; and Pontelli, E. 2007. A Constructive Seman-
tic Characterization of Aggregates in Answer Set Program-
ming. Theory and Practice of Logic Programming, 7(3):
355–375.
Truszczyński, M. 2012. Connecting First-Order ASP and
the Logic FO(ID) through Reducts. In Erdem, E.; Lee, J.;
Lierler, Y.; and Pearce, D., eds., Correct Reasoning: Essays
on Logic-Based AI in Honour of Vladimir Lifschitz, vol-
ume 7265 of Lecture Notes in Computer Science, 543–559.
Springer-Verlag.

8

Background: Abstract Gringo
Stable models of infinitary propositional formulas
In this section, we recall some definitions of infinitary
logic (Truszczyński 2012). For every nonnegative integer r,
(infinitary propositional) formulas of rank r are defined re-
cursively:

• every ground atom is a formula of rank 0,
• ifH is a set of formulas, and r is the smallest nonnegative

integer that is greater than the ranks of all elements ofH,
thenH∧ andH∨ are formulas of rank r,

• if F and G are formulas, and r is the smallest nonnega-
tive integer that is greater than the ranks of F andG, then
F → G is a formula of rank r.

We write {F,G}∧ as F ∧ G, {F,G}∨ as F ∨ G, and ∅∨
as ⊥. The satisfaction relation between a set of atoms A
and an infinitary formula is defined recursively:

• for every ground atom A, A |= A if A belongs to A,
• A |= H∧ if for every formula F inH, A |= F ,
• A |= H∨ if there is a formula F inH such that A |= F ,
• A |= F → G if A 6|= F or A |= G.

The reduct FA of an infinitary formula F with respect to a
set of atoms A is defined recursively. If A 6|= F then FA
is ⊥; otherwise,

• for every ground atom A, AA is A
• (H∧)A = {GA | G ∈ H}∧,
• (H∨)A = {GA | G ∈ H}∨,
• (G→ H)A is GA → HA.

We say that a set of atoms A is a minimal model of an in-
finitary formula F , if A |= F and there is no B that satisfies
both B |= F and B ⊂ A. We say that a set of atoms A is
an infinitary stable model of a formula F if it is a minimal
model of FA.

Infinitary grounding
Let p,q be a partition of the predicate symbols in the signa-
ture. Then, the grounding of a first order sentence F with re-
spect to an interpretation I and a set of intensional predicate
symbols p (and extensional predicate symbols q) is defined
as follows:

• grpI (⊥) = ⊥;

• for p ∈ p, grpI (p(t1, . . . , tk)) = p((tI1)∗, . . . , (tIk)∗);
• for p ∈ q, grpI (p(t1, . . . , tk)) = >

if p((tI1)∗, . . . , (tIk)∗) ∈ Iq
and grpI (p(t1, . . . , tk)) = ⊥ otherwise;

• grpI (t1 = t2) = > if tA1 = tA2 and ⊥ otherwise;
• grpI (F ⊗G) = grpI (F)⊗ grpI (G) if ⊗ is ∧, ∨, or→;
• grpI (∃X F (X)) = {grpI (F (u)) | u ∈ |I|s}∨ if X is a

variable of sort s;
• grpI (∀X F (X)) = {grpI (F (u)) | u ∈ |I|s}∧ if X is a

variable of sort s;

For a first order theory Γ, we define grpI (Γ) = {grpI (F) |
F ∈ Γ}∧. The proof of following Lemma is analogous to
the proof of Theorem 5 by Truszczyński (2012). See Propo-
sition 1 by Fandinno et al. (2020) for more details.
Lemma 1. Let Γ be a first order formula and I be some
stabdard interpretation. Then I is a model of SMp[Γ]
iff Ans(I) is an infinitary stable model of grpI (Γ).

Splitting Theorem for Infinitary Propositional
Formulas
We start by recalling that the set of strictly positive atoms of
an infinitary formula F , denoted Pos(F), is defined recur-
sively:
• Pos(A) = {A} for an atom A,
• Pos(H∧) = Pos(H∨) =

⋃
H∈H Pos(H),

• Pos(G→ H) = Pos(H).
The set of positive nonnegated atoms and the set of neg-
ative nonnegated atoms of an infinitary formula F , de-
noted Pnn(F) and Nnn(F), are recursively defined:
• Pnn(A) = {A} for an atom A,
• Pnn(H∧) = Pnn(H∨) =

⋃
H∈H Pnn(H),

• Pnn(G → H) = ∅ if H is ⊥; and Nnn(G) ∪ Pnn(H)
otherwise.

• Nnn(A) = ∅ for an atom A,
• Nnn(H∧) = Nnn(H∨) =

⋃
H∈HNnn(H),

• Nnn(G → H) = ∅ if H is ⊥; and Pnn(G) ∪ Nnn(H)
otherwise.

The set of rules of an infinitary formula F , de-
noted Rules(F), is defined as follows:
• Rules(A) = ∅ for an atom A,
• Rules(H∧) = Rules(H∨) =

⋃
H∈HRules(H),

• Rules(G→ H) = {G→ H} ∪ Rules(H).
For any infinitary formula F and a set of ground atoms S,
its S-dependency graph is a directed graph such that:

(a) its vertices are the ground atoms in S, and
(b) for every rule (Body→ Head) in Rules(F), every

atom B ∈ Pnn(Body) and every atom H ∈ Pos(Head),
it includes the edge (H,B).

For an infinitary formula F and set of ground atoms S,
by Choice(F, S) we denote the conjunction of all disjunc-
tions of form A ∨ ¬A for ground atoms occurring in F that
do not belong to S. We say that an agg-interpretation I is an
S-infinitary stable model of a formula F if it is an infinitary
stable model of F ∧ Choice(F, S)

Given a set of ground atoms S, a partition 〈S1, S2〉 of S is
infinitely separable with respect to an infinitary formula F if
every infinite walk of its S-dependency graph visits either S1

or S2 finitely many times.
Lemma 2 (Infinitary Splitting by Harrison and Lifschitz
2016). Let F1, F2 be infinitary formulas and 〈S1, S2〉 be
a partition of some set of atoms S that is infinitely sepa-
rable with respect to F1 ∧ F2. Let A be a set of atoms.
If S2 ∩ Pos(F1) 6= ∅ and S1 ∩ Pos(F2) 6= ∅, then A

1

is an S-infinitary stable model of F1 ∧ F2 iff it is both
an S1-infinitary stable model of F1 and an S2-infinitary sta-
ble model of F2.

Proof of Results
In the following, we write e ∈ s to denote that element e
belongs to set s. By s \ {e}, we denote the set obtained by
removing element e from set s.

Axiomatization of Aggregates
Proof of Propositions 1-2
Lemma 3. Let E be an aggregate element of the form (2)
with free variables V and bound variables W and let I be
a standard interpretation. Let v be a list of ground terms of
sort sprg of the same length as V, l′i = (li)

V
v and t′i = (ti)

V
v .

Then, I satisfies

∀T
(
T ∈ set |E|(v)↔

∃W (T = tuplem(t′1, . . . , t
′
m) ∧ l′1 ∧ · · · ∧ l′n)

) (31)

iff set |E|(v)I is the set of all tuples of the
form 〈(t′′1)I , . . . , (t′′m)I〉 s.t. I satisfies l′′1 ∧ · · · ∧ l′′n
with t′′i = (t′i)

W
w and l′′i = (l′i)

W
w and w a list of ground

terms of sort sprg of the same length as W.

Proof. Left-to-right. Assume that I satisfies (31). Pick any
domain element dtuple of sort stuple . Since I is a set in-
terpretation, dtuple belongs to set |E|(v)I iff I satisfies ∈
(d∗tuple , set |E|(v)). Furthermore, since I satisfies (31), the
latter holds iff there is a list c of domain elements of sort sprg
such that

dtuple = tuplem(t′′1 , . . . , t
′′
m)I = 〈(t′′1)I , . . . , (t′′m)I〉

and I satisfies l′′1 ∧ · · · ∧ l′′n with w = c∗.
Right-to-left. Assume that set |E|(v)I is the set of all tu-

ples of the form 〈(t′′1)I , . . . , (t′′m)I〉 such that I satisfies l′′1 ∧
· · · ∧ l′′n for some list w of ground terms of sort sprg of the
same length as W. We need to show that I satisfies (31).
Pick any domain element dtuple of sort stuple and we will
show that I satisfies

d∗tuple ,∈ sets|E|(d∗)↔
∃W

(
d∗tuple = tuplem(t′1, . . . , t

′
m) ∧ l′1 ∧ · · · ∧ l′n

) (32)

Since I is a set interpretation, it follows that
I satisfies ∈ (d∗tuple , set |E|(d

∗))

iff dtuple belongs to set |E|(d
∗)I

iff there exists w such that dtuple = 〈(t′′1)I , . . . , (t′′m)I〉
and I satisfies l′′1 ∧ · · · ∧ l′′n
iff I satisfies

∃W (d∗tuple = tuplem(t′1, . . . , t
′
m) ∧ l′1 ∧ · · · ∧ l′n).

Proof. Proof of Proposition 1 Pick any list c of domain el-
ements of sort sprg and let v = c∗. Then, the result follows
directly from Lemma 3.

Lemma 4. Let I be a standard interpretation, dset and eset
be two domain elements of sorts sset and stuple , respectively.
Then,

dset \ {dtuple} = eset (33)

holds iff formula

∀T ′
(
T ′ ∈ e∗set ↔ (T ′ ∈ d∗set ∧ T 6= d∗tuple)

)
(34)

is satisfied by I .

Proof. Left-to-right. Assume that (33) holds and pick an
arbitrary domain element ctuple of sort stuple . We need to
show that

c∗tuple ∈ e∗set ↔ (c∗tuple ∈ d∗set ∧ c∗tuple 6= d∗tuple) (35)

is satisfied by I . Since I is a set interpretation, it follows that
I satisfies c∗tuple ∈ e∗set

iff ctuple ∈ eset
iff ctuple ∈ dset \ {dtuple}
iff ctuple ∈ dset and ctuple /∈ {dtuple}
iff ctuple ∈ dset and ctuple 6= dtuple
iff I satisfies c∗tuple ∈ d∗set ∧ c∗tuple 6= d∗tuple .

Right-to-left. Assume that (34) holds. We will show that (33)
holds as well. Pick any element ctuple from the tuple domain.
Then, since I is a set interpretation, it follows that
ctuple ∈ eset

iff I satisfies c∗tuple ∈ e∗set
iff I satisfies c∗tuple ∈ d∗set ∧ c∗tuple 6= d∗tuple
iff ctuple ∈ dset and ctuple 6= dtuple
iff ctuple ∈ dset and ctuple /∈ {dtuple}
iff ctuple ∈ dset \ {dtuple}. Therefore, (33) holds.

Lemma 5. Let I be a standard interpretation. Then, I sat-
isfies condition 14 iff it satisfies sentence (19).

Proof. Left to right. Assume that I is a model of (19). We
now show that I satisfies condition 14 of aggregate interpre-
tations. Pick any term tset of sort sset and any term ttuple
of sort stuple . Let tIset = dset and tItuple = dtuple . Then, by
definition,

rem(tset , ttuple)
I = rem(tIset , t

I
tuple)

I

= rem(dset , dtuple)
I = eset

(36)

for some set eset ∈ |I|sset (given that I is a set interpretation,
e is a set of elements of |I|stuple). We need to show that (33)
holds. Note that, since I is a model of (19), it satisfies (34)
and the result follows immediately by Lemma 4.

Right to left. Assume now that I satisfies condition 14 of
aggregate interpretations. We now show that I is a model
of (19). Pick arbitrary domain elements dset , eset ∈ |I|sset
and dtuple ∈ |I|stuple . Then,
I satisfies rem(d∗set , d

∗
tuple) = e∗set

iff (rem(d∗set , d
∗
tuple))I = eset

iff dset \ {dtuple} = eset (condition 14)
iff I satisfies (34) (Lemma 4).
Therefore, I satisfies (19).

2

Lemma 6. Let I be a standard interpretation
and d1, d2 . . . , dn be domain elements of sort sprg .
Then, I satisfies

(∃N d∗1 = N)→ weight(tuplek(d
∗
1, d
∗
2 . . . , d

∗
n)) = d∗1 (37)

(¬∃N d∗1 = N)→ weight(tuplek(N, d
∗
2 . . . , d

∗
n)) = 0. (38)

iff weight(tuplek(d1, d2 . . . , dn))I is the weight
of tuplek(d1, d2 . . . , dn) in the sense of condition 15.

Proof. Assume first that d1 is an integer. Then, I satis-
fies ∃N d∗1 = N and, thus, it also satisfies (38). Hence, it
is enough to show that I satisfies

weight(tuplek(d
∗
1, d
∗
2 . . . , d

∗
n)) = d∗1. (39)

iff weight(tuplek(d1, d2 . . . , dn))I is the weight
of tuplek(d∗1, d

∗
2 . . . , d

∗
n)I . Since I is a standard in-

terpretation, it follows that tuplek(d∗1, d
∗
2 . . . , d

∗
n)I

is 〈d1, d2 . . . , dn〉. Since d1 is an integer, the weight
of tuplek(d∗1, d

∗
2 . . . , d

∗
n)I is d1. Hence, the above holds.

Assume now that d1 is not an integer. Then, I does not
satisfy ∃N d∗1 = N and, thus, it satisfies (37). Hence, it is
enough to show that I satisfies

weight(tuplek(d
∗
1, d
∗
2 . . . , d

∗
n)) = 0. (40)

iff weight(tuplek(d1, d2 . . . , dn))I is the weight
of tuplek(d∗1, d

∗
2 . . . , d

∗
n)I . Indeed, since I is a standard

interpretation, tuplek(d∗1, d
∗
2 . . . , d

∗
n)I is 〈d1, d2 . . . , dn〉.

Since d1 is not integer, the weight of tuplek(d∗1, d
∗
2 . . . , d

∗
n)I

is 0.

Lemma 7. Let I be a standard interpretation. Then, I satis-
fies condition 15 iff it satisfies all sentences of form (20-21).

Proof. Left-to-right. Assume that I satisfies condition 15 of
aggregate interpretations. Then, from Lemma 6, it follows
that I satisfies

∀X1∀X2 . . .∀Xn
(
(∃N X1 = N)→

weight(tuplek(X1, X2, . . . , Xn)) = X1

) (41)

∀X1∀X2 . . .∀Xn
(
(¬∃N X1 = N)→

weight(tuplek(X1, X2, . . . , Xn)) = 0
)
.

Note that (20) and (41) are equivalent in first order logic.
Right-to-left. Similarly, since I satisfies sentences (20-

21), it also satisfies sentence (41) and, from Lemma 6, this
implies that I satisfies condition 15.

Proof of Proposition 2. Proposition 2 is just a summary of
Lemmas 5 and 7.

Proof of Proposition 3
Lemma 8. Let I be a standard interpretation and tset be a
term of sort sset . Then, I satisfies formula Finite(tset) iff
set tIset is finite, that is, iff there is a bijection between this
set and a set of natural numbers of form {i ∈ N | i ≤ n} for
some natural number n.

Proof. First note that I |= Finite(tset)
iff

(∃f (Injective(f, tset) ∧ ∃N Image(f, tset , 0, N)))I = true

iff there exists a function f such that

Injective(f, tset)I = true

and
(∃N Image(f, tset , 0, N))I = true

Furthermore, Injective(f, tset)
I = true

iff arbitrary domain elements v1 ∈ |I|stuple , v2 ∈ |I|stuple
satisfy

(v∗1 ∈ t∗set ∧ v∗2 ∈ t∗set ∧ f(v∗1) = f(v∗2)→ v∗1 = v∗2)
I = true

iff for arbitrary domain elements v1 ∈ |I|stuple , v2 ∈ |I|stuple ,
if v1 ∈ tIset and v2 ∈ tIset and f I(v1) = f I(v2)
then v1 = v2

iff the restriction of f I to tIset is an injective function.

Similarly, (∃N Image(f, tset , 0, N))I = true
iff there exists a natural number m such that
Image(f, tset , 0,m)I = true
iff there exists a natural numberm such that, for an arbitrary
domain element dtuple ∈ |I|stuple , m satisfies

(d∗tuple ∈ tset → 0 ≤ f(d∗tuple) ∧ f(d∗tuple) ≤ m)I = true

iff there exists a natural number m such that, for arbitrary
domain elements dtuple ∈ |I|stuple ,

if dtuple ∈ tIset then 0 ≤ f I(dtuple) ≤ m
iff there exists a natural number m such that every dtuple ∈
tIset satisfies 0 ≤ f I(dtuple) ≤ m.

That is, Finite(tset)
I = true iff there is a natural num-

ber m and a function f : tIset −→ {i ∈ N | i ≤ m} that
is injective. Hence, we need to prove that the following two
statements are equivalent:

1. there is a natural number m and a
function f : tIset −→ {i ∈ N | i ≤ m} that is injective,
and

2. there is a natural number n and a
function g : tIset −→ {i ∈ N | i ≤ n} that is bijective.

It is clear the the latter implies the former, so we only need
to prove that the former implies the latter. We proceed by
induction in the number of elements l in {i ∈ N | i ≤ m}
that are not in the image of f .
Base case. If l = 0, then f is a bijection and we just define g
and n as f and m, respectively.
Induction step. Otherwise, there exists some natural num-
ber i ≤ m such that f(dtuple) 6= i for all dtuple in tIset . We
define natural number n′ asm−1 and function g′ as follows:

• g′(dtuple) def= f(dtuple) for each dtuple ∈ tIset such that
f(dtuple) ≤ n′;

• for each dtuple ∈ tIset such that f(dtuple) > n′, we de-
fine g′(dtuple) def= i.

Since f is injective, function g′ is also injective. Further-
more, g′(dtuple) ≤ n′ holds for every dtuple in tIset . Note
that, if i > n′, then every dtuple ∈ tIset satisfies f(dtuple) ≤
n′. Since there are strictly less elements in {i ∈ N | i ≤ n′}
that are not in the image of g′ than l, the statement follows
by the induction hypothesis.

3

Lemma 9. Let I be a standard interpretation that satis-
fies conditions 5, 14 and 15 for being an agg-interpretation.
Let tset be a term of sort sset such that tIset contains finitely
many and at least one tuple and such that I satisfies

count(d∗set)
I is the cardinality of dset (42)

for every domain element dset of sort sset which has strictly
less tuples than tIset . Then, I satisfies formula

∀T
(
T ∈ tset → ∃N

(
count(rem(tset , T)) = N ∧ count(tset) = N + 1

)) (43)

iff

count(tset)
I is the cardinality of tIset (44)

Proof. Let dset be the set obtained by removing some ar-
bitrary domain element dtuple ∈ tIset from tIset . Note that,
by assumption, tIset has at least one tuple. Note also that, by
assumption tIset has finitely many tuples and, thus, dset is fi-
nite. Therefore, its cardinality is a natural number n, that is,
count(d∗set)

I = n and the cardinality of tIset is n + 1. Fur-
thermore, since I is a standard interpretation and dtuple be-
longs to tIset , it follows that I satisfies d∗tuple ∈ tset . Hence,
it is enough to show that I also satisfies formula

∃N
(
count(rem(tset , d

∗
tuple)) = N ∧

count(tset) = N + 1
) (45)

iff count(tset)I = n + 1. Note also that, since I satisfies
condition 14, it follows that

rem(tset , d
∗
tuple)

I = tIset \ {dtuple} = dset

and, thus, formula (45) can be rewritten as

∃N (count(d∗set) = N ∧ count(tset) = N + 1) (46)

Hence, it is enough to show that I also satisfies formula (46)
iff count(tset)I = n + 1. This immediately follows by ob-
serving that count(d∗set)

I = n.

Lemma 10. Let I be a standard interpretation that satisfies
conditions 5, 14 and 15 for being an agg-interpretation and
sentence (22). Let tset be a term of sort sset such that tIset
contains finitely many tuples. Then, I satisfies formula

∀T
(
T ∈ tset → ∃N

(
count(rem(tset , T)) = N ∧ count(tset) = N + 1

)) (47)

for every domain element dset of sort sset which is a subset
of tIset iff

count(d∗set)
I is the cardinality of dset (48)

for every domain element dset of sort sset which is a subset
of tIset .

Proof. The proof follows by induction assuming that the
lemma statement holds for all domain elements that have
strictly fewer tuples.

Base case. In the case that dset contains no tuples, since
I is a standard interpretation it follows that the antecedent
of (47) is never satisfied, which means I satisfies (47). By

condition 12 of standard interpretations and by the fact that
I satisfies sentence (22), count(tset)I = 0 and so the lemma
statement holds. Note that tIset is the only subset of itself as
we assume it to be empty.

The induction step follows directly from Lemma 9.

Lemma 11. Let I be a standard interpretation that satisfies
conditions 5, 14 and 15 for being an agg-interpretation and
sentence (22). Then, I satisfies sentence (23) iff

count(d∗set)
I is the cardinality of dset (49)

for every domain element dset of sort sset that contains a
finite number of tuples.

Proof. Left-to-right. Assume I satisfies sentence (23) and
choose arbitrary domain element dset ∈ |I|sset with a finite
number of tuples. Since dset is finite, it follows that each
eset that is a subset of dset is also finite. By Lemma 8, this
implies that I satisfies Finite(e∗set) for each eset that is a
subset of dset . Furthermore, since I satisfies sentence (23),
it follows that any eset satisfying Finite(e∗set) also satisfies
FiniteCount(e∗set). From Lemma 10, this, plus the fact that
I satisfies sentence (22), implies that count(e∗set)

I is the car-
dinality of eset for each eset . In particular, this implies that
I satisfies (49).

Right-to-Left. Assume count(d∗set)
I is the cardinality

of dset for an arbitrary domain element dset of sort sset .
Now assume that I satisfies Finite(d∗set). By Lemma 8, dset
contains a finite number of tuples and thus, every subset eset
of dset also contains a finite number of tuples. By the lemma
assumption, this implies that

count(e∗set)
I is the cardinality of eset

for every domain element eset of sort sset which is a subset
of dset . From Lemma 10, this implies that I satisfies for-
mula

∀T
(
T ∈ e∗set → ∃N

(
count(rem(e∗set , T)) = N ∧ count(e∗set) = N + 1

)) (50)

for every subset eset of dset . In particular, this implies that I
satisfies FiniteCount(d∗set) and, thus, that I satisfies (23).

Proof of Proposition 3. Left-to-Right. Assume that I satis-
fies condition 6 of agg-interpretations and we will show that
I satisfies sentences (22-24). Since I is a standard interpre-
tation that satisfies condition 6, it follows that I interprets
count(tset) as ĉount(tIset). This also implies that ∅

I
= ∅

and, thus, count(∅)I = 0. Therefore, I satisfies (22).
Let us now show that I satisfies (23). Pick an arbi-

trary domain element d∗set of sort sset and assume that I
satisfies Finite(d∗set). We need to show that I satisfies
FiniteCount(d∗set). From Lemma 8, it follows that dset is
finite. Recall that, by definition, ĉount(dset) is the cardi-
nality of dset . From Lemma 11, this implies that I satisfies
FiniteCount(d∗set) and so sentence (23) holds.

Finally, let us now show that I satisfies (24). Pick an arbi-
trary domain element dset of sort sset and assume that I does

4

not satisfy Finite(d∗set). By Lemma 8, this implies that dset
is infinite. Since I satisfies condition 6, it follows that I sat-
isfies count(d∗set) = sup. Therefore, I satisfies (24).

Right-to-left. Assume that I satisfies sentences (22-24)
and we will show that it satisfies condition 6 of
agg-interpretations. Pick any term tset of sort sset . If tIset
is infinite, then (24) implies that count(tset)I = sup. If tIset
is finite, then by Lemma 11 and the fact that I satisfies (23)
it follows that count(tset)I is the cardinality of tIset . Thus,
interpretation I satisfies condition 6.

Proof of Proposition 4
Lemma 12. Let I be a standard interpretation
and tset be a term of sort sset . Then, I satisfies for-
mula FiniteWeight(tset) iff set {d ∈ tIset | I |=
weight(d∗) 6= 0} is finite, that is, iff there is a bijec-
tion between this set and a set of natural numbers of
form {i ∈ N | i ≤ n} for some natural number n.

Proof. First note that I |= FiniteWeight(tset)
iff

(∃f
(
InjectiveWeight(f, tset)∧

∃N ImageWeight(f, tset , 0, N)
)
)I = true

iff there exists a function f ′ such that

InjectiveWeight(f ′, tset)I = true

and
(∃N ImageWeight(f ′, tset , 0, N))I = true

Furthermore, InjectiveWeight(f ′, tset)I = true
iff arbitrary domain elements v1 ∈ |I|stuple , v2 ∈ |I|stuple
satisfy

(v∗1 ∈ t∗set ∧ v∗2 ∈ t∗set ∧
weight(v∗1) 6= 0 ∧ weight(v∗2) 6= 0∧

f ′(v∗1) = f ′(v∗2)→ v∗1 = v∗2)
I = true

(51)

iff for arbitrary domain elements v1 ∈ |I|stuple , v2 ∈ |I|stuple
if v1 ∈ tIset and v2 ∈ tIset and the weights of v1 and v2

are both non-zero and f I(v1) = f I(v2), then v1 = v2

iff the restriction of f ′I to the set of elements of tIset with
non-zero weights is an injective function.

Similarly, (∃N ImageWeight(f ′, tset , 0, N))I = true
iff there exists a natural number m such that
ImageWeight(f ′, tset , 0,m)I = true
iff there exists a natural number m such that, for arbitrary
domain element dtuple ∈ |I|stuple , m satisfies

(d∗tuple ∈ t∗set ∧ weight(d∗tuple) 6= 0→
0 ≤ f(d∗tuple) ∧ f(d∗tuple) ≤ m)I = true

(52)

iff there exists a natural number m such that, for arbitrary
domain element dtuple ∈ |I|stuple ,

if dtuple ∈ tIset and the weight of dtuple is non-zero,
then 0 ≤ f ′I(dtuple) ≤ m

iff there exists a natural number m s.t. every dtuple ∈ tIset
with non-zero weight satisfies 0 ≤ f ′I(dtuple) ≤ m.

Hence, I |= FiniteWeight(tset) iff there exists a natural
number m and an injective function f from the set {d ∈
tIset | I |= weight(d∗) 6= 0} (the set of elements in tIset
with non-zero weights) to {i ∈ N | i ≤ m}. As was the
case with Lemma 8, we need to prove that the following two
statements are equivalent (omitting the trivial right to left
direction):

1. there is a natural number m and a function f : {d ∈
tIset | I |= weight(d∗) 6= 0} −→ {i ∈ N | i ≤ m} that
is injective, and

2. there is a natural number n and a function g : {d ∈ tIset |
I |= weight(d∗) 6= 0} −→ {i ∈ N | i ≤ n} that is
bijective.

We proceed by induction in the number of elements l in {i ∈
N | i ≤ m} that are not in the image of f .
Base case. If l = 0, then f is a bijection and we just define g
and n as f and m, respectively.
Induction step. Otherwise, there exists some natural num-
ber i ≤ m such that f(dtuple) 6= i for all dtuple in {d ∈
tIset | I |= weight(d∗) 6= 0}. We define natural number n′
as m− 1 and function g′ as follows:

• g′(dtuple) def= f(dtuple) for each dtuple ∈ {d ∈ tIset | I |=
weight(d∗) 6= 0} such that f(dtuple) ≤ n′;

• for each dtuple ∈ {d ∈ tIset | I |= weight(d∗) 6= 0} such
that f(dtuple) > n′, we define g′(dtuple) def= i.

Since f is injective, function g′ is also injective. Further-
more, g′(dtuple) ≤ n′ holds for every dtuple in {d ∈ tIset |
I |= weight(d∗) 6= 0}. Note that, if i > n′, then ev-
ery dtuple ∈ {d ∈ tIset | I |= weight(d∗) 6= 0} satis-
fies f(dtuple) ≤ n′. Since there are strictly less elements
in {i ∈ N | i ≤ n′} that are not in the image of g′ than l, the
statement follows by the induction hypothesis.

Lemma 13. Let I be a standard interpretation that satis-
fies conditions 5, 14 and 15 for being an agg-interpretation.
Let tset be a term of sort sset such that tIset contains finitely
many and at least one tuple with non-zero weight and such
that I satisfies

sum(d∗set)
I =

∑
{weight(d∗tuple)I | dtuple ∈ dset

and weight(d∗tuple)
I 6= 0} (53)

for every domain element dset of sort sset which has strictly
less non-zero tuples than tIset . Then, I satisfies formula

∀T
(
T ∈ tset ∧ weight(T) 6= 0→ ∃N

(
sum(rem(tset , T)) = N ∧
sum(tset) = N + weight(T)

)) (54)

iff

sum(tset)
I =

∑
{weight(d∗tuple)I | dtuple ∈ tIset

and weight(d∗tuple)
I 6= 0} (55)

Proof. Let dset be the set obtained by removing some arbi-
trary domain element dtuple that belongs to tIset from tIset
such that dtuple has non-zero weight. Note that, by assump-
tion, tIset has at least one non-zero weight tuple. Note also

5

that, by assumption tIset has finitely many non-zero weight
tuples and, thus, (55) holds iff

sum(tset)
I = weight(d∗tuple)

I +∑
{weight(d∗)I | d ∈ dset and weight(d∗)I 6= 0}

iff

sum(tset)
I = weight(d∗tuple)

I + sum(d∗set)
I (56)

Furthermore, since I is a standard interpretation that sat-
isfies condition 15 and dtuple is a non-zero weight tuple
that belongs to tIset , it follows that I satisfies d∗tuple ∈
tset ∧weight(d∗tuple) 6= 0. Hence, it is enough to show that I
satisfies formula

∃N(sum(rem(tset , d
∗
tuple)) = N ∧

sum(tset) = N + weight(d∗tuple))
(57)

iff (56) holds. Note also that, since I satisfies condition 14,
it follows that

rem(tset , d
∗
tuple)

I = tIset \ {dtuple} = dset

and, thus, formula (57) can be rewritten as

∃N(sum(d∗set) = N ∧
sum(tset) = N + weight(d∗tuple))

(58)

Therefore, we just need to show that I satisfies formula (58)
iff (56) holds. It is easy to see that (58) implies (56). Note
also that sum(d∗set)

I is an integer and, thus, (56) also im-
plies (58).

Lemma 14. Let I be a standard interpretation that satisfies
conditions 5, 14 and 15 for being an agg-interpretation and
sentence (25). Let tset be a term of sort sset such that tIset
contains finitely many tuples with non-zero weights. Then, I
satisfies formula

∀T
(
T ∈ tset ∧ weight(T) 6= 0→ ∃N

(
sum(rem(tset , T)) = N ∧
sum(tset) = N + weight(T)

)) (59)

for every domain element dset of sort sset which is a subset
of tIset iff

sum(d∗set)
I =

∑
{weight(d∗tuple)I | dtuple ∈ dset

and weight(d∗tuple)
I 6= 0} (60)

for every domain element dset of sort sset which is a subset
of tIset .

Proof. The proof follows by induction assuming that the
lemma statement holds for all domain elements that have
strictly fewer tuples with non-zero weights.

Base case. In the case where tIset does not have any tuple
with non-zero weight, since I is a standard interpretation, it
follows that I satisfies (59). This also implies that I satisfies

∀T (T ∈ tset → weight(T) = 0)

and, thus, sum(d∗set)
I = 0 holds for every domain ele-

ment dset of sort sset which is a subset of tIset . Hence, the
lemma statement holds.

The induction step follows directly from Lemma 13.

Lemma 15. Let I be a standard interpretation that satisfies
conditions 5, 14 and 15 for being an agg-interpretation and
sentence (25). Let tset be a term of sort sset such that tIset
contains finitely many tuples with non-zero weights. Then, I
satisfies formula

∀T
(
T ∈ d∗set →
∃N
(
sum(rem(d∗set , T)) = N ∧

sum(d∗set) = N + weight(T)
)) (61)

for every domain element dset of sort sset which is a subset
of tIset iff

sum(d∗set)
I =

∑
{weight(d∗tuple)I | dtuple ∈ dset

and weight(d∗tuple)
I 6= 0} (62)

for every domain element dset of sort sset which is a subset
of tIset .

Proof. Right-to-left. From Lemma 14, it follows (62) holds
for every domain element dset of sort sset which is a sub-
set of tIset iff I satisfies (59) for every domain element dset
of sort sset which is a subset of tIset . Furthermore, (61) en-
tails (59) in first order logic.

Left-to-right. Note (61) is equivalent to the conjunction
of (59) and

∀T
(
T ∈ d∗set ∧ weight(T) = 0→

∃N
(
sum(rem(d∗set , T)) = N ∧

sum(d∗set) = N + weight(T)
)) (63)

Assume that (62) holds for every domain element dset of
sort sset which is a subset of tIset . Then, from Lemma 14,
interpretation I satisfies (59) for every domain element dset
of sort sset which is a subset of tIset . Furthermore, for stan-
dard interpretations, (63) is equivalent to

∀T
(
T ∈ d∗set ∧ weight(T) = 0→

∃N (sum(rem(d∗set , T)) = N ∧ sum(d∗set) = N)
)

Pick any domain element dtuple of sort stuple s.t. I satis-
fies dtuple ∈ d∗set ∧ weight(dtuple) = 0. We need to show

sum(d∗set)
I = sum(rem(dset , dtuple))

I (64)

which follows from the fact that (62) holds for every do-
main element dset of sort sset which is a subset of tIset and
that dset and rem(dset , dtuple)I have the same tuples with
non-zero weights.

Lemma 16. Let I be a standard interpretation that satisfies
conditions 5, 14 and 15 for being an agg-interpretation and
sentence (25). Then, I satisfies sentence (26) iff

sum(e∗set)
I =

∑
{weight(d∗tuple)I | dtuple ∈ eset

and weight(d∗tuple)
I 6= 0} (65)

for every domain element eset of sort sset that contains a
finite number of non-zero weight tuples.

Proof. Left-to-right. Assume first that I satisfies sen-
tence (26). Pick any domain element eset of sort sset that
contains a finite number of non-zero weight tuples. Then,
I satisfies FiniteWeight(dset) for every subset dset of eset

6

(Lemma 12) and, since it satisfies (25) it follows that it also
satisfies (61) for every domain element dset of sort sset
which is a subset of eset . From Lemma 15, this implies
that (65) holds.

Right-to-left. Pick any domain element eset of sort sset
and assume that I satisfies FiniteWeight(e∗set). From
Lemma 12, this implies that eset contains a finite number
of tuples with non-zero weights and, thus, so does any sub-
set dset of eset . By hypothesis, this implies that

sum(d∗set)
I =

∑
{weight(d∗tuple)I | dtuple ∈ dset

and weight(d∗tuple)
I 6= 0}

holds for every subset dset of eset . From Lemma 15, this
implies that I satisfies

∀T
(
T ∈ d∗set → ∃N

(
sum(rem(d∗set , T)) = N ∧ sum(d∗set) = N + weight(T)

))
for every subset dset of eset . In particular, this implies that I
satisfies

d∗tuple ∈ e∗set → ∃N
(

sum(rem(e∗set , T)) = N ∧ sum(e∗set) = N + weight(T)
)

Therefore, I satisfies (26).

Proof of Proposition 4. Left-to-right. Assume first that I
satisfies condition 7 and we will show that I satisfies
sentences (25-27). Since I is a standard interpretation,
sum(tset)

I = 0 holds for any tset without non-zero
weight tuples and, thus, I satisfies (25). Furthermore, from
Lemma 16, I satisfies (26). Finally, to show that I satis-
fies (27), pick any domain element dset of sort sset and
assume that I does not satisfy FiniteWeight(d∗set). From
Lemma 12, this implies that dset contains an infinite number
of tuples with non-zero weights and, since I satisfies condi-
tion 7, it follows that I satisfies sum(d∗set) = 0. Therefore,
I satisfies (27).

Right-to-left. Assume that I satisfies sentences (25-27) and
we will show that it satisfies condition 7. Pick any term tset
of sort sset . If tIset contains no tuples with non-zero weights,
(25) implies that sum(tset) = 0. Similarly, if tIset contains
an infinite number of tuples with non-zero weights, (27)
implies that sum(tset) = 0. It only remains to be shown
that, if tIset contains a finite number of tuples with non-zero
weights, then

sum(tset)
I =

∑
{weight(d∗tuple)I | dtuple ∈ tIset

and weight(d∗tuple)
I 6= 0} (66)

which follows from Lemmas 12 and 16 and the fact that I
satisfies (26).

Proof of Theorem 1

Proof of Theorem 1. A set of ground atoms M is an answer
set of Π
iff there is an agg-interpretation I that is a model of SM[Π]

and M = Ans(I)
iff there is a model I of SM[Π] satisfying conditions 5-7

and 14-15, and M = Ans(I)
iff there is a model I of SM[Π] satisfying conditions 5

and 14-15, sentences (22-27),

and M = Ans(I) (Propositions 3 and 4)
iff there is a model I of SM[Π] satisfying sentences (17-27)

and M = Ans(I) (Propositions 1 and 2)

First Order Characterization
Lemma 17. LetE be an aggregate element. Let I be a stan-
dard interpretation that satisfies conditions 5, 14 and 15 for
being an agg-interpretation and sentences (28-29). Let J
be an agg-interpretation that agrees with I in the inter-
pretation of all symbols but the function symbols sum
and count . If set |E|(t)I contains finitely many tuples, then
count(set |E|(t))

I = count(set |E|(t))
J holds for any list t

of terms of sort sprg of the correct length.

Proof. Since I satisfies sentence (28), it follows that I sat-
isfies FiniteCount(dset) for every domain element dset of
sort sset that is a subset of set |E|(t). Equivalently, I satisfies
sentence (47) for every dset ⊆ set |E|(t). From Lemma 10
and the fact that J is an agg-interpretation, this implies

count(set |E|(t))
I = |set |E|(t)I | =

|set |E|(t)J | = count(set |E|(t))
J

Lemma 18. LetE be an aggregate element. Let I be a stan-
dard interpretation that satisfies conditions 5, 14 and 15 for
being an agg-interpretation and sentences (28-29). Let J be
an agg-interpretation that agrees with I in the interpreta-
tion of all symbols but the function symbols sum and count .
If set |E|(t)

I contains finitely many tuples with non-zero
weights, then sum(set |E|(t))

I = sum(set |E|(t))
J holds

for any list t of terms of sort sprg of the correct length.

Proof. Since I satisfies sentence (29), it follows that I sat-
isfies FiniteSum(dset) for every domain element dset of
sort sset that is a subset of set |E|(t). From Lemma 15 and
the fact that J is an agg-interpretation, this implies

sum(set|E|(t))
I

=
∑
{weight(d

∗
tuple)

I | dtuple ∈ set|E|(t)
I

and weight(d
∗
tuple)

I 6= 0}

=
∑
{weight(d

∗
tuple)

J | dtuple ∈ set|E|(t)
J

and weight(d
∗
tuple)

J 6= 0}

= sum(set|E|(t))
J

Proof of Theorem 2. Left-to-right. Assume that M is an an-
swer set of some program Π. Then, from Theorem 1,
there is some standard model I of SM[Π] that satis-
fies all sentences of forms (17-27) and M = Ans(I).
Hence, it only remains to be shown that I satisfies all sen-
tences of forms (28-29). Pick any aggregate element E,
any list d of domain elements of sort sprg and any do-
main element dset of sort sset and assume that I satis-
fies Subset(dset , set |E|(d∗)). Now we will show that I sat-
isfies FiniteCount(d∗set) and FiniteSum(d∗set). Note that,
since I satisfies (23), it follows that I satisfies the sentence

Finite(d∗set)→ FiniteCount(d∗set) (67)

7

Similarly, since I satisfies (26), it follows that I satisfies the
sentence

FiniteWeight(d∗set)→ FiniteSum(d∗set) (68)

Furthermore, since Π has finite aggregates, it follows that I
has finite aggregates and, thus, that set |E|(d

∗)I is finite.
Since dset is a subset of set |E|(d∗)I , it is also finite. From
Lemma 8, this implies that I satisfies Finite(d∗set), and so I
must also satisfy FiniteCount(d∗set). From Lemma 12, this
implies that I satisfies FiniteWeight(d∗set), and so I must
also satisfy FiniteSum(d∗set).

Therefore, I satisfies all all sentences of forms (28-29).

Right-to-left. Assume that I is a standard model of SM[Π]
that satisfies all sentences of form (17-22,25,28-29)
and M = Ans(I). From Proposition 2, interpretation I sat-
isfies conditions 5, 14 and 15 for being an agg-interpretation.
Let J be an agg-interpretation that agrees with I in the
interpretation of all symbols but count and sum . Further
assume that countJ is defined according to condition 6
and that sumJ is defined according to condition 7. Then,
J is an agg-interpretation and M = Ans(I) = Ans(J). It
only remains to be shown that J satisfies SM[Π]. Since I
and J only differ in the interpretation of the function sym-
bols count and sum , and in SM[Π] these function symbols
only occur when applied to terms of form set |E|(t), it is
enough to show that the sentences

count(set |E|(t))
I = count(set |E|(t))

J

and
sum(set |E|(t))

I = sum(set |E|(t))
J

hold for every aggregate element E and list t of terms of
sort sprg of the correct length. Since I satisfies (17), from
Proposition 1 it follows that it satisfies condition 5 for being
an agg-interpretation. This also implies that

set |E|(t)
I = set |E|(t)

J

Furthermore, since Π has finite aggregates, these two sets
are finite. In addition, since I satisfies (19-21), from Proposi-
tion 2, it follows that it satisfies conditions 14 and 15. There-
fore, the result follows from Lemmas 17 and 18.

Relation With Abstract Gringo
We now show how Lemma 2 can be used to turn any pro-
gram without recursive aggregates into a program in which
all aggregate atoms occur in the scope of negation.

Given a program Π and an aggregate atom A occurring
in Π, we partition the predicate symbols occurring in Π into
two sets t(Π, A) and b(Π, A) as follows. Let b(Π, A) be the
set of all predicate symbols p/n occurring in Π such that
there is a path in the program’s dependency graph from any
predicate symbol occurring in A. Let t(Π, A) be the set of
all predicate symbols occurring in Π but those in b(Π, A).
Let ba(Π, A) be the set of all ground atoms of form p(t)
such that p/n belongs to b(Π, A) and t is an n-tuple of
ground program terms. Let br(Π, A) be the set of all rule
of Π whose head contains a predicate symbol belonging
to b(Π, A). Similarly, for ta(Π, A) and tr(Π, A).

Lemma 19. For any program Π without recursive aggre-
gates, 〈ta(Π, A), ba(Π, A)〉 is infinitely separable with re-
spect to τΠ.

Proof. Let S = ta(Π, A)∪ba(Π, A) be the set of all ground
atoms occurring in τΠ.

Suppose, for the sake of contradiction, that there is an infi-
nite walkA1, A2, . . . that visits both ta(Π, A) and ba(Π, A)
infinitely many times, that is, both {i | Ai ∈ ta(Π, A)}
and {i | Ai ∈ ba(Π, A)} are infinite sets.

Take any Ai ∈ ba(Π, A) and Aj ∈ ta(Π, A) such
that j > i. Note that such Ai and Aj must exist because the
walk visits both sets infinitely many times. Let pi and pj be
the predicate symbols occurring in Ai and Aj , respectively.
Since there is a path from Ai to Aj in the S-dependency
graph of τΠ, there is a path from pi to pj in the program
dependency graph of Π. Furthermore, by construction, Ai

in ba(Π, A) implies pi in b(Π, A), which in its turn im-
plies that there is a path in the program dependency graph
from some predicate symbol q to pi such that q occurs in A.
These two facts together imply that there is a path in the pro-
gram dependency graph from some predicate symbol q to pj .
This implies that pj belongs to b(Π, A) and, thus, that Aj

belongs to ba(Π, A). This is a contradiction with the fact
that Aj ∈ ta(Π, A).

Lemma 20. Let Π be a program without recursive ag-
gregates, A be an occurrence of some aggregate atom,
and Πb and Πt be the set of all rules whose head con-
tains a predicate symbol in b(Π, A) and t(Π, A), respec-
tively. Then, a set of atoms A is a gringo stable model of Π
iff it is both a ba(Π, A)-infinitary stable model of τΠb and
a ta(Π, A)-infinitary stable model of τΠt.

Proof. By definition, A is a gringo stable model of Π iff
A is an infinitary stable model of τΠ = τΠb ∧ τΠt. From
Lemma 19, it follows that 〈ta(Π, A), ba(Π, A)〉 is infinitely
separable with respect to τΠ. Furthermore, by construction
we get Pos(Πt) ⊆ ta(Π, A) and Pos(Πb) ⊆ ba(Π, A) and
that ta(Π, A) ∩ ba(Π, A) are disjoint. Hence, Pos(Πb) ∩
ta(Π, A) 6= ∅ and ba(Π, A) ∩ Pos(Πt) 6= ∅ hold and the
lemma statement follows now directly from Lemma 2.

Lemma 21. Let Π be a program and let Π′ be the re-
sult of replacing some occurrence A of an aggregate atom
by not not A. Let S be a set of ground atoms that contains
not atom occurring in τA. Then, the S-infinitary stable mod-
els of τΠ and τΠ′ coincide.

Proof. Recall that, by definition, a set of atoms A is an
S-infinitary stable model of τΠ iff A is an infinitary sta-
ble model of τΠ ∧ Choice(τΠ, S). Furthermore, since no
atom occurring in τA belongs to S, it follows that the ex-
clude middle axiom B ∨ ¬B belongs to Choice(τΠ, S) for
every atom B occurring in τA. Hence, we can replace τA
by ¬¬τAwithout changing the infinitary stable models.

Lemma 22. Let Π be a program without recursive aggre-
gates and let Π′ be the result of replacing each aggregate
atom A by not not A. Then, the gringo stable models of Π
and Π′ coincide.

8

Proof. We just need to prove it for a single occurrence A of
some aggregate atom and the result follows then by induc-
tion in the number of occurrences of aggregate atoms not in
the scope of negation. Let R be the rule of Π containing oc-
currence A, rule R′ be the result of replacing occurrence A
by not not A in R and Π′ = (Π \ {R}) ∪ {R′} be the re-
sult of replacing occurrence A by not not A in Π. Let Πb

and Πt be the set of all rules whose head contains a predi-
cate symbol in b(Π, A) and t(Π, A), respectively. Π′b and Π′t
are constructed similarly. Note that rule R belongs to Πt be-
cause aggregates in Π are non-recursive and that this im-
plies that Πb = Π′b. Note also that ba(Π, A) = ba(Π′, A)
and ta(Π, A) = ta(Π′, A). Then, from Lemmas 20 and 21,
it follows that a set of atomsA is a gringo stable model of Π
iff A is both a ba(Π, A)-infinitary stable model of τΠb and
a ta(Π, A)-infinitary stable model of τΠt

iff A is both a ba(Π′, A)-infinitary stable model of τΠ′b and
a ta(Π′, A)-infinitary stable model of τΠ′t
iff A is a gringo stable model of Π′.

Theorem 3 follows directly from Lemma 1 and the fol-
lowing auxiliary results.
Lemma 23. Let I be an agg-interpretation and op be
either count or sum . Then, I satisfies op(set |E/X|(x))
iff Ans(I) satisfies

∧
∆∈χ

∧
y∈∆

lXY
xy →

∨
y∈Ψ

EX
x
\∆

lXY
xy

 (69)

Proof. Let Y be the list of variables occurring in E that do
not occur in X. Let ∆I = {y ∈ ΨEX

x
| I |= lXY

xy } and HI

be the formula ∧
y∈∆I

lXY
xy →

∨
y∈ΨE\∆I

lXY
xy

Then, I 6|= HI and set |E/X|(x)I = {tXY
xy | y ∈ ∆} =

[∆I]. Consequently, we have

I |= (69) iff HI is not a conjunctive term of (69)
iff ∆I justifies A
iff I |= op|([∆I]∗) ≺ u
iff I |= op(set |EX|(x)) ≺ u

Lemma 24. Let Π be a program in which all aggre-
gate atoms occur in the scope of negation and let I be
an agg-interpretation. Then, Ans(I) is an infinitary stable
model of τΠ iff it is an infinitary stable model of grpI (τ∗Π).

Proof. Recall that comparisons are not intensional in the
definition of the stable models of a program, that is, they
do not belong to p. Then, it is easy to see that τΠ can
be obtained from grpI (τ∗Π) by replacing each occurrence
of ¬op(set |E/X|(x)) ≺ u, where op ∈ {count , sum},
by ¬(69): Here χ is the set of subsets ∆ of ΨEX

x
that do not

justify op(set |E/X|(x)). Hence, it is enough to show that(
¬op(set |E/X|(x)

)
≺ u)Ans(I) = (¬(69))Ans (I)

For this it is enough to show that Ans(I) satis-
fies op(set |E/x|(X) iff Ans(I) satisfies (69), which follows
from Lemma 23.

Proof of Theorem 3. Let Π be a program without recur-
sive aggregates and let Π′ be the result of replacing
each aggregate atom A by not not A. Let I be an
agg-interpretationand A = Ans(I). Then,
A is a gringo answer set of Π

iff A is an infinitary answer set of τΠ
iff A is an infinitary answer set of τΠ′ (Lemma 22)
iff A is an infinitary answer set of grpI (τ∗Π′) (Lemma 24)
iff I |= SMp[τ∗Π′] and A = Ans(I) (Lemma 1)
iff I |= SMp[τ∗Π] and A = Ans(I)
iff A is an answer set of Π.
Recall that comparison symbols are not intensional. There-
fore, we can replace any atom of form t ≺ t′ with ≺ a com-
parison symbol by ¬¬(t ≺ t′).

9

	Introduction
	Preliminaries
	Programs with aggregates as many-sorted first-order sentences
	Axiomatization of Aggregates
	First-order Characterization
	Relation with Abstract Gringo
	Conclusions and Future Work
	Background: Abstract Gringo
	Stable models of infinitary propositional formulas
	Infinitary grounding
	Splitting Theorem for Infinitary Propositional Formulas

	Proof of Results
	Axiomatization of Aggregates
	First Order Characterization
	Relation With Abstract Gringo

