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Abstract

This paper shows that the semantics of programs with ag-
gregates implemented by the solvers clingo and dlv can
be characterized as extended First-Order formulas with inten-
sional functions in the logic of Here-and-There. Furthermore,
this characterization can be used to study the strong equiva-
lence of programs with aggregates under either semantics. We
also present a transformation that reduces the task of checking
strong equivalence to reasoning in classical First-Order logic,
which serves as a foundation for automating this procedure.

Introduction

Answer set programming (ASP) is a declarative program-
ming paradigm well-suited for solving knowledge-intensive
search and optimization problems (Lifschitz 2019). Its suc-
cess relies on the combination of a rich knowledge repre-
sentation language with effective solvers. Some of its most
useful constructs are aggregates, that is, functions that ap-
ply to sets. The semantics of aggregates have been exten-
sively studied in the literature (Simons, Niemelä, and Soini-
nen 2002; Dovier, Pontelli, and Rossi 2003; Pelov, De-
necker, and Bruynooghe 2007; Son and Pontelli 2007; Fer-
raris 2011; Faber, Pfeifer, and Leone 2011; Gelfond and
Zhang 2014, 2019; Cabalar et al. 2019). In most cases,
they rely on the idea of grounding—a process that replaces
all variables by variable-free terms. This makes reasoning
about First-Order (FO) programs with aggregates cumber-
some and it does not allow the use of classical FO theorem
provers for verifying properties about this class of programs.

Though several approaches describe the semantics of ag-
gregates bypassing the need for grounding, most of these
approaches only allow a restricted class of aggregates (Lee,
Lifschitz, and Palla 2008; Lifschitz 2022) or use some exten-
sion of the logical language (Bartholomew, Lee, and Meng
2011; Lee and Meng 2012; Asuncion et al. 2015; Cabalar
et al. 2018). Recently, Fandinno, Hansen, and Lierler (2022,
2024) showed how to translate logic programs with ag-
gregates into FO sentences, which, after the application of
the SM operator (Ferraris, Lee, and Lifschitz 2011), cap-
tures the ASP-Core-2 semantics. Though most practical
problems can be represented within the restrictions of the
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ASP-Core-2 semantics, some notable exceptions are more
naturally represented using recursive aggregates, which are
not allowed by ASP-Core-2. One of these examples is
the Company Control problem, which consists of finding
companies that control other companies by (directly or in-
directly) owning a majority of their shares. This problem
has been encoded in the literature using the following logic
program (Pelov, Denecker, and Bruynooghe 2007; Faber,
Pfeifer, and Leone 2011; Mumick, Pirahesh, and Ramakrish-
nan 1990; Kemp and Stuckey 1991; Ross and Sagiv 1997):

ctrStk(C1,C1,C2,P) :- ownsStk(C1,C2,P). (1)

ctrStk(C1,C2,C3,P) :- controls(C1,C2),

ownsStk(C2,C3,P). (2)

controls(C1,C3) :- company(C1), company(C3),

#sum{P,C2:ctrStk(C1,C2,C3,P)}>50. (3)

where atom ownsStk(C1,C2,P) means that com-
pany C1 directly owns P% of the shares of company C2;
ctrStk(C1,C2,C3,P) means that company C1 con-
trols P% of the shares of company C3 through company C2
that it controls; and controls(C1,C3) means that com-
pany C1 controls companyC3. Another area where allowing
recursive aggregates is important is in the study of strong
equivalence (Lifschitz, Pearce, and Valverde 2001, 2007).
The strong equivalence problem consists of determining
whether two programs have the same behavior in any con-
text. Even if the programs we are analyzing do not contain
recursion, adding some context may introduce it.

In this paper, we show that the translation introduced
by Fandinno, Hansen, and Lierler can also be used for pro-
grams with recursive aggregates if we interpret functions in
an intensional way (Lin and Wang 2008; Cabalar 2011; Lif-
schitz 2012; Balduccini 2013; Bartholomew and Lee 2019).
We focus on the Abstract Gringo (Gebser et al. 2015) gen-
eralization of the semantics by Ferraris (2011), which is
used in the answer set solver clingo, and the semantics
by Faber, Pfeifer, and Leone (2011), which are used in the
answer set solver dlv. We prove that the translation intro-
duced by Fandinno, Hansen, and Lierler coincides with the
Abstract Gringo semantics when we interpret the function
symbols representing sets according to the semantics for in-
tensional functions by Bartholomew and Lee. For dlv, we
introduce a similar translation, which uses a second form of
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negation. We show how we can use these translations to ex-
press the strong equivalence of the two programs and how to
reduce this problem to reasoning in classical FO logic.

Preliminaries

We start by reviewing the syntax of programs with aggre-
gates and presenting an extension of the logic of Quanti-
fied Here-and-There (Pearce and Valverde 2008) with inten-
sional functions that is suited for programs with aggregates.

Syntax of programs with aggregates. We follow here the
presentation by Fandinno, Hansen, and Lierler (2022). We
assume a (program) signature with three countably infinite
sets of symbols: numerals, symbolic constants and program
variables. We also assume a 1-to-1 correspondence between
numerals and integers; the numeral corresponding to an in-
teger n is denoted by n. Program terms are either numer-
als, symbolic constants, variables or one of the special sym-
bols inf and sup. A program term (or any other expression)
is ground if it contains no variables. We assume that a total
order on ground terms is chosen such that

• inf is its least element and sup is its greatest element,

• for any integers m and n, m < n iff m < n, and

• for any integer n and any symbolic constant c, n < c.

An atom is an expression of the form p(t), where p is a sym-
bolic constant and t is a list of program terms. A comparison
is an expression of the form t ≺ t′, where t and t′ are pro-
gram terms and ≺ is one of the comparison symbols:

= 6= < > ≤ ≥ (4)

An atomic formula is either an atom or a comparison. A ba-
sic literal is an atomic formula possibly preceded by one or
two occurrences of not. An aggregate element has the form

t1, . . . , tk : l1, . . . , lm (5)

where each ti (1 ≤ i ≤ k) is a program term and each li
(1 ≤ i ≤ m) is a basic literal. An aggregate atom is of form
#op{E} ≺ u where op is an operation name, E is an ag-
gregate element, ≺ is one of the comparison symbols in (1),
and u is a program term, called guard. We consider opera-
tion names count and sum. For example, the expression

#sum{P,C2:ctrStk(C1,C2,C3,P)}>50

in the body of rule (3) is an aggregate atom. An aggregate
literal is an aggregate atom possibly preceded by one or two
occurrences of not. A literal is either a basic literal or an
aggregate literal. A rule is an expression of the form

Head :- B1, . . . , Bn, (6)

where Head is an atom or symbol ⊥, and each Bi is a literal.
We call the symbol :- the rule operator. We call the left-

hand side of the rule operator the head, the right-hand side
of the rule operator the body. When the head of the rule is an
atom we call the rule normal, and when it is the symbol ⊥
we call it a constraint. When the body of a normal rule is
empty, we call the rule a fact. A program is a set of rules.

Each operation name op is associated with a function ôp
that maps every set of tuples of ground terms to a ground

term. If the first member of a tuple t is a numeral n then we
say that integer n is the weight of t, otherwise the weight
of t is 0. For any set ∆ of tuples of ground terms,

• ĉount(∆) is the numeral corresponding to the cardinal-
ity of ∆, if ∆ is finite; and sup otherwise.

• ŝum(∆) is the numeral corresponding to the sum of the
weights of all tuples in ∆, if ∆ contains finitely many
tuples with non-zero weights; and 0 otherwise.If ∆ is
empty, then ŝum(∆) = 0.

Though we illustrate the semantics of aggregates using the
operation names count and sum, the semantics can be ex-
tended to other operation names by adding the appropriate
functions ôp (Fandinno, Hansen, and Lierler 2024).

Many-sorted logic and extended FO formulas. A many-
sorted signature consists of symbols of three kinds—sorts,
function constants, and predicate constants. A reflexive and
transitive subsort relation is defined on the set of sorts. A
tuple s1, . . . , sn (n ≥ 0) of argument sorts is assigned to
every function constant and to every predicate constant; in
addition, a value sort is assigned to every function constant.
Function constants with n = 0 are called object constants.
For every sort, an infinite sequence of object variables of
that sort is chosen. Terms and atomic formulas over a (many-
sorted) signature σ are defined as usual with the consider-
ation that the sort of a term must be a subsort of the sort
of the function or predicate constant of which it is an ar-
gument. Extended First-Order formulas over σ are formed
from atomic formulas and the 0-place connective ⊥ (falsity)
using the unary connective

¬

, the binary connectives ∧, ∨,
→ and the quantifiers ∀, ∃. We define the usual abbrevia-
tions: ¬F stands for F → ⊥ and F ↔ G stands for (F →
G) ∧ (G → F ). We have two negation symbols (¬ and

¬

)
and both correspond to classical negation in the context of
classical FO logic. The symbol ¬ represents standard nega-
tion in the logic of Here-and-There and corresponds to de-
fault negation in logic programs under the clingo seman-
tics, while symbol

¬

is a new connective and it represents
default negation under the dlv semantics. Interpretations,
sentences, theories, satisfaction and models are defined as
usual with the additional condition that I |=

¬

F iff I 6|= F .
A standard FO formula (resp. sentence, theory) is a formula
(resp. sentence, theory) without the new operator

¬

.

Stable Model Semantics with Intensional Functions.
Let I and H be two interpretations of a signature σ and P
and F respectively be sets of predicate and function con-
stants of σ. We write H �PF I if

• H and I have the same universe for each sort;

• pH ⊆ pI for every predicate constant p in P and
pH = pI for every predicate constant p not in P ; and

• fH = f I for every function constant f not in F .

If I is an interpretation of a signature σ then by σI we de-
note the signature obtained from σ by adding, for every el-
ement d of a domain |I|s, its name d∗ as an object constant
of sort s. An ht-interpretation of σ is a pair 〈H, I〉, where H
and I are interpretations of σ such that H �PF I . (In terms
of many-sorted Kripke models, I is the there-world, and H



is the here-world). The satisfaction relation |=ht between an
HT-interpretation 〈H, I〉 of σ and a sentence F over σI is
defined recursively as follows:

• 〈H, I〉 |=ht p(t), if I |= p(t) and H |= p(t);

• 〈H, I〉 |=ht t1 = t2 if tI1 = tI2 and tH1 = tH2 ;

• 〈H, I〉 |=ht

¬

F if both I 6|= F and H 6|= F ;

• 〈H, I〉 |=ht F ∧G if 〈H, I〉 |=ht F and 〈H, I〉 |=ht G;

• 〈H, I〉 |=ht F ∨G if 〈H, I〉 |=ht F or 〈H, I〉 |=ht G;

• 〈H, I〉 |=ht F → G if I |= F → G, and
〈H, I〉 6|=ht F or 〈H, I〉 |=ht G;

• 〈H, I〉 |=ht ∀X F (X) if 〈H, I〉 |=ht F (d∗)
for each d ∈ |I|s, where s is the sort of X ;

• 〈H, I〉 |=ht ∃X F (X) if 〈H, I〉 |=ht F (d∗)
for some d ∈ |I|s, where s is the sort of X .

If 〈H, I〉 |=ht F holds, we say that 〈H, I〉 ht-satisfies F and
that 〈H, I〉 is an ht-model of F . If it is clear from the context
that the |=ht entailment relation is referred to, we will simply
say that 〈H, I〉 satisfies F . We say that 〈H, I〉 satisfies a set
of sentences Γ if it satisfies every sentence F in Γ.

We write H ≺PF I if H �PF I and H 6= I . A model I of
a set Γ of sentences is called stable if there is no H ≺PF I
such that 〈H, I〉 satisfies Γ. For finite standard theories,
this definition of stable models coincides with the defini-
tion of one by Bartholomew and Lee (2019) when sets P
and F respectively contain the intensional predicate and
function constants. For (possibly infinite) standard theories
with F = ∅, each stable model I corresponds to the equilib-
rium model 〈I, I〉 by Pearce and Valverde (2008).

Logic Programs With Aggregates as Extended

Many-Sorted First-Order Sentences

We present here translations τcli and τdlv that turn a pro-
gram into extended FO sentences with equality over a sig-
nature σ(P ,S) of three sorts; P and S are sets of predicate
and set symbols, respectively. Superscripts cli and dlv refer
to the semantics of clingo and dlv, respectively.

Target Signature. A set symbol is a pair E/X, where E is
an aggregate element and X is a list of variables occurring
in E. For brevity’s sake, each set symbol E/X is assigned
a short name |E/X|. The target signature is of three sorts.
The first sort is called the general sort (denoted sgen); all
program terms are of this sort. The second sort is called the
tuple sort (denoted stuple ); it contains entities that are tuples
of objects of the general sort. The third sort is called the
set sort (denoted sset ); it contains entities that are sets of
elements of the second sort, that is, sets of tuples of objects
of the general sort. Signature σ(P ,S) contains:

1. all ground terms as object constants of the general sort;

2. all predicate symbols in P with all arguments of the gen-
eral sort;

3. comparison symbols other than equality as binary predi-
cate symbols whose arguments are of the general sort;

4. predicate constant ∈/2 with the first argument of the sort
tuple and the second argument of the sort set;

5. function constant tuple/k with arguments of the general
sort and value of the tuple sort for each set symbol E/X
in S with E of the form of (5);

6. unary function constants count and sum whose argu-
ment is of the set sort and whose value is of the general
sort;

7. for each set symbol E/X in S where n is the number
of variables in X, function constants scli|E/X| and sdlv|E/X|

with n arguments of the general sort and whose value is
of the set sort.

We assume that P is the set of intensional predicates and
that the set of intensional functions is the set of all function
symbols corresponding to set symbols in S. We use infix no-
tation in constructing atoms that utilize predicate symbols of
comparisons (>,≥, <,≤, 6=) and the set membership pred-
icate ∈. Function constants scli|E/X| and sdlv|E/X| are used to

represent sets occurring in aggregates for the clingo and
dlv semantics, respectively. Each of these function con-
stants maps an n-tuple of ground terms x to the set of tuples
represented1 by EX

x . These claims are formalized below.

About a predicate symbol p/n, we say that it occurs in a
programΠ if there is an atom of the form p(t1, . . . , tn) in Π.
For set symbols, we need to introduce first the concepts of
global variables and set symbols. A variable is said to be
global in a rule if

1. it occurs in any non-aggregate literal, or

2. it occurs in a guard of any aggregate literal.

We say that set symbol E/X occurs in rule R if this rule
contains an aggregate literal with the aggregate element E
and X is the lexicographically ordered list of all variables
in E that are global in R. We say that E/X occurs in a pro-
gram Π if E/X occurs in some rule of the program. For
instance, in rule (3) the global variables are C1 and C3. Set
symbol Ectr/Xctr occurs in this rule where Ectr stands for
the aggregate element P,C2:ctrStk(C1,C2,C3,P)
and Xctr is the list of variables C1,C3. We denote by sclictr/2
and sdlvctr /2 the function symbols associated with this set
symbol for the clingo and dlv semantics, respectively.

When discussing a program Π, we assume a signa-
ture σ(P ,S) such that P and S are the sets that contain all
predicate symbols and all set symbols occurring in Π, re-
spectively. Furthermore, when it is clear from the context,
we write just σ instead of σ(P ,S).

Translations. We now describe translations that convert a
program into a set of extended FO sentences. We use τxZ
and τx to denote the rules that are common to both transla-
tions when x is replaced by either cli or dlv . Given a list Z
of global variables in some rule R, we define τcliZ and τdlvZ

for all elements of R as follows.

1. for every atomic formula A occurring outside of an ag-
gregate literal, its translation τxZA is A itself; τxZ⊥ is ⊥;

1For a tuple X of distinct variables, a tuple x of ground terms
of the same length as X, and an expression α, by αX

x we denote
the expression obtained from α by substituting x for X.



2. for an aggregate atom A of form #count{E} ≺ u
or #sum{E} ≺ u, its translation τxZ is the atom

count(sx|E/X|(X)) ≺ u or sum(sx|E/X|(X)) ≺ u

respectively, where X is the lexicographically ordered
list of the variables in Z occurring in E;

3. for every (basic or aggregate) literal of the form not A
its translation τcliZ (not A) is ¬τcliZ A and its trans-

lation τdlvZ (not A) is

¬

τcliZ A; for every literal of

the form not not A its translation τcliZ (not not A)
is ¬¬τcliZ A and its translation τdlvZ (not not A)
is

¬¬

τdlvZ A.

We now define the translation τx as follows:

4. for every rule R of form (4), its translation τxR is the
universal closure of

τxZB1 ∧ · · · ∧ τxZBn → τxZHead,

where Z is the list of the global variables of R.

5. for every program Π, its translation τxΠ is the theory
containing τxR for each rule R in Π.

τcli and τdlv only differ in the translation of negation and
the use of different function constants for set symbols. For
instance, rule (3) is translated into the universal closure of

company(C1) ∧ company(C3)

∧ sum(sxctr(C1, C3)) > 50 → controls(C1, C3)
(7)

where variables C1 and C3 are of the general sort, and x is
either cli or dlv depending on the semantics considered.

Standard interpretations. A standard interpretation I is
an interpretation of σ(P ,S) that satisfies the following con-
ditions:

1. universe |I|sgen is the set containing all ground terms of
the general sort;

2. universe |I|stuple is the set of all tuples of form
〈d1, . . . , dk〉 with di ∈ |I|sgen for each set symbol E/X
in S with E of the form of (5);

3. every element of |I|sset is a subset of |I|stuple ;

4. I interprets each ground program term as itself;

5. I interprets predicate symbols >,≥, <,≤ according to
the total order chosen earlier;

6. I interprets each tuple term of form tuple (t1, . . . , tk) as
the tuple 〈tI1, . . . , t

I
k〉;

7. ∈I is the set of pairs (t, s) s.t. tuple t belongs to set s;

8. for term tset of sort sset , count(tset )
I is ĉount(tIset );

9. for term tset of sort sset , sum(tset)
I is ŝum(tIset );

An agg-interpretation is a standard interpretation I satisfy-
ing, for every set symbolE/X in S with E of the form of (5)
and for all x ∈ {cli , dlv}, that sx|E/X|(x)

I is the set of all

tuples of the form 〈(t1)XY
xy , . . . , (tk)

XY
xy 〉 such that I satis-

fies τx(l1)
XY
xy ∧ · · · ∧ τx(lm)XY

xy .
For instance, the program representing the Company

Control problem has a unique set symbol that is asso-
ciated with the function symbols sxctr/2 (x ∈ {cli , dlv}).

If I is an agg-interpretation such that ctrStkI is the set
containing (c1, c2, c3, 10) and (c1, c4, c3, 20), it follows

that sxctr (c1 , c3 )
I

(with x ∈ {cli , dlv}) is the set contain-
ing tuples 〈10, c2〉 and 〈20, c4〉.

An ht-interpretation 〈H, I〉 is said to be standard if
both H and I are standard. An agg-ht-interpretation is
a standard ht-interpretation 〈H, I〉 satisfying that I is an
agg-interpretation and the following conditions for every set
symbol E/X in S with E of the form of (5) :

• scli|E/X|(x)
H is the set of all tuples of form

〈(t1)XY
xy , . . . , (tk)

XY
xy 〉 such that 〈H, I〉 satisfies

τcli(l1)
XY
xy ∧ · · · ∧ τcli(lm)XY

xy ; and

• sdlv|E/X|(x)
H is the set of all tuples of form

〈(t1)XY
xy , . . . , (tk)

XY
xy 〉 such that H satisfies

τdlv (l1)
XY
xy ∧ · · · ∧ τdlv (lm)XY

xy .

where Y is the lexicographically ordered list of the vari-
ables occurring in E that are not in X. Let us con-
sider now an agg-ht-interpretation 〈H, I〉 where I is

as described above and ctrStkH is the set contain-
ing (c1, c2, c3, 10). Then, sxctr (c1 , c3 )

H
is the set con-

taining tuples 〈10, c2〉. In this example, there is no dif-
ference between the semantics of clingo and dlv.
As an example of where these semantics differ, con-
sider an agg-ht-interpretation 〈H, I〉 with pH = rH = ∅
and pI = qI = qH = rI = {1}, and rule

p(1) :- #sum{X : q(X), not r(X)} < 1. (8)

This rule is translated into the sentences

sum(scliqr ) < 1 → p(1) (9)

sum(sdlvqr ) < 1 → p(1) (10)

for the clingo and dlv semantics, respectively. It is clear
that I satisfies both rules because 1 belongs to pI . However,
when considering the agg-ht-interpretation 〈H, I〉, only the
second rule is satisfied. On the one hand, (sxqr)

I (with x ∈

{cli , dlv}) is the empty set. Furthermore, (scliqr )
H is also

the empty set because 〈H, I〉 6|= ¬r(1), and the antecedent
of (9) is satisfied. Then, the rule is not satisfied because the
consequent is not satisfied due to 1 not belonging to pH .
On the other hand, (sdlvqr )H is the set containing 1 be-

cause H |= q(1) ∧

¬

r(1). Hence, 〈H, I〉 does not satisfy the
antecedent of (10) and the rule is satisfied.

We now define stable models for programs with ag-
gregates. A model of a formula or theory that is also
an agg-interpretation is called an agg-model and an
agg-ht-interpretation that satisfies a formula or theory is
called an agg-ht-model.

Definition 1. An agg-model I of Γ is an agg-stable model
of Γ if there is no agg-ht-model 〈H, I〉 with H ≺PF I .

Correspondence with clingo and dlv

We establish now the correspondence between the seman-
tics of programs with aggregates introduced in the previous
section and the semantics of the solver clingo, named Ab-
stract Gringo (Gebser et al. 2015), and the solverdlv, which



is based on the FLP-reduct (Faber, Pfeifer, and Leone 2011).
These semantics are stated in terms of infinitary formulas
following the work by Harrison and Lifschitz (2019).

Infinitary Formulas. We extend the definitions of infinitary
logic (Truszczyński 2012) to formulas with intensional func-
tions and the

¬

connective. For every nonnegative integer r,
infinitary ground formulas of rank r are defined recursively:

• every ground atom in σ is a formula of rank 0,

• if Γ is a set of formulas, and r is the smallest nonnegative
integer that is greater than the ranks of all elements of Γ,
then Γ∧ and Γ∨ are formulas of rank r,

• if F and G are formulas, and r is the smallest nonnega-
tive integer that is greater than the ranks of F and G, then
F → G is a formula of rank r,

• if F is a formula, and r is the smallest nonnegative inte-
ger that is greater than the rank F , then

¬

F is a formula
of rank r.

We write {F,G}∧ as F ∧G, {F,G}∨ as F ∨G, and ∅∨ as ⊥.
We extend the satisfaction relation for ht-interpretations

to infinitary formulas by adding the following two condi-
tions to the definition for FO formulas:

• 〈H, I〉 |=ht Γ
∧ if for every formula F in Γ,

〈H, I〉 |=ht F ,

• 〈H, I〉 |=ht Γ
∨ if there is a formula F in Γ such that

〈H, I〉 |=ht F ,

We write I |= F if 〈I, I〉 |=ht F .
Truszczyński (2012) defines the satisfaction of infinitary

formulas with respect to sets of ground atoms instead of FO
interpretations. Such a satisfaction relation for infinitary for-
mulas can be defined when we have no intensional functions.
An infinitary ground formula is propositional if it does not
contain intensional functions. For a signature σ, by σp we
denote the set of all ground atoms over σ that do not contain
intensional functions. Subsets of a propositional signature
σp are called propositional interpretations. The satisfaction
relation between a propositional interpretation A and an in-
finitary propositional formula is defined recursively:

• for every ground atom A from σ, A |= A if A belongs
to A,

• A |= Γ∧ if for every formula F in Γ, A |= F ,

• A |= Γ∨ if there is a formula F in Γ such that A |= F ,

• A |= F → G if A 6|= F or A |= G,

• A |=

¬

F if A 6|= F .

In the following, if I is an interpretation, then I denotes
the set of atomic formulas of σp satisfied by I . With this
notation, the following result is easily proved by induction.

Proposition 1. Let F be an infinitary propositional formula.
Then, I |= F iff I |= F .

Grounding. The grounding of a FO sentence allows us to
replace quantifiers with infinitary conjunctions and disjunc-
tions. Formally, the grounding of a First-Order sentence F
with respect to an interpretation I and sets P andF of inten-
sional predicate and function symbols is defined as follows:

• grPFI (⊥) is ⊥;

• grPFI (p(t)) is p(t) if p(t) contains intensional symbols;

• grPFI (p(t)) is ⊤ if p(t) does not contain intensional

symbols and I |= p(t); and grPFI (p(t)) is ⊥ otherwise;

• grPFI (t1 = t2) is (t1 = t2) if t1 or t2 contain intensional
symbols;

• grPFI (t1 = t2) is ⊤ if t1 and t2 do not contain inten-

sional symbols and tI1 = tI2 and ⊥ otherwise;

• grPFI (

¬

F ) is

¬

grPFI (F );

• grPFI (F ⊗G) is grPFI (F )⊗grPFI (G) if ⊗ is ∧, ∨, or →;

• grPFI (∃X F (X)) is {grPFI (F (u)) | u ∈ |I|s}∨ if X is a
variable of sort s;

• grPFI (∀X F (X)) is {grPFI (F (u)) | u ∈ |I|s}∧ if X is a
variable of sort s.

For a first-order theoryΓ, we define grPFI (Γ) = {grPFI (F ) |
F ∈ Γ}∧. For any first-order theory Γ, grPFI (Γ) is an infini-
tary formula, which may contain intensional functions or the

¬

connective. We write gr I(·) instead of grPFI (·) when it is
clear from the context.

Proposition 2. 〈H, I〉 |=ht F iff 〈H, I〉 |=ht gr I(F ).

Standard formulas and minimal models. We say that an
infinitary propositional formula is standard if it does not
contain the

¬

connective. The definitions of the semantics of
clingo and dlv only use standard infinitary formulas and
rely on the notion of minimal models. A propositional inter-
pretation A satisfies a set Γ of formulas, in symbols A |= Γ,
if it satisfies every formula in Γ. We say that a set A of atoms
is a ⊆-minimal model of a set of infinitary formulas Γ, if
A |= Γ and there is no B satisfying B |= Γ and B ⊂ A.

Clingo. The FT-reduct FA of a standard infinitary for-
mula F with respect to a propositional interpretation A is
defined recursively. If A 6|= F then FA is ⊥; otherwise,

• for every ground atom A, AA is A

• (Γ∧)A = {GA | G ∈ Γ}∧,

• (Γ∨)A = {GA | G ∈ Γ}∨,

• (G → H)A is GA → HA,

We say that a propositional interpretation A is an FT-stable
model of a formula F if it is a ⊆-minimal model of FA.
We say that a set A of ground atoms is a clingo answer set
of a program Π if A is an FT-stable model of τΠ where τ
is the translation from logic programs to infinitary formu-
las defined by Gebser et al. (2015). The following result
states that the usual relation between ht-interpretations and
the FT-reduct is satisfied in our settings.

Proposition 3. Let F be a standard infinitary formula of σp.
Then, 〈H, I〉 |=ht F iff H |= F I .

For agg-ht-interpretations we can state the relation ≺PF

in terms of the atomic formulas satisfied by it as follows:

Proposition 4. Let 〈H, I〉 be an agg-ht-interpretation.
Then, H ≺PF I iff H ⊂ I.

Using Propositions 1-4, we can prove the relation between
clingo answer sets and agg-stable models of the correspond-
ing FO theory. Note that clingo answer sets are propositional



interpretations while agg-stable models of FO theories are
FO interpretations. To fill this gap, we introduce the follow-
ing notation. If I is an agg-stable model of τcliΠ, we say
that I is a fo-clingo answer set of Π.

Theorem 5. The fo-clingo answer sets of any program co-
incide with its clingo answer sets.

Proof sketch. The core of the proof consists of showing
that 〈H, I〉 |=ht τ

cliΠ iff H |= (τΠ)I holds. By Proposi-
tion 2, we get 〈H, I〉 |=ht τ

cliΠ iff 〈H, I〉 |=ht gr I(τ
cliΠ).

Note that gr I(τ
cliΠ) is not an infinitary propositional for-

mula, because it may contain intensional functions. Thus, we
cannot apply Proposition 3 directly. However, we can prove
that 〈H, I〉 |=ht gr I(τ

cliΠ) iff 〈H, I〉 |=ht τΠ holds and
use Proposition 3 to prove the stated result. Finally, Propo-
sition 4 is used to state the correspondence between stable
models of τΠ and agg-stable models of τcliΠ.

The dlv semantics. Similarly to the Abstract Gringo se-
mantics, the dlv semantics can be stated in terms of the
same translation τ to infinitary formulas, but using a differ-
ent reduct (Harrison and Lifschitz 2019). Let F be an im-
plication F1 → F2. Then, the FLP-reduct FLP(F,A) of F
w.r.t. a propositional interpretationA is F if A |= F1, and ⊤
otherwise. For a conjunction of implications F∧, we define

FLP(F∧,A) = {FLP(F,A) | F ∈ F}∧

A set A of ground atoms is an FLP-stable model of F if it
is a ⊆-minimal model of FLP(F,A). We say that a set A
of ground atoms is a dlv answer set of a program Π if A
is an FLP-stable model of τΠ. If I is an agg-stable model
of τdlvΠ, we say that I is a fo-dlv answer set of Π.

Theorem 6. The fo-dlv answer sets of any program coincide
with its dlv answer sets.

Proof sketch. The structure of the proof is analogous to
the one of Theorem 5. Here, the key step of the proof
consists of showing 〈H, I〉 |=ht τ

dlvΠ iff both I |= τΠ
and H |= FLP (τΠ, I).

Strong Equivalence

We say that two programsΠ1 and Π2 are strongly equivalent
for clingo if program Π1 ∪∆ and Π2 ∪∆ have the same
clingo answer sets for any program ∆.

We assume a signature σ(P ,S) where P and S are the
sets that respectively contain all predicate and all set sym-
bols occurring in Π1 ∪ Π2.

Theorem 7. The following conditions are equivalent:

• Π1 and Π2 are strongly equivalent for clingo;

• τcli(Π1) and τcli(Π2) have the same agg-ht-models.

Let us consider the program formed by rule (8). This pro-
gram has {p(1)} as its unique clingo answer set. Similarly,
the program formed by the rule

p(1) :- not #sum{X : q(X),not r(X)}>=1. (11)

also has {p(1)} as its unique clingo answer set. How-
ever, these two programs are not strongly equivalent under
the clingo semantics. To illustrate this claim, consider

an agg-ht-interpretation 〈H, I〉 with pH = rH = rI = ∅,
and pI = qH = {1}, and qI = {1,−1}. On the one hand,
〈H, I〉 satisfies (9) because its antecedent is not satisfied as
we have sum(scliqr )

H = 1. On the other hand, 〈H, I〉 does
satisfy the formula

¬sum(scliqr ) ≥ 1 → p(1) (12)

obtained by applying τcli to (11). Note that in the scope
of negation, we only look at the value in I and we
have sum(scliqr )

I = 0. By Theorem 7, this implies that the
two programs are not strongly equivalent under the clingo
semantics. This assertion can be confirmed by adding con-
text

q(1). q(-X) :- p(X). :- not p(1). (13)

When added to rule (8), the resulting program has no clingo
answer sets, but when added to rule (11), the resulting pro-
gram has {q(1), q(−1), p(1)} as its unique answer set.

Similarly, we say that two programs Π1 and Π2 are
strongly equivalent for dlv if programs Π1∪∆ and Π2∪∆
have the same dlv answer sets for any program ∆.

Theorem 8. The following conditions are equivalent.

• Π1 and Π2 are strongly equivalent for dlv;

• τdlv (Π1) and τdlv (Π2) have the same agg-ht-models.

Though programs containing rules (8) and (11) are not
strongly equivalent for clingo, they are strongly equiva-
lent for dlv. Applying τdlv to rule (11) yields formula

¬

sum(sdlvqr ) ≥ 1 → p(1) (14)

and any agg-ht-interpretation 〈H, I〉 satisfies the antecedent
of (14) iff H 6|= sum(sdlvqr ) ≥ 1 and I 6|= sum(sdlvqr ) ≥ 1

iff H |= sum(sdlvqr ) < 1 and I |= sum(sdlvqr ) < 1 iff 〈H, I〉

satisfies sum(sdlvqr ) < 1, which is the antecedent of (10). By
Theorem 8, this implies that the two programs are strongly
equivalent for dlv.

We can also use these translations to establish strong
equivalence results across the two semantics.

Theorem 9. The following conditions are equivalent.

• τcli(Π1) and τdlv (Π2) have the same agg-ht-models.

• the clingo answer sets of Π1 ∪ ∆ coincide with the dlv
answer sets of Π2 ∪ ∆ for every set ∆ of rules such
that τcli(∆) and τdlv (∆) have the same agg-ht-models.

In particular, note that τcli(∆) and τdlv (∆) are equivalent
for any set of rules without aggregates nor double negation.
The restriction on the agg-models of τcli(∆) and τdlv (∆) is
necessary because the same added rules may have different
behavior under the two semantics. As an example, consider
program Π1 formed by rule (8) plus constraint

:- q(X), r(X). (15)

and program Π2 formed by rule (11) plus constraint (15).
Recall that τcli (8) is sentence (9) and τdlv (11) is sen-
tence (14). As we discussed above, any agg-ht-interpretation
satisfies the antecedent of (14) iff it satisfies sum(sdlvqr ) <1.

Hence, it is enough to show (scliqr )
H = (sdlvqr )H



for every agg-ht-interpretation 〈H, I〉 that satis-
fies ∀X¬(q(X) ∧ r(X)). Every such 〈H, I〉, satisfies
that H |= q(c) implies H 6|= r(c) for every object constant c
of general sort. Hence 〈H, I〉 satisfies q(c) ∧ ¬r(c) iff H
satisfies q(c) ∧

¬

r(c) for every object constant c of general
sort. This implies (scliqr )

H = (sdlvqr )H . It is well-known
that for programs where all aggregate literals are positive,
the clingo and dlv semantics coincide (Ferraris 2011;
Harrison and Lifschitz 2019). As illustrated by this example,
Theorem 9 enables us to prove this correspondence for
some programs with non-positive aggregates.2

Strong Equivalence using Classical Logic

In this section, we show how an additional syntactic trans-
formation γ allows us to replace the logic of Here-and-There
by classical FO theory. This also allows us to remove the
non-standard negation

¬

and replace the semantic condi-
tion that characterizes agg-interpretations in favor of ax-
iom schemata. This is a generalization of the transformation
by Fandinno and Lifschitz (2023) and it is similar to the one
used by Bartholomew and Lee (2019) to define the SM op-
erator for FO formulas with intensional functions.

We define a signature σ̂ that is obtained from the signa-
ture σ by adding, for every predicate symbol p other than
comparison symbols (4), a new predicate symbol p̂ of the
same arity and sorts; and for every function symbol sx|E/X|

with x ∈ {cli , dlv}, a new function symbol ŝx|E/X|.

For any expression E of signature σ, by Ê we denote
the expression of σ̂ obtained from E by replacing every oc-
currence of every predicate symbol p by p̂ and every oc-
currence of function symbol sx|E/X| by ŝx|E/X|. The transla-

tion γ, which relates the logic of here-and-there to classical
logic, maps formulas over σ to formulas over σ̂. It is defined
recursively:

• γF = F ∧ F̂ if F is atomic,

• γ(¬F ) = ¬F̂ ,

• γ(

¬

F ) = ¬F̂ ∧ ¬n(F ),

• γ(F ⊗G) = γF ⊗ γG with ⊗ ∈ {∧,∨}.

• γ(F → G) = (γF → γG) ∧ (F̂ → Ĝ),

• γ(∀X F ) = ∀X γF ,

• γ(∃X F ) = ∃X γF .

where n(F ) is the result of replacing all occurrences of

¬

by ¬ in F . To apply γ to a set of formulas means to apply γ
to each of its members. Note that γΓ is always a standard
FO theory (without the

¬

connective) over the signature σ̂.
For any ht-interpretation 〈H, I〉 of σ, IH stands for the

interpretation of σ̂ that has the same domain as I , inter-
prets symbols not in P ∪ F in the same way as I , interprets

the other function symbol as f IH

= fH and f̂ IH

= f I , and
other predicate constants as follows:

IH |= p(d∗) iff H |= p(d∗); IH |= p̂(d∗) iff I |= p(d∗).

2Recall that an aggregate literal is called positive if it is not
in the scope of negation and negation does not occur within its
scope (Harrison and Lifschitz 2019).

Proposition 10. 〈H, I〉 |=ht Γ iff IH |= γΓ.

The following set of formulas characterizes which
interpretations of the signature σ̂ correspond to
ht-interpretations. By HT we denote the set of all for-
mulas of the form ∀X(p(X) → p̂(X)) for every predicate
symbol p ∈ P . By AGG we denote the set of all sentences
of the form

∀XT
(
T ∈ ŝx|E/X|(X) ↔ ∃YF̂ x

)
(16)

∀XT
(
T ∈ scli|E/X|(X) ↔ ∃Yγ(F cli)

)
(17)

∀XT
(
T ∈ sdlv|E/X|(X) ↔ ∃Yn(F dlv )

)
(18)

for every E/X in S with E of the form of (5) and where

F cli is T = tuple (t1, . . . , tk) ∧ τcli(l1) ∧ · · · ∧ τcli(lm)

F dlv is T = tuple (t1, . . . , tk) ∧ τdlv (l1) ∧ · · · ∧ τdlv (lm)

Proposition 11. An interpretation of the signature σ̂ satis-
fies HT and AGG iff it can be represented in the form IH

for some agg-ht-interpretation 〈H, I〉.

We are ready to state the main result of this section show-
ing that we can use classical FO logic to reason about strong
equivalence under the clingo and dlv semantics.

Theorem 12. Finite programs Π1 and Π2 are strongly
equivalent under the clingo semantics iff all standard in-
terpretations of σ̂ satisfy the sentence∧

HT ∧
∧

AGG → (F1 ↔ F2)

where Fi is the conjunction of all sentences in γτcliΠi. The
same holds if we replace clingo and τcli by dlv and τdlv .

Discussion and Conclusions
In this paper, we provided a characterization of the se-
mantics of logic programs with aggregates which bypasses
grounding. We focus on the semantics for recursive aggre-
gates used by ASP solvers clingo and dlv. Our charac-
terization reflects the intuition that aggregates are functions
that apply to sets, usually missing in most formal character-
izations of aggregates, which treat them as monolithic con-
structs. To achieve that, we translate logic programs with
aggregates into First-Order sentences with intensional func-
tions, establishing a connection between these two exten-
sions of logic programs. We also show how this characteri-
zation can be used to study the strong equivalence of pro-
grams with aggregates and variables under either seman-
tics. Finally, we show how to reduce the task of check-
ing strong equivalence to reasoning in classical First-Order
logic, which serves as a foundation for automating this pro-
cedure. We also axiomatize the meaning of the symbols used
to represent sets. The axiomatization of the symbols rep-
resenting aggregate operations (sum and count) developed
by Fandinno, Hansen, and Lierler (2022) for non-recursive
aggregates also applies to recursive aggregates because these
function symbols stay non-intensional. Immediate future
work includes the integration of this characterization of ag-
gregates with the formalization of arithmetics used by the
verification tool ANTHEM (Fandinno et al. 2020, 2023) and
the implementation of a new verification tool that can ac-
commodate programs with aggregates.
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Proof of Results

Some Results on Here-and-There Logic

The following results show that some of the usual properties
of the logic of Here-and-There are preserved in the extension
introduced here.

Proposition 13. The following properties hold:

• 〈I, I〉 |=ht F iff I |= F .

• If 〈H, I〉 |=ht F , then I |= F .

• 〈H, I〉 |=ht ¬F iff I 6|= F .

• 〈H, I〉 |=ht ¬¬F iff I |= F .

Proof. Item 1 is immmediate when H = I . Item 2. If F is an
atomic sentence or a sentence of the forms

¬

F1 or F1 → F2,
the result follows from the definition of |=ht. The remain-
ing cases are proved by induction on the size of F . Item 3.
〈H, I〉 |=ht ¬F iff 〈H, I〉 |=ht F → ⊥ iff I |= F → ⊥

and 〈H, I〉 6|=ht F iff I 6|= F (the last equivalece is a conse-
quence of Item 2). Item 4 is an immmediate consequence of
Item 3.

The second item of Proposition 13 shows that the persis-
tence property of the logic of Here-and-There is preserved
in the extension introduced here.

The following result sheds some light on the behavior of
the new negation connective.

Proposition 14. The following properties hold:

• 〈H, I〉 |=ht

¬

F iff I |=

¬

F and H |=

¬

F .

• 〈H, I〉 |=ht

¬¬

F iff I |= F and H |= F .

• 〈H, I〉 |=ht

¬¬

F implies 〈H, I〉 6|=ht

¬

F .

• 〈H, I〉 |=ht

¬¬

p(t) iff 〈H, I〉 |= p(t).

Proof. Item 1: 〈H, I〉 |=ht

¬

F iff I 6|= F and H 6|= F (by
definition) iff I |=

¬

F and H |=

¬

F (by definition).

Item 2: 〈H, I〉 |=ht

¬¬

F iff I 6|=

¬

F and H 6|=

¬

F (by
definition) iff I |= F and H |= F .

Item 3: 〈H, I〉 |=ht

¬¬

F implies I |= F and H |= F
(Item 2) and, thus, 〈H, I〉 6|=ht

¬

F .

Item 4: 〈H, I〉 |=ht

¬¬

p(t) iff I |= p(t) and H |= p(t) (by
Item 2) iff 〈H, I〉 |= p(t) (by definition).

Proposition 15. The following properties hold if t does not
contain intensional symbols.

• 〈H, I〉 |=ht p(t) iff H |= p(t),
• 〈H, I〉 |=ht

¬

p(t) iff 〈H, I〉 |=ht ¬p(t) iff I 6|= p(t).

Proof. Item 1: 〈H, I〉 |=ht p(t) iff H |= p(t) and I |= p(t)
iff tH ∈ pH and tI ∈ pI iff tH ∈ pH (because pH ⊆ pI

and tH = tI ) iff H |= p(t).

Item 2: 〈H, I〉 |=ht

¬

p(t) iff H 6|= p(t) and I 6|= p(t) iff
tH /∈ pH and tI /∈ pI iff tI /∈ pI (pH ⊆ pI and tH = tI )
iff I 6|= p(t).

The first item of the Proposition 15 means that, when
a theory is standard and has no intensional functions, our
satisfaction relation is equivalent to the standard satisfac-
tion relation in QEL (Pearce and Valverde 2008). The third
item of the Proposition 15 implies that 〈H, I〉 |=ht

¬¬

p(t)
iff 〈H, I〉 |=ht ¬¬p(t) does not hold even when t does
not contain intensional symbols. This behavior is consis-
tent with the way a straightforward generalization of the
FLP-reduct (Faber, Pfeifer, and Leone 2011) treats double
negation (Harrison and Lifschitz 2019).

Proof of Section Correspondence with Clingo and
DLV

Grounding

Lemma 16. An interpretation I satisfies a sentence F
over σI iff I satisfies gr I(F ).

Proof. By induction on the size of F .

Case 1: F is an atomic sentence that contains intensional
symbols. Then, gr I(F ) = F and the result is trivial.



Case 2: F is an atomic sentence that does not contain in-
tensional symbols. Then, gr I(F ) = ⊤ if I |= F and
gr I(F ) = ⊥ otherwise. The result follows immediately.

Case 3: F is of the form

¬

G. Then, gr I(F ) =

¬

gr I(G) and
the result follows by induction hypothesis.

Case 4: F is ∀XG(X) with X a variable of sort s. Then,
gr I(F ) = {gr I(G(d∗)) | d∗ ∈ |I|s}∧ and

〈H, I〉 |=ht F
iff 〈H, I〉 |=ht G(d∗) for each d ∈ |I|s

iff 〈H, I〉 |=ht gr I(G(d∗)) for each d ∈ |I|s (induction)
iff 〈H, I〉 |=ht gr I(F ).

The case where F is ∃XG(X) is analogous to Case 2. The
remaining cases where F is G1 ∧G2, G1 ∨G2 or F1 → F2

follow immediately by induction.

Proof of Proposition 2. By induction on F similar to
Lemma 16.

Case 1: F is an implication of the form G1 → G2. Then,
gr I(F ) is the implication grPFI (G1) → gr I(G2) and

〈H, I〉 |=ht F
iff I |= F and either 〈H, I〉 6|=ht G1 or 〈H, I〉 |=ht G2

iff I |= gr I(F ) (Lemma 16) and
either 〈H, I〉 6|=ht gr

PF
I (G1) or 〈H, I〉 |=ht gr I(G2)

iff 〈H, I〉 |=ht gr I(F ).

Case 2: F is of the form

¬

G. Then, gr I(F ) =

¬

gr I(G) and
〈H, I〉 |=

¬

G
iff I 6|= G and H 6|= G
iff I 6|= gr I(G) and H 6|= gr I(G) (Lemma 16)
iff 〈H, I〉 |=

¬
gr I(G)

The other cases follow by induction as in Lemma 16.

FT-reduct

Proof of Proposition 3. We proceed by induction on the
rank r of F . For a formula F of rank r + 1, assume that,
for all formulas G of lesser rank than F occurring in F ,
〈H, I〉 |=ht G iff H |= GI .

Base Case: r = 0, F is a ground atomic formula. Then,
〈H, I〉 |=ht F
iff H |= F and I |= F
iff H |= F and F I = F
iff H |= F I

Induction Step:
Case 1: Formula F of rank r + 1 has form Γ∧. Then,
〈H, I〉 |=ht F
iff 〈H, I〉 |=ht G for every formula G in Γ (by definition)
iff H |= GI for every formula G in Γ (by induction)
iff H |= {GI | G ∈ Γ}∧

iff H |= F I

Case 2: Formula F of rank r + 1 has form Γ∨. Then,
〈H, I〉 |=ht F
iff 〈H, I〉 |=ht G for some formula G in Γ (by definition)
iff H |= GI for this certain formula G in Γ (by induction)
iff H |= {GI | G ∈ Γ}∨

iff H |= F I

Case 3: Formula F of rank r+1 has form G1 → G2. Then,

〈H, I〉 |=ht F
iff I |= G1 → G2 and 〈H, I〉 6|=ht G1 or 〈H, I〉 |=ht G2

(by definition)
iff 〈I, I〉 |=ht G1 → G2 and

〈H, I〉 6|=ht G1 or 〈H, I〉 |=ht G2 (by definition)
iff I |= GI

1 → GI
2 and H 6|= GI

1 or H |= GI
2 (by induction)

iff I |= G1 → G2 and H 6|= GI
1 or H |= GI

2

iff I |= G1 → G2 and H |= GI
1 → GI

2

iff F I = GI
1 → GI

2 and H |= GI
1 → GI

2

iff H |= F I .

The τ translation. The τ translation transforms a logic
program into an infinitary propositional formula (Gebser
et al. 2015). For any ground atom A, it is defined as follows:

• τ(A) is A,

• τ(not A) is ¬A, and

• τ(not not A) is ¬¬A.

For a comparison symbol ≺ and ground terms t1 and t2, it
is defined as follows:

• τ(t1 ≺ t2) is ⊤ if the relation ≺ holds between t1 and t2
and ⊥ otherwise.

For an aggregate element E of the form of (5) with Y the
list of local variables occurring on it, ΨE denotes the set
of tuples y of ground program terms of the same length
as Y. We say that a subset ∆ of ΨE justifies aggregate
atom op{E} ≺ u if the relation ≺ holds between ôp[∆]
and u where [∆] = {tYy | y ∈ ∆} and t is the list of
terms t1, . . . , tk in E. For an aggregate atom A of the form
of op{E} ≺ u with global vriables X, τ(A) it is defined as
the infinitary formula

∧

∆∈χ




∧

y∈∆

lXY
xy →

∨

y∈Ψ
EX

x

\∆

lXY
xy


 (19)

where χ is the set of subsets ∆ of ΨE that do not justify
aggregate atom op{EX

x } ≺ u, and l is the list l1, . . . , lm of
literals in E. We omit the parentheses and write τF instead
of τ(F ) when clear. For a rule R of the form of (6) with
global variables Z, τR is the infinitary conjunction of all
formulas of the form

τ(B1)
Z
z ∧ . . . ∧ τ(Bn)

Z
z → τHeadZ

z (20)

with z being a list of ground program terms of the same
length as Z. For a program Π, τΠ = {τR | R ∈ Π}∧.

Correspondence with clingo. For any rule R without
aggregates, it is not difficult to see that τR = gr I(τ

cliR) for
any standard interpretation I . For rules with aggregates τR
and gr I(τ

cliR) only differ in the translation of aggregates.
The following two results show the relation between τA
and gr I(τ

cliA) for any aggregate atom A.

Lemma 17. Let I be an agg-interpretation, op be an
operation name and x ∈ {cli , dlv}. Then, I satisfies
op(sx|E/X|(x)) ≺ u iff I satisfies (19).



Proof. Let Y be the list of variables occurring in E that do

not occur in X. Let ∆I = {y ∈ ΨE | I |= lXY
xy } and FI be

the formula
∧

y∈∆I

l
XY
xy →

∨

y∈ΨE\∆I

l
XY
xy

Then, I 6|= FI and

s|E/X|(x)
I = {tXY

xy | y ∈ ∆I} = [∆I ].

Consequently, we have

I |= (19) iff FI is not a conjunctive term of (19)

iff ∆I justifies op(EX
x ) ≺ u

iff ôp[∆I ] ≺ u

iff ôp(s|E/X|(x)
I) ≺ u

iff I |= op(s|E/X|(x)) ≺ u

Lemma 18. Let op be an operation name. Then, an
agg-ht-interpretation 〈H, I〉 satisfies op(scli|E/X|(x)) ≺ u

iff 〈H, I〉 satisfies (19).

Proof. Let us denote op(scli|E/X|(x)) ≺ u as A in the follow-

ing.

Case 1: I 6|= A. By Lemma 17, it follows that I 6|= (19).
Therefore, 〈H, I〉 6|=ht A and 〈H, I〉 6|=ht (19).

Case 2: I |= A. By Lemma 17, it follows that I |= (19). Let

∆〈H,I〉 = {y ∈ ΨE | 〈H, I〉 |=ht l
XY
xy }

and F〈H,I〉 be the formula

∧

y∈∆〈H,I〉

l
XY
xy →

∨

y∈ΨE\∆〈H,I〉

l
XY
xy

Then, 〈H, I〉 6|= F〈H,I〉 and

s|E/X|(x)
H = {tXY

xy | y ∈ ∆〈H,I〉} = [∆〈H,I〉].

Consequently, we have

〈H, I〉 |= (19) iff I |= (19) and

F〈H,I〉 is not a conjunctive term of (19)

iff ∆〈H,I〉 justifies op(s|E/X|(x)) ≺ u

iff ôp([∆〈H,I〉]) ≺ u

iff ôp(scli|E/X|(x)
H) ≺ u

iff H |= op(scli|E/X|(x)) ≺ u

iff H |= A

iff 〈H, I〉 |= A

Lemma 19. Let Π be a program, P be the set of all pred-
icate symbols in σ other than comparisons, F be the set of
all function symbols corresponding set symbols. Then,

〈H, I〉 |=ht τΠ iff 〈H, I〉 |=ht gr
PF
I (τcliΠ)

for every agg-ht-interpretation 〈H, I〉.

Proof. Recall that comparisons are not intensional in the
definition of the stable models of a program, that is, they
do not belong to P . Then, it is easy to see that τΠ can be

obtained from grPFI (τcliΠ) by replacing each occurrence

of op(scli|E/X|(x)) ≺ u, where op is an operation name, by

its corresponding formula of the form of (19): Hence, it is
enough to show that

〈H, I〉 |=ht op(s
cli
|E/X|(x) ≺ u) iff 〈H, I〉 |=ht (19)

This follows from Lemma 18.

Lemma 20. Let Π be a program, P be the set of all pred-
icate symbols in σ other than comparisons, F be the set of
all function symbols corresponding set symbols. Then,

〈H, I〉 |=ht τΠ iff 〈H, I〉 |=ht τ
cliΠ

for every agg-ht-interpretation 〈H, I〉.

Proof. Directly by Proposition 2 and Lemma 19.

Lemma 21. Let Π be a program, P be the set of all pred-
icate symbols in σ other than comparisons, F be the set of
all function symbols corresponding set symbols. Then,

H |= (τΠ)I iff 〈H, I〉 |=ht τ
cliΠ

for every agg-ht-interpretation 〈H, I〉.

Proof. Since τΠ is an infinitary formula of σp, the result
follows by Lemma 20 and Proposition 3.

Lemma 22. Let 〈H, I〉 be an agg-ht-interpretation.

Then, H ≺PF I iff H ≺P∅ I .

Proof. Right-to-left. H ≺P∅ I means that there is a predi-
cate symbol p such that pH ⊂ pI and, thus, H ≺PF I also
holds. Lert-to-right. H ≺PF I means that one of the follow-
ing holds

• pH ⊂ pI for some intensional predicate symbol p; or

• fH 6= f I for some intensional function symbol f .

The first immediately implies that H ≺P∅ I also holds.
For the latter, f must be of the form sx|E/X| for some

aggregate element E. Therefore, the set of the set of all
tuples of form 〈(t1)XY

xy , . . . , (tk)
XY
xy 〉 such that I satis-

fies (l1)
XY
xy ∧ · · · ∧ (lm)XY

xy and the set of all tuples of

form 〈(t1)XY
xy , . . . , (tk)

XY
xy 〉 such that 〈H, I〉 or H satis-

fies (l1)
XY
xy ∧ · · · ∧ (lm)XY

xy must be different. This means

that pH 6= pI for some predicate symbols p and, thus,

pH ⊂ pI and H ≺P∅ I follow.

Proposition 4. By Lemma 22, it follows that H ≺PF I
iff H ≺P∅ I . Then, the result follows because the latter
holds iff H ⊂ I.



Proof of Theorem 5. Assume that I is a fo-clingo answer
set of Π. By definition, there is a I is an agg-stable model
of τcliΠ. In its turn, this implies that I is an agg-model
of τcliΠ and there is no agg-ht-model 〈H, I〉 of τcliΠ
with H ≺PF I . By Lemma 21, it follows that I is a
model of (τΠ)I . Suppose, for the sake of contradiction,
that there is H ⊂ I such that H |= (τΠ)I . Let 〈H, I〉
be the agg-interpretation with H and I the set of ground
atoms of σp satisfied by H and I , respectively. Then,
by Proposition 4 and Lemma 21, it follows H ≺PF I
and 〈H, I〉 |=ht τ

cliΠ. This is a contradiction because there
is no agg-ht-model 〈H, I〉 of τcliΠ with H ≺PF I .

Conversely, assume that I is a clingo answer set of Π. By
definition, I is a model of τΠ and there is no model H
of (τΠ)I with H ⊂ I. By Lemma 21, the former implies
that there is an agg-model I of (τcliΠ)I . Suppose, for the
sake of contradiction, that there is some agg-ht-model 〈H, I〉
of τcliΠ with H ≺PF I . By Lemma 21 and Proposition 4,
this implies that H satisfies (τcliΠ)I with H ⊂ I, which is
a contradiction.

Correspondence with dlv. A dlv-literal is either an
atomic formula, a truth constant (⊤ or ⊥) or an expres-
sion of the forms

¬

A,

¬¬

A with A an atomic formula.
A dlv-implication is an implication of the form F1 → F2

where F1 is a conjunction of dlv-literals and F2 is either
an atomic formula or the truth constant ⊥.

For any formula F , by n(F ) we denote the result of re-
placing all occurrences of

¬

by ¬ in F . If F is an infinitary
propositional formula, then n(F ) is standard.

Lemma 23. Let F be an infinitary propositional formula.
Then, I |= F iff I |= n(F ).

Proof. By definition, I |= ¬G iff I |=

¬

G. Then, by in-
duction, it follows that I |= F iff I |= n(F ). Finally,
since n(F ) is standard, by Proposition 3, we get that the
latter holds iff I |= F .

Given an implication F of the form F1 → F2, by p(F )
we denote the implication

¬¬

F1 → F2 and by pn(F ) we
denote the implication

¬¬

n(F1) → F2. Note that I |= F
iff I |= p(F ) iff I |= pn(F ). For an ht-interpretation these
equivalences do not hold, but we have the following inter-
esting relationship with the FLP-reduct.

Lemma 24. Let 〈H, I〉 be an ht-interpretation and F be
an infinitary propositional formula of the form F1 → F2

with F2 an atomic formula or a truth constant. Then,
〈H, I〉 |=ht p(F ) iff I |= F and H |= FLP(F, I).

Proof. Left-to-right. Assume 〈H, I〉 |=ht p(F ). By Propo-
sition 13, we get I |= F and, thus I |= p(F ). By Proposi-
tion 3, this implies I |= F . Case 1. I 6|= F1. Then, I |= F
and FLP(F, I) = ⊤, and the results immediately holds.
Case 2. I |= F1. Then, FLP(F, I) = F . If H 6|= F1, then
the result follows immediately. Otherwise, H |= F1, and
this implies 〈H, I〉 |=ht

¬¬

F1 (by Propositions 3 and 14,
and fact I |= F1). Since 〈H, I〉 |=ht p(F ), this implies
that 〈H, I〉 |=ht F2. Hence, F2 is not ⊥ and H |= F2. This
means that H |= FLP(F, I).

Right-to-left. Assume I |= F and H |= FLP(F, I). By
Proposition 3, we get I |= F and, thus, I |= p(F ).
We proceed by cases. Case 1. I 6|= F1. By Proposi-
tion 3, this implies I 6|=

¬¬

F1 and, by Proposition 13,
it follows 〈H, I〉 6|=ht

¬¬

F1. Hence, 〈H, I〉 |=ht p(F ).
Case 2. I |= F1. Then, I |=

¬¬

F1 (by Proposition 3)
and FLP(F, I) = F (by definition). The latter im-
plies H |= F . If 〈H, I〉 6|=

¬¬

F1, then the result follows be-
cause I |= p(F ). Otherwise, 〈H, I〉 |=ht

¬¬

F1 and this im-
plies H |= F1 (by Proposition 14). Since H |= F , this im-
plies that H |= F2. Then F2 is not ⊥ and 〈H, I〉 |=ht F2.
Since I |= F , this implies 〈H, I〉 |=ht F .

Lemma 25. Let 〈H, I〉 be an ht-interpretation and L be a
dlv-literal. Then, 〈H, I〉 |=ht L iff I |= L and H |= L.

Proof. If L is an atomic formula or a truth constant, the re-
sult holds by definition. Otherwise, it follows by Proposi-
tion 14.

Lemma 26. Let 〈H, I〉 be an ht-interpretation and F be
a conjunction of dlv-literals. Then, 〈H, I〉 |=ht F iff I |= F
and H |= F .

Proof. Let F = L1 ∧ . . . ∧ Ln. Then, 〈H, I〉 |=ht F iff (by
definition) 〈H, I〉 |=ht Li for all 1 ≤ i ≤ n iff (Lemma 25)
H |= Li and I |= Li for all 1 ≤ i ≤ n iff H |= Li for
all 1 ≤ i ≤ n and I |= Li for all 1 ≤ i ≤ n iff (by defi-
nition) H |= F and I |= F .

Lemma 27. Let 〈H, I〉 be an ht-interpretation and F be a
dlv-implication. Then, 〈H, I〉 |=ht F iff 〈H, I〉 |=ht pn(F ).

Proof. Let F be of the form F1 → F2. Note that I |= F1

iff I |=

¬¬

n(F1). Hence, I |= F iff I |= pn(F ). Therefore,
〈H, I〉 |=ht F1 → F2 iff 〈H, I〉 6|=ht F1 or 〈H, I〉 |= F2

iff (Lemma 26) I 6|= F1 or H 6|= F1 or 〈H, I〉 |= F2 iff
(Lemma 23) I 6|= n(F1) or H 6|= n(F1) or 〈H, I〉 |= F2

iff (Proposition 14) 〈H, I〉 6|=ht

¬¬

n(F1) or 〈H, I〉 |= F2

iff 〈H, I〉 |=ht

¬¬

n(F1) → F2.

Lemma 28. Let R be a rule and 〈H, I〉 be an
agg-ht-interpretation. Then,

〈H, I〉 |=ht p(τR) iff 〈H, I〉 |=ht pn(R
′)

where R′ is grPFI (τdlvR).

Proof. We can see that p(τR) and pn(R′) are of the
form of

¬¬

F1 → F2 and

¬¬

F ′
1 → F2, respectively, with F1

and F ′
1 differing only in the translation of aggregates, with

the former containing formula (19) where the latter contains
an atom of the form op(sdlv|E/X|(x)) ≺ u. By Proposition 14,

it follows that 〈H, I〉 |=ht

¬¬

F1 iff I |= F1 and H |= F1,
and 〈H, I〉 |=ht

¬¬

F ′
1 iff I |= F ′

1 and H |= F ′
1. Finally,

by Lemma 17, we get I |= F1 iff I |= F ′
1 and H |= F1

iff H |= F ′
1.

Lemma 29. Let R be a rule and I be an agg-interpretation.
Then,

I |= τR iff I |= τdlvR



Proof. Let R′ be the result of grPFI (τdlvR). Then, it fol-
lows that I |= τR iff I |=ht p(τR) iff 〈I, I〉 |=ht p(τR)
iff (Lemma 28) 〈I, I〉 |=ht pn(R

′) iff I |=ht pn(R
′)

iff I |=ht R
′ iff (Proposition 16) I |= τdlvR.

Lemma 30. Let R be a rule and 〈H, I〉 be an
agg-ht-interpretation. Then, the following two conditions
are equivalent

• I |= τR and H |= FLP (τR, I), and

• 〈H, I〉 |=ht τ
dlvR.

Proof. Let R′ be grPFI (τdlvR). By Proposition 2, we

get 〈H, I〉 |=ht τ
dlvR iff 〈H, I〉 |= R′. Furthermore, R′ is a

dlv-implication and, by Lemmas 24 and 27 we respectively
get:

• 〈H, I〉 |=ht p(τR) iff I |= F and H |= FLP (τR, I),
• 〈H, I〉 |=ht R

′ iff 〈H, I〉 |=ht pn(R
′).

Hence, it remains to be shown

〈H, I〉 |=ht p(τR) iff 〈H, I〉 |=ht pn(R
′)

which follows by Lemma 28.

Proof of Theorem 6. Assume that I is a fo-dlv answer set
of Π. By definition, there is a I is an agg-stable model
of τdlvΠ. In its turn, this implies that I is an agg-model
of τdlvΠ and there is no agg-ht-model 〈H, I〉 of τdlvΠ
with H ≺PF I . By Lemma 29, it follows that I is a
model of τΠ. Suppose, for the sake of contradiction, that
there is H ⊂ I such that H |= FLP(τΠ, I). Let 〈H, I〉 be
the agg-ht-interpretation with H and I the set of ground
atoms of σp satisfied by H and I , respectively. Then,
by Proposition 4 and Lemma 30, it follows H ≺PF I
and 〈H, I〉 |=ht τ

dlvΠ. This is a contradiction because there
is no agg-ht-model 〈H, I〉 of τdlvΠ with H ≺PF I .

Conversely, assume that I is a dlv answer set of Π. By
definition, I is a model of τΠ and there is no model H
of FLP(τΠ, I) with H ⊂ I. By Lemma 29, the former im-
plies that there is an agg-model I of τdlvΠ. Suppose, for the
sake of contradiction, that there is some agg-ht-model 〈H, I〉
of τdlvΠ with H ≺PF I . By Lemma 30 and Proposition 4,
this implies that H satisfies FLP(τdlvΠ, I) with H ⊂ I,
which is a contradiction.

Proofs of Section Strong Equivalence

Lemma 31. If Γ1 andΓ2 have the same agg-ht-models, then
they have the same agg-stable models.

Proof. Since Γ1 and Γ2 have the same agg-ht-models, they
also have the same agg-models. Suppose, for the sake of
contradiction, that they have different agg-stable models.
Assume, without loss of generality, that I is an agg-stable
model of Γ1 but not of Γ2. Since Γ1 and Γ2 have the same
models and I is a model of Γ1, it follows that I is a model
of Γ2. Since I is not an agg-stable model of Γ2, there is
a agg-ht-model 〈H, I〉 of Γ2 such that H ≺PF I . Since Γ1

andΓ2 have the same agg-ht-models, this implies that 〈H, I〉
is also an agg-ht-model of Γ1, which is a contradiction with
the assumption that I is a agg-stable model of Γ1.

For any interpretation I , by ∆I we denote the pro-
gram containing all facts of the form “p(t)” such
that I |= τcli(p(t)) with p ∈ P . Similarly, for an
ht-interpretation 〈H, I〉, by ∆〈H,I〉 we denote the pro-
gram containing all facts in ∆I plus all rules of the
form “p(t) :- q(u)” such that I |= τcli(p(t) ∧ q(u))
and H 6|= τcli(p(t) ∨ q(u)) with p, q ∈ P .

Lemma 32. Take any two sets of sentences, Γ1 and Γ2 and
let I be a agg-model of Γ1 that does not satisfy Γ2. Then, I
is an agg-stable model of Γ1 ∪ τx∆I , but not of Γ2 ∪ τx∆I

with x ∈ {cli ,dlv}.

Proof. By the definition, it follows that (A) ∈ Π iff
I |= τcliA iff I |= τdlvA. Note that τcli(A) = τdlv (A) for
all A ∈ ∆I . Thus, I is a model of τxΠ. Furthermore, there is
no 〈H, I〉 with H ≺P∅ I satisfies τxΠ. By Lemma 22, this
implies that there is no agg-interpretation H with H ≺PF I
such that 〈H, I〉 satisfies τxΠ. Since I is also a model of Γ1,
it follows that I is a model of Γ1 ∪ τxΠ and, thus, it a
agg-stable model of Γ1 ∪ τxΠ. Since I does not satisfy Γ2,
it follows that I is not an agg-stable model of Γ2∪τxΠ.

Lemma 33. Take any two sets of sentences, Γ1 and Γ2 with
the same classical models and let 〈H, I〉 be an agg-ht-model
of Γ1 that does not satisfy Γ2. Then, I is an agg-stable
model of Γ3 ∪ τx∆〈H,I〉, but not of Γ1 ∪ τx∆〈H,I〉 with x ∈
{cli ,dlv}.

Proof. First note that τcli(∆〈H,I〉) = τdlv (∆〈H,I〉).
Hence, in the following, we do not distinguish between
the two. Furthermore, I satisfies τx(∆〈H,I〉) because,
by definition, it satisfies the consequent of every rule
in ∆〈H,I〉. Hence, I is a model of Γ1 ∪ τx(∆〈H,I〉)
and Γ2 ∪ τx(∆〈H,I〉). To see that I is an agg-stable model

of Γ2 ∪ τx(∆〈H,I〉), suppose for the sake of contradic-

tion that there is an agg-interpretation J with J ≺PF I
such that 〈J, I〉 satisfies Γ2 ∪ τx(∆〈H,I〉). This implies

that 〈J, I〉 satisfies τx(∆I) and, thus that H �P∅ J . Fur-
thermore, H must be different from J because 〈H, I〉
does not satisfy Γ2 and 〈J, I〉 does. By Lemma 22, it

follows that J ≺PF I implies J ≺P∅ I . Hence,

H ≺P∅ J ≺P∅ I . Let p(t) be an atom with p ∈ P such
that J |= τx(p(t)) and H 6|= τx(p(t)). Let q(u) be an atom
with p ∈ P such that I |= τx(q(u)) and J 6|= τx(q(u)).
Therefore, rule “q(u) :- p(t)” belongs to ∆〈H,I〉. Let this

rule be named R. Then, 〈J, I〉 does not satisfies τxR.
This implies that 〈J, I〉 does not satisfy Γ2 ∪ τx(∆〈H,I〉),
which is a contradiction with the assumption. Hence, I is an
agg-stable model of Γ2 ∪ τx(∆〈H,I〉).

It remains to be shown that I is not an agg-stable model
of Γ1 ∪ τx(∆〈H,I〉). We show that 〈H, I〉 satisfies Γ1 ∪
τx(∆〈H,I〉). It is a model of ∆I . Furthermore, it also satis-

fies every rule R in ∆〈H,I〉 of the form “q(u) :- p(t)” be-

cause 〈H, I〉 6|=ht τx(p(t)) and I |= τx(q(u)). Hence,
〈H, I〉 satisfies Γ1 ∪ τx(∆〈H,I〉) and, thus, I is not an

agg-stable model of Γ1 ∪ τx(∆〈H,I〉).



Lemma 34. If Γ1 and Γ2 do not have the same
agg-ht-models, then there is some program ∆ without ag-
gregates nor double negation such that Γ1 ∪ τx(∆) and
Γ2 ∪ τx(∆) do not have the same agg-stable models,
with x ∈ {cli ,dlv}.

Proof. We proceed by cases. Case 1. Γ1 and Γ2 do not have
the same agg-models. Assume without loss of generality
that I is an agg-model of Γ1 but not of Γ2. By Lemma 32,
it follows that I is an agg-stable model of Γ1 ∪ τx(∆I)
but not of Γ2 ∪ τx(∆I). Case 2. Γ1 and Γ2 have the same
agg-models. By Lemma 33, it follows that I is an agg-stable
model of Γ2 ∪ τx(∆〈H,I〉) but not of Γ1 ∪ τx(∆〈H,I〉). In

both cases, Γ2 ∪ τx(∆〈H,I〉) and Γ1 ∪ τx(∆〈H,I〉) have dif-
ferent agg-stable models.

Lemma 35. If τx(Π1) and τx(Π2) have the same
agg-ht-models, then τx(Π1 ∪∆) and τx(Π2 ∪∆) they have
the same agg-stable models, with x ∈ {cli ,dlv}, for any
program ∆.

Proof. Assume that τx(Π1) and τx(Π2) have the same
agg-ht-models. Then, τx(Π1 ∪∆) = τx(Π1) ∪ τx(∆) has
the same agg-ht-model as τx(Π2 ∪∆) = τx(Π2) ∪ τx(∆).
By Lemma 31, this implies that both have same agg-stable
models.

Lemma 36. If τx(Π1) and τx(Π2) do not have the same
agg-ht-models, then there is some program ∆ without ag-
gregates nor double negation such that τx(Π1 ∪ ∆) and
τx(Π2 ∪ ∆) do not have the same agg-stable models,
with x ∈ {cli ,dlv}.

Proof. In this case, by Lemma 34 with Γ1 = τx(Π1)
and Γ2 = τx(Π2) by noting that τx(Π1 ∪∆) = τx(Π1) ∪
τx(∆) and τx(Π2 ∪∆) = τx(Π2) ∪ τx(∆).

Proof of Theorem 7. Assume that τcli(Π1) and τcli(Π2)
have the same agg-ht-models and let ∆ be a program. By
Lemma 35, it follows that τcli(Π1 ∪ ∆) and τcli(Π2 ∪ ∆)
have the same agg-stable models. This implies that Π1 ∪∆
and Π2 ∪∆ have the same fo-clingo answer sets. By Theo-
rem 7, this implies that Π1 ∪∆ and Π2 ∪∆ have the same
clingo answer sets and, thus, are strongly equivalent under
the clingo semantics.

Conversely, suppose τcli(Π1) and τcli(Π2) do not have the
same agg-ht-models. By Lemma 36, there is a program ∆
such that τcli(Π1 ∪ ∆) and τcli(Π2 ∪ ∆) do not have the
same agg-stable models, and, thus they do not have the same
fo-clingo answer sets. By Theorem 5, this implies Π1 ∪ ∆
and Π2 ∪ ∆ have different clingo answer sets. Hence, Π1

and Π2 are not strongly equivalent under the clingo se-
mantics.

Proof of Theorem 8. The proof is analogous to the one of
Theorem 7. Assume that τdlv (Π1) and τdlv (Π2) have the
same agg-ht-models and let ∆ be a program. By Lemma 35,
it follows that τdlv (Π1∪∆) and τdlv (Π2∪∆) have the same
agg-stable models. This implies that Π1 ∪ ∆ and Π2 ∪ ∆
have the same fo-dlv answer sets. By Theorem 8, this im-
plies that Π1 ∪∆ and Π2 ∪∆ have the same dlv answer sets

and, thus, are strongly equivalent under the dlv semantics.

Conversely, suppose τdlv (Π1) and τdlv (Π2) do not have
the same agg-ht-models. By Lemma 36, there is a pro-
gram ∆ such that τdlv (Π1 ∪ ∆) and τdlv (Π2 ∪ ∆) do
not have the same agg-stable models, and, thus they do not
have the same fo-dlv answer sets. By Theorem 6, this im-
plies Π1 ∪∆ and Π2 ∪∆ have different dlv answer sets.
Hence, Π1 and Π2 are not strongly equivalent under the dlv
semantics.

Proof of Theorem 9. The proof is similar to the those of
Theorems 7 and 8. Assume that τcli(Π1) and τdlv (Π2)
have the same agg-ht-models and let ∆ be a pro-
gram such that τcli(∆) and τdlv (∆) have the same
agg-ht-models. Then, τcli(Π1 ∪∆) = τcli(Π1) ∪ τcli(∆)
and τdlv (Π2) ∪∆ = τdlv (Π2) ∪ τdlv (∆) have the same
agg-ht-models. By Lemma 31, it follows that τdlv (Π1 ∪∆)
and τdlv (Π2 ∪ ∆) have the same agg-stable models. This
implies that the fo-clingo answer sets of Π1 ∪ ∆ and the
same fo-dlv answer sets of Π2∪∆ coincide. By Theorems 7
and 8, this implies that clingo answer sets Π1 ∪∆ coincide
with the dlv answer sets of Π2 ∪∆.

Conversely, suppose τcli(Π1) and τdlv (Π2) do not have
the same agg-ht-models. By Lemma 34, there is a pro-
gram ∆ without aggregates nor double negation such that
τcli(Π1 ∪∆) = τcli(Π1) ∪ τx(∆) and τdlv (Π2 ∪∆) =
τdlv (Π2) ∪ τx(∆) do not have the same agg-stable models.
Note that, since ∆ does not contain aggregates nor double
negation, it follows that τcli(∆) = τdlv (∆). Hence, the
fo-clingo answer sets of Π1 ∪∆ do not coincide with the
fo-dlv answer sets of Π2 ∪∆. By Theorems 7 and 8, this
implies that the clingo answer sets of Π1 ∪∆ are different
from the dlv answer sets of Π2 ∪∆.

Proof of Section Strong Equivalence using
Classical Logic

Lemma 37. t̂I
H

= tI .

Proof. If t is of the form f() where f is an extensional

function, then t̂ = f() and the result follows by definition.
If t is of the form f() where f is an intensional function,

then t̂ = f̂() and f̂ IH

= f I follows by definition. The rest
of the proof follows by induction on the structure of t in a
similar way.

Lemma 38. IH |= p̂(t̂) iff I |= p(t).

Proof. By Lemma 37, we get t̂I
H

= tI . Then, IH |= p̂(t̂)

iff IH |= p̂(t̂) iff IH |= p̂((t̂I
H

)∗) iff IH |= p̂((t̂I)∗) iff

I |= p((t̂I)∗) iff I |= p(t).

Lemma 39. IH |= F̂ iff I |= F .

Proof. We will consider the case of a ground atom A of
the form p(t); extension to arbitrary sentences by induc-

tion is straightforward. If p is extensional then Â is p(t̂);

IH |= p(t̂) iff I |= p(t) follows by Lemma 37 and the fact
that IH interprets extensional symbols in the same way as I .



If p is intensional then Â is p̂(t̂), and the result follows by
Lemma 38.

Lemma 40. Let t is a term of σ. Then, tI
H

= tH .

Proof. If t is of the form f() where f is an extensional func-

tion, then t = f() and we have f IH

= f I = fH . If t is of the
form f() where f is an intensional function, then t = f()

and f IH

= fH follows by definition. The rest of the proof
follows by induction on the structure of t in a similar
way.

Lemma 41. Let F be a formula of σ. Then, IH |= n(F ) iff
H |= F .

Proof. The proof is by induction on the number of connec-
tives and quantifiers in F . We consider below the more dif-
ficult cases when F is an atomic formula or the negation

¬

.

Case 1: F is an atomic formula p(t). Let J = IH . Then,
n(F ) is also p(t). By Lemma 40, we have tJ = tH . Let d

be the common value of tI
H

and tH . Case 1.1: p is inten-
sional. The left-hand side is equivalent to IH |= p(d∗) and
consequently to H |= p(d∗). The right-hand side to is equiv-
alent H |= p(d∗) as well. Case 1.2: p is extensional. Each
of two sides is equivalent to I |= p(d∗).

Case 2: F is

¬

G. Then, n(F ) is ¬n(G); we need to check
that IH |= ¬n(G) iff H |= ¬G. This is equivalent to
check IH 6|= n(G) iff H 6|= G, which follows by induction
hypothesis.

Proof of Proposition 10. We prove it for a formula F and
its extension to theories is straightforward. The proof is by
induction on the number of propositional connectives and
quantifiers in F . We consider below the more difficult cases
when F is an atomic formula, one of the negations, or an
implication.

Case 1: F is an atomic formula p(t). Then γF is F ∧ F̂ ; we
need to check that

IH |= F ∧ F̂ iff 〈H, I〉 |=ht F.

On the one hand, 〈H, I〉 |=ht F iff (by definition) I |= F
and H |= F iff (Lemma 39) IH |= F and I |= F . On

the other hand, IH |= F ∧ F̂ iff IH |= F and IH |= F̂ iff
I |= F and IH |= F . Hence, it is enough to show that

IH |= F iff H |= F.

which follows by Lemma 41.

Case 2: F is ¬G. Then γF is ¬Ĝ; we need to check that

IH 6|= Ĝ iff 〈H, I〉 |=ht ¬G.

By Lemma 39, the left-hand side is equivalent to I 6|= G. By
Proposition 13, the right-hand side is equivalent to I 6|= G
as well.

Case 3: F is

¬

G. Then γF is ¬n(G) ∧ ¬Ĝ; we need to
check that

IH |= ¬n(G) ∧ ¬Ĝ iff 〈H, I〉 |=ht

¬

G.

The left-hand side is equivalent to the conjunction

of IH 6|= n(G) and IH 6|= Ĝ. By Lemmas 41 and 39, this is
equivalent to the conjunction of H 6|= G and I 6|= G, which
by definition, is equivalent to the right-hand side.

Case 4: F is of the form F1 → F2. Then γF is the con-

junction (γF1 → γF2) ∧ (F̂1 → F̂2), so that the condition
IH |= γF holds iff

IH 6|= γF1 or IH |= γF2 (21)

and

IH |= F̂1 → F̂2. (22)

By the induction hypothesis, (21) is equivalent to

〈H, I〉 6|=ht F1 or 〈H, I〉 |=ht F2. (23)

By Lemma 39, we get that (22) is equivalent to

I |= G → H. (24)

By definition, the conjunction of (23) and (24) is equivalent
to 〈H, I〉 |=ht F1 → F2.

Lemma 42. An interpretation of the signature σ̂ satis-
fies HT iff it can be represented in the form IH for some
ht-interpretation 〈H, I〉.

Proof. For the if-part, take any sentence of the form
of ∀X(p(X) → p̂(X)) from HT . We need to show that IH

satisfies all sentences of the form p(d∗) → p̂(d∗). Assume
that IH |= p(d∗). Then, d∗ ∈ pH ⊆ pI , and consequently
I |= p(d∗), which is equivalent to IH |= p̂(d∗).

For the only-if part, take any interpretation J of σ̂ that
satisfies HT . Let I be the interpretation of σ that has the
same domains as J , interprets extensional symbols in the
same way as J , interprets every intensional function f in

accordance with the condition f I = f̂J . and interprets every
intensional p in accordance with the condition

I |= p(d∗) iff J |= p̂(d∗). (25)

Similarly, let H be the interpretation of σ that has the same
domains as J , interprets extensional symbols in the same
way as J , interprets every intensional function f in accor-
dance with the condition fH = fJ , and interprets every in-
tensional p in accordance with the condition

H |= p(d∗) iff J |= p(d∗). (26)

Then, I and H agree on all extensional symbols. Further-
more, since J satisfies AGG , J satisfies p̂(d∗) for every
atom p(d∗) satisfied by J . By (25) and (26), it follows
that all atoms satisfied by H are satisfied by I . It follows
that 〈H, I〉 is an ht-interpretation. Let us show that IH = J .
Each of the interpretations IH and J has the same domains
as I and interprets all extensional symbols in the same way
as I . Furthermore, for intensional function symbols, we have

f̂ IH

= f I = f̂J

f IH

= fH = fJ .

For everyintensional p and any tuple d of elements of ap-
propriate domains, each of the conditions IH |= p(d∗),
J |= p(d∗) is equivalent to H |= p(d∗), and each of
the conditions IH |= p̂(d∗), J |= p̂(d∗) is equivalent to
I |= p(d∗).



Lemma 43. Let E be an aggregate element of the form (5)
with global variables X and local variables Y and
let 〈H, I〉 be a standard ht-interpretation. Let x be a list
of ground terms of sort sgen of the same length as X, dtuple
a domain element of sort tuple, l′i = (li)

X
x and t′i = (ti)

X
x .

Then, IH satisfies

d∗tuple ∈ ŝx|E|(x) ↔ ∃Y F̂ (27)

where F is (d∗tuple = tuple (t′1, . . . , t
′
m) ∧ l′1 ∧ · · · ∧ l′n) iff

the following two conditions are equivalent:

1. dtuple belongs to ŝx|E|(x)
I ,

2. there is a list c of domain elements of sort sgen of the

same length as Y such that dtuple = 〈(t′′1 )
I , . . . , (t′′m)I〉

and I satisfies l′′1 ∧ · · · ∧ l′′n with t′′i = (t′i)
Y
y and l′′i =

(l′i)
Y
y and y = c∗.

Proof. I satisfies (27) iff condition 1 is equivalent to:

I satisfies ∃Y (d∗tuple = tuple (t′1, . . . , t
′
m)∧l̂1

′
∧· · ·∧l̂n

′
)

Furthermore, the latter holds iff there is a list c of domain
elements of sort sgen such that

dtuple = tuple (t′′1 , . . . , t
′′
m)I = 〈(t′′1 )

I , . . . , (t′′m)I〉

and I satisfies l′′1 ∧ · · · ∧ l′′n with y = c∗ iff condition 2
holds.

Lemma 44. Let 〈H, I〉 be a standard ht-interpretation.
Then, I is an agg-interpretation iff IH satisfies (16) for ev-
ery E/X in S.

Proof. By Lemma 39, it follows that IH satisfies (16) iff I
satisfies ∀XT

(
T ∈ sx|E/X|(X) ↔ ∃YF x

)
. Then, I satisfies

∀T
(
T ∈ sx|E/X|(x) ↔ ∃Y(F x )Xx

)
(28)

iff sx|E/X|(x)
I is the set of all tuples dtuple such that, there

is y such that I satisfies

d∗tuple = tuple (t′1, . . . , t
′
k) ∧ τx(l′1) ∧ · · · ∧ τx(l′m) (29)

with t′i = (ti)
XY
xy and l′i = (li)

XY
xy iff sx|E/X|(x)

I is the set

of all tuples of the form

〈t′1, . . . , t
′
k〉

such that I satisfies

τx(l′1) ∧ · · · ∧ τx(l′m)

and the result holds.

Lemma 45. Let 〈H, I〉 be a standard ht-interpretation such
that I is an agg-interpretation. Then, 〈H, I〉 satisfies the
condition of being an agg-interpretation for every term of
the form scli|E/X|(x) iff IH satisfies (17) for every E/X in S.

Proof. IH satisfies (17) iff the following two conditions are
equivalent for every tuple d of domain element of sort gen-
eral and every domain element dtuple of sort tuple:

• IH satisfies d∗tuple ∈ scli|E/X|(x), and

• IH satisfies ∃Yγ(F cli).

By Lemma 41 and Proposition 10 respectively, these two
conditiosn are equivalent to

• H satisfies d∗tuple ∈ scli|E/X|(x), and

• 〈H, I〉 satisfies ∃YF cli .

The rest of the proof is analogous to that of Lemma 44.

Lemma 46. Let 〈H, I〉 be a standard ht-interpretation such
that I is an agg-interpretation. Then, 〈H, I〉 satisfies the
condition of being an agg-interpretation for every term of
the form sdlv|E/X|(x) iff IH satisfies (18) for every E/X in S.

Proof. IH satisfies (18) iff the following two conditions are
equivalent for every tuple d of domain element of sort gen-
eral and every domain element dtuple of sort tuple:

• IH satisfies d∗tuple ∈ scli|E/X|(x), and

• IH satisfies ∃Yn(F cli).

By Lemma 41, these two conditiosn are equivalent to

• H satisfies d∗tuple ∈ scli|E/X|(x), and

• H satisfies ∃YF dlv .

The rest of the proof is analogous to that of Lemma 44.

Lemma 47. Every standard ht-interpretation 〈H, I〉 is an
agg-interpretation iff IH satisfies AGG .

Proof. Directly by Lemmas 44, 45 and 46.

Proof of Proposition 11. For the if-part, take any interpre-
tation J of σ̂ that satisfies HT and AGG . Since J satis-
fies HT , by Lemma 42, there is an ht-interpretation 〈H, I〉
such that IH = J . Furthermore, since J satisfies AGG , by
Proposition 47, 〈H, I〉 is an agg-interpretation. For the only-
if part, take any agg-ht-interpretation 〈H, I〉. By Propo-
sition 47, IH satisfies AGG . By Lemma 42, IH satis-
fies HT .

Proof of Theorem 12. First note that, since Π1 and Π2 are
finite, there is a finite number of sentences in HT , AGG ,
γτxΠ1, and γτxΠ2. Hence, the conjunction of all the sen-
tences in them is well-defined. Let Gi be the conjunction of
all sentences in τxΠi, so that Fi is γGi. We want to show
that Π1 is strongly equivalent to Π2 iff

for every standard model J of HT ∪ AGG

J |= γG1 iff J |= γG2.

By Proposition 11, this is further equivalent to the condition

for every agg-ht-interpretation 〈H, I〉

IH |= γG1 iff IH |= γG2.

By Proposition 10, this is further equivalent to stating that

for every agg-ht-interpretation 〈H, I〉

〈H, I〉 |=ht G1 iff 〈H, I〉 |=ht G2.



that is, to the condition

τxΠ1 and τxΠ2 have the same agg-ht-models.

By Theorems 7 and 8, this is equivalent to the condition that
Π1 and Π2 are strongly equivalent under the clingoand
dlvsemantics, respectively.


