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Motivation: Formal Verification of Programs With
Aggregates

Aggregates are widely used ASP constructs

They intuitively represent functions on sets

Example: Paths in a graph

cost(a, b, 3). cost(b, c , 7). cost(c, a, 1).

path(a, b). path(b, c). path(c , a).

expensive :- #sum{C ,X ,Y : path(X ,Y ), cost(X ,Y ,C )} ≥ 5.
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Motivation: Formal Verification of Non-ground Programs

Grounding

Grounding replaces variables with constants from the program signature.

p(X ) :- q(X ,Y ).

might be replaced by rules

p(1) :- q(1, 1).

p(1) :- q(1, 2).

p(2) :- q(2, 1).

. . .
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Motivation: Formal Verification of Non-ground Programs

Disadvantages of grounding

1 Reasoning about the two-step ground and solve procedure is
cumbersome

2 Inseparability of problem class and instance

Automatic Verification
1 First-order theorem provers can help verify the adherence of a

first-order theory to a specification

2 We would like to translate ASP programs with aggregates into
first-order theories
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Context

Defining Aggregate Semantics

The semantics of aggregates are traditionally captured via grounding

Our goal is to characterize aggregates using the language of classical
logic

ŝum(∆)

We wish to express that sum is a function on a set of tuples:
ŝum(∆) is the numeral corresponding to the sum of the weights of all
tuples in ∆, if ∆ contains finitely many tuples with non-zero weights; and
0 otherwise
Example: ŝum({⟨2, a⟩, ⟨3, b⟩, ⟨c , d⟩}) = 5
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Overview

1 Define a syntactic transformation from logic programs with
aggregates into a theory in many-sorted first-order logic with some
meta-logical restrictions on “standard” interpretations

2 Define the semantics of these logic programs in terms of a
many-sorted generalization of the SM operator

3 Replace some restrictions on standard models with equivalent
axiomatizations in many-sorted SOL

4 Show that for programs with finite aggregates, the second-order SM
characterization can be represented with a first-order
characterization

5 Demonstrate that our semantics coincide with that of Clingo
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Program Syntax

We consider programs of a typical ASP syntax.
An aggregate element has the form

t1, . . . , tk : l1, . . . , lm

An aggregate atom has the form

#op{E} ≺ u

Rules have the form

Head :- B1, . . . ,Bn,

Example

s(X ) :- q(X ), #sum{Y : r(X ,Y ,Z )} ≥ 1.

t :- #sum{Y ,Z : r(X ,Y ,Z )} ≥ 1.

q(a). q(b). q(c).
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Translation τ ∗

Atomic formulas are translated as themselves;

An aggregate atom A of form #sum{E} ≺ u is translated

sum(set |E/X|(X)) ≺ u

where set |E/X| is a function symbol that takes as many arguments of
the program sort as there are variables in X (the global variables in
the aggregate rule);

Literals of the form not A become ¬τ∗A;
Literals of the form not not A become ¬¬τ∗A;
Rules are translated to the universal closure across global variables of
the following:

τ∗B1 ∧ · · · ∧ τ∗Bn → τ∗Head ,
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Example

e1 = Y : r(X ,Y ,Z )/X
e2 = Y ,Z : r(X ,Y ,Z )

q(X ) ∧ sum(sete1(X )) ≥ 1 → s(X )

sum(sete2) ≥ 1 → t

q(a) q(b) q(c)

r(a, 1, a) r(b,−1, a) r(b, 1, a) r(b, 1, b) r(c, 0, a)

Where where e1 and e2 are the names for aggregate symbols
Y : r(X ,Y ,Z )/X and Y ,Z : r(X ,Y ,Z )
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Many-Sorted SM Operator

The SM operator transforms a first-order formula into a second-order one.
If u and p are tuples of predicate constants, then by SMp[F ] we denote
the second-order formula

F ∧ ¬∃u
(
(u < p) ∧ F ∗(u)

)
Many-Sorted SM

We generalize the unsorted definition of the SM operator to the
many-sorted setting by mandating that arities respect sort information
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Stable Models and Agg-Interpretations

As a preliminary step, we restrict our attention to agg-interpretations:

1 the domain |I |sprg is the set containing all ground program terms;

2 I interprets each ground program term as itself;

3 universe |I |sset is the set of all sets of non-empty tuples that can be
formed with elements from |I |sprg ;

4 for each aggregate symbol E/X, set |E/X|(x)
I is the set of all tuples of

ground program terms that satisfy the list of literals from the
corresponding aggregate element;

5 sum(tset)
I is ŝum(t Iset);

Stable Models

We say that an agg-interpretation I is a stable model of program Π if it
satisfies the second-order sentence SMp[τ

∗Π] where p is the list of all
predicate symbols in Π

SM[τ∗Π] ∧ Λ
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Scratch Paper

⟨a⟩
⟨b⟩
. . .
⟨1⟩
. . .
⟨1, a⟩
. . .
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Agg-Interpretation Example

Many-sorted first-order formulas

q(X ) ∧ sum(sete1(X )) ≥ 1 → s(X )

q(a) q(b) q(c)

r(a, 1, a) r(b,−1, a) r(b, 1, a) r(b, 1, b) r(c, 0, a)

Where where e1 is the name of aggregate symbol Y : r(X ,Y ,Z )/X and

qI = {a, b, c}
r I = {(a, 1, a), (b,−1, a), (b, 1, a), (b, 1, b), (c , 0, a)}.

Consequently:

sete1(a)
I = {(1)}

sete1(b)
I = {(−1), (1)}

sum(sete1(a))
I = 1

sum(sete1(b))
I = 0
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Removing Conditions 4 & 5

Recall that:

Condition 4 defines the behavior of the set |E/X| function symbols

Condition 5 defines the behavior of the sum function symbol

We can refine these conditions with the following:

Extend our program signature to include tuples and integers

Make assumptions about the form of the tuple and set universes

Define the behavior of tuple construction, addition and set
membership

This results in more assumptions, but they are more thoroughly studied in
arithmetic and set theory. P(|I |stuple ) = |I |sset
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Standard Interpretations

A many-sorted interpretation I is considered standard if:

1 the domain |I |sprg is the set containing all ground program terms;

2 I interprets each ground program term as itself;

3 universe |I |sset is the set of all sets of non-empty tuples that can be
formed with elements from |I |sprg ;

4 the domain |I |sint is the set of all numerals;

5 I interprets m + n as m + n,

6 universe |I |stuple is the set of all tuples of form ⟨d1, . . . , dm⟩
with m ≥ 1 and each di ∈ |I |sprg ;

7 I interprets each tuple term of form tuplek(t1, . . . , tk) as the
tuple ⟨t I1, . . . , t Ik⟩.

8 I interprets object constant ∅ as the empty set ∅;
9 I satisfies t1 ∈ t2 iff tuple t I1 belongs to set t I2;
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Axiom Example

Characterizing sum

FiniteSum(tset) stands for the formula:

∀T
(
T ∈ tset → sum(tset) = sum(rem(tset ,T )) + weight(T )

)
Thus, sum is formalized:

∀S
(
ZeroWeight(S) → sum(S) = 0

)
(1)

∀S (FiniteWeight(S) → FiniteSum(S)) (2)

∀S
(
¬FiniteWeight(S) → sum(S) = 0

)
(3)

Adding axioms restricts satisfying interpretations to exactly those that
satisfy the meta-logical conditions 4 and 5.
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Sets With Finite Weight

Second-order Characterization

To capture the behavior of ŝum, we need second-order axioms (omitted) to
express that a set has finitely many tuples with non-zero weight.

First-order Characterization

In the case of finite aggregates, we can replace these second-order
sentences with axioms in many-sorted first-order logic

Tight programs can be represented in first-order logic instead of using
the SM operator

The key result is that standard interpretations satisfying all axioms
and first-order translations of tight programs with finite aggregates
are stable models
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Conclusion

Contribution

A nonground characterization of aggregate semantics that coincides with
the ASP-Core-2 standard and the solver Clingo

Limitations

Our semantics coincides with that of Clingo only when there exists no
positive recursion through aggregates

Future Work

Anthem translates certain ASP programs to first-order theories

Utilizes Vampire to automatically verify ASP programs

We hope to extend Anthem to programs with aggregates
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Set Formation, Set Minus, and Weight

We can associate each aggregate element of form (10) with a unique set:

∀X T
(
T ∈ set |E/X|(X) ↔ ∃Y

(
T = tuplek(t1, . . . , tk) ∧ l1 ∧ · · · ∧ lm

))
where Y is the list of all the variables occurring in E that are not in X.
Similarly, the notion of set minus can be captured:

∀STS ′(rem(S ,T ) = S ′ ↔ ∀T ′(T ′ ∈ S ′ ↔ (T ′ ∈ S ∧ T ′ ̸= T )
))

Finally, the weight of a tuple is the integer weight of its first element:

∀NX2 . . .Xk weight(tuplek(N,X2, . . . ,Xk)) = N
)

∀X1X2 . . .Xk

(
(¬∃N X1 = N) → weight(tuplek(X1,X2, . . . ,Xk)) = 0

)
.
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Sum

Expression FiniteWeight(tset) stands for the second-order formula

∃f
(
InjectiveWeight(f , tset) ∧ ∃N ImageWeight(f , tset , 0,N)

)
FiniteSum(tset) stands for the formula:

∀T
(
T ∈ tset → sum(tset) = sum(rem(tset ,T )) + weight(T )

)
Thus, sum is formalized:

∀S
(
ZeroWeight(S) → sum(S) = 0

)
(4)

∀S (FiniteWeight(S) → FiniteSum(S)) (5)

∀S
(
¬FiniteWeight(S) → sum(S) = 0

)
(6)
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First-Order Characterization

Finite Aggregates

An interpretation I has finite aggregates if set set |E/X|(x)
I is finite for

every aggregate symbol E/X and any list x of ground program terms of
the same length as X.

First-Order Axioms

In the case of finite aggregates, we can replace second-order sentences:

∀S (FiniteWeight(S) → FiniteSum(S))

∀S
(
¬FiniteWeight(S) → sum(S) = 0

)
with first-order sentence

∀X S
(
Subset(S , set |E/X|(X)) → FiniteSum(S)

)
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