Axiomatization of Aggregates in Answer Set Programming

J. Fandinno Z. Hansen Y. Lierler

UNO

January 2022

Fandinno, Hansen, Lierler (UNO) Axiomatization of Aggregates in Answer Set I

3. 3

- 2 Logic Programs to Many-Sorted FOL
- 3 Semantics of Logic Programs With Aggregates
- Axiomatization of Aggregates
- 5 First-Order Characterization

- 2 Logic Programs to Many-Sorted FOL
- 3 Semantics of Logic Programs With Aggregates
- 4 Axiomatization of Aggregates
- 5 First-Order Characterization

Motivation: Formal Verification of Programs With Aggregates

- Aggregates are widely used ASP constructs
- They intuitively represent functions on sets

Example: Paths in a graph

cost(a, b, 3). cost(b, c, 7). cost(c, a, 1). path(a, b). path(b, c). path(c, a). $expensive := #sum\{C, X, Y : path(X, Y), cost(X, Y, C)\} \ge 5$.

Grounding

Grounding replaces variables with constants from the program signature.

p(X) := q(X, Y).

might be replaced by rules

p(1) := q(1, 1). p(1) := q(1, 2).p(2) := q(2, 1).

. . .

Motivation: Formal Verification of Non-ground Programs

Disadvantages of grounding

- Reasoning about the two-step ground and solve procedure is cumbersome
- Inseparability of problem class and instance

Automatic Verification

- First-order theorem provers can help verify the adherence of a first-order theory to a specification
- We would like to translate ASP programs with aggregates into first-order theories

Defining Aggregate Semantics

- The semantics of aggregates are traditionally captured via grounding
- Our goal is to characterize aggregates using the language of classical logic

$\widehat{\mathtt{sum}}(\Delta)$

We wish to express that sum is a function on a set of tuples:

 $\widehat{sum}(\Delta)$ is the numeral corresponding to the sum of the weights of all tuples in Δ , if Δ contains finitely many tuples with non-zero weights; and 0 otherwise

Example: $\widehat{\operatorname{sum}}(\{\langle 2, a \rangle, \langle 3, b \rangle, \langle c, d \rangle\}) = 5$

- Define a syntactic transformation from logic programs with aggregates into a theory in many-sorted first-order logic with some meta-logical restrictions on "standard" interpretations
- Of the semantics of these logic programs in terms of a many-sorted generalization of the SM operator
- Replace some restrictions on standard models with equivalent axiomatizations in many-sorted SOL
- Show that for programs with finite aggregates, the second-order SM characterization can be represented with a first-order characterization
- Oemonstrate that our semantics coincide with that of Clingo

2 Logic Programs to Many-Sorted FOL

3 Semantics of Logic Programs With Aggregates

Axiomatization of Aggregates

Program Syntax

We consider programs of a typical ASP syntax. An **aggregate element** has the form

$$t_1,\ldots,t_k:l_1,\ldots,l_m$$

An aggregate atom has the form

$$\# \operatorname{op} \{E\} \prec u$$

Rules have the form

Head :-
$$B_1, ..., B_n$$
,

Example

$$s(X) := q(X), #sum{Y : r(X, Y, Z)} \ge 1.$$

t := #sum{Y, Z : r(X, Y, Z)} \ge 1.
 $q(a). q(b). q(c).$

- Atomic formulas are translated as themselves;
- An aggregate atom A of form $\#sum{E} \prec u$ is translated

$$sum(set_{|E/\mathbf{X}|}(\mathbf{X})) \prec u$$

where $set_{|E/\mathbf{X}|}$ is a function symbol that takes as many arguments of the program sort as there are variables in **X** (the global variables in the aggregate rule);

- Literals of the form *not* A become $\neg \tau^* A$;
- Literals of the form *not not A* become $\neg \neg \tau^* A$;
- Rules are translated to the universal closure across global variables of the following:

$$\tau^*B_1 \wedge \cdots \wedge \tau^*B_n \rightarrow \tau^*$$
 Head,

11 / 27

$$e1 = Y : r(X, Y, Z)/X$$

 $e2 = Y, Z : r(X, Y, Z)$

$$\begin{array}{lll} q(X) \wedge sum(set_{e1}(X)) \geq 1 & o & s(X) \ sum(set_{e2}) \geq 1 & o & t \ q(a) & q(b) & q(c) \ r(a,1,a) & r(b,-1,a) & r(b,1,a) & r(b,1,b) & r(c,0,a) \end{array}$$

Where where e1 and e2 are the names for aggregate symbols Y : r(X, Y, Z)/X and Y, Z : r(X, Y, Z)

э

2 Logic Programs to Many-Sorted FOL

3 Semantics of Logic Programs With Aggregates

- Axiomatization of Aggregates
- 5 First-Order Characterization

The SM operator transforms a first-order formula into a second-order one. If **u** and **p** are tuples of predicate constants, then by $SM_p[F]$ we denote the second-order formula

$$\mathsf{F} \wedge
eg \exists \mathsf{u} ig((\mathsf{u} < \mathsf{p}) \wedge \mathsf{F}^*(\mathsf{u}) ig)$$

Many-Sorted SM

We generalize the unsorted definition of the SM operator to the many-sorted setting by mandating that arities respect sort information

Stable Models and Agg-Interpretations

As a preliminary step, we restrict our attention to agg-interpretations:

- **(**) the domain $|I|^{s_{prg}}$ is the set containing all ground program terms;
- I interprets each ground program term as itself;
- universe |1|^{s_{set}} is the set of all sets of non-empty tuples that can be formed with elements from |1|^{s_{prg}};
- for each aggregate symbol E/X, set_{|E/X|}(x)¹ is the set of all tuples of ground program terms that satisfy the list of literals from the corresponding aggregate element;
- $\operatorname{sum}(t_{set})'$ is $\widehat{\operatorname{sum}}(t'_{set})$;

Stable Models

We say that an agg-interpretation I is a **stable model** of program Π if it satisfies the second-order sentence $\mathrm{SM}_p[\tau^*\Pi]$ where **p** is the list of all predicate symbols in Π

$\operatorname{SM}[\tau^*\Pi] \wedge \Lambda$

Fandinno, Hansen, Lierler (UNO) Axiomatization of Aggregates in Answer Set I January 2022

Scratch Paper

 $\begin{array}{l} \langle \textbf{a} \rangle \\ \langle \textbf{b} \rangle \\ \cdots \\ \langle 1 \rangle \\ \cdots \\ \langle 1, \textbf{a} \rangle \end{array}$

. . .

Fandinno, Hansen, Lierler (UNO) Axiomatization of Aggregates in Answer Set I

・ロト ・四ト ・ヨト ・ヨト

3

Agg-Interpretation Example

Many-sorted first-order formulas

$$egin{aligned} q(X) \wedge sum(set_{e1}(X)) &\geq 1 \ o \ s(X) \ q(a) \ q(b) \ q(c) \ r(a,1,a) \ r(b,-1,a) \ r(b,1,a) \ r(b,1,b) \ r(c,0,a) \end{aligned}$$

Where where e1 is the name of aggregate symbol Y : r(X, Y, Z)/X and

$$q^{I} = \{a, b, c\}$$

 $r^{I} = \{(a, 1, a), (b, -1, a), (b, 1, a), (b, 1, b), (c, 0, a)\}.$

Consequently:

$$set_{e1}(a)' = \{(1)\} sum(set_{e1}(a))' = 1$$

$$set_{e1}(b)' = \{(-1), (1)\}sum(set_{e1}(b))' = 0$$

- 2 Logic Programs to Many-Sorted FOL
- 3 Semantics of Logic Programs With Aggregates
- Axiomatization of Aggregates
 - 5 First-Order Characterization

Recall that:

- Condition 4 defines the behavior of the $set_{|E/\mathbf{X}|}$ function symbols
- Condition 5 defines the behavior of the sum function symbol

We can refine these conditions with the following:

- Extend our program signature to include tuples and integers
- Make assumptions about the form of the tuple and set universes
- Define the behavior of tuple construction, addition and set membership

This results in more assumptions, but they are more thoroughly studied in arithmetic and set theory. $\mathcal{P}(|I|^{s_{tuple}}) = |I|^{s_{set}}$

A many-sorted interpretation I is considered standard if:

- **()** the domain $|I|^{s_{prg}}$ is the set containing all ground program terms;
- I interprets each ground program term as itself;
- Iniverse |I|^{s_{set}} is the set of all sets of non-empty tuples that can be formed with elements from |I|^{s_{prg}};
- the domain $|I|^{s_{int}}$ is the set of all numerals;
- **o** *I* interprets $\overline{m} + \overline{n}$ as $\overline{m+n}$,
- universe $|I|^{s_{tuple}}$ is the set of all tuples of form $\langle d_1, \ldots, d_m \rangle$ with $m \ge 1$ and each $d_i \in |I|^{s_{prg}}$;
- *I* interprets each tuple term of form $tuple_k(t_1, \ldots, t_k)$ as the tuple $\langle t'_1, \ldots, t'_k \rangle$.
- **(3)** *I* interprets object constant $\overline{\emptyset}$ as the empty set \emptyset ;
- I satisfies $t_1 \in t_2$ iff tuple t'_1 belongs to set t'_2 ;

Characterizing sum

 $FiniteSum(t_{set})$ stands for the formula:

$$orall Tig(T \in \mathit{t_{set}}
ightarrow \mathit{sum}(\mathit{t_{set}}) = \mathit{sum}(\mathit{rem}(\mathit{t_{set}}, T)) + \mathit{weight}(T) ig)$$

Thus, sum is formalized:

$$\forall S \left(ZeroWeight(S) \to sum(S) = \overline{0} \right) \tag{1}$$

$$\forall S (FiniteWeight(S) \rightarrow FiniteSum(S))$$
(2)

$$\forall S \left(\neg FiniteWeight(S) \rightarrow sum(S) = \overline{0}\right)$$
(3)

21/27

Adding axioms restricts satisfying interpretations to exactly those that satisfy the meta-logical conditions 4 and 5.

- 2 Logic Programs to Many-Sorted FOL
- 3 Semantics of Logic Programs With Aggregates
- 4 Axiomatization of Aggregates
- 5 First-Order Characterization

Second-order Characterization

To capture the behavior of \widehat{sum} , we need second-order axioms (omitted) to express that a set has finitely many tuples with non-zero weight.

First-order Characterization

- In the case of finite aggregates, we can replace these second-order sentences with axioms in many-sorted first-order logic
- Tight programs can be represented in first-order logic instead of using the SM operator
- The key result is that standard interpretations satisfying all axioms and first-order translations of *tight programs with finite aggregates* are stable models

Contribution

A nonground characterization of aggregate semantics that coincides with the ASP-Core-2 standard and the solver Clingo

Limitations

Our semantics coincides with that of Clingo only when there exists no positive recursion through aggregates

Future Work

- Anthem translates certain ASP programs to first-order theories
- Utilizes Vampire to automatically verify ASP programs
- We hope to extend Anthem to programs with aggregates

We can associate each aggregate element of form (10) with a unique set:

$$\forall \mathbf{X} \ T \big(T \in set_{|E/\mathbf{X}|}(\mathbf{X}) \leftrightarrow \exists \mathbf{Y} \ \big(T = tuple_k(t_1, \dots, t_k) \land l_1 \land \dots \land l_m \big) \big)$$

where \mathbf{Y} is the list of all the variables occurring in E that are not in \mathbf{X} . Similarly, the notion of set minus can be captured:

$$\forall STS' (rem(S, T) = S' \leftrightarrow \forall T' (T' \in S' \leftrightarrow (T' \in S \land T' \neq T)))$$

Finally, the weight of a tuple is the integer weight of its first element:

$$\forall NX_2 \dots X_k \text{ weight}(tuple_k(N, X_2, \dots, X_k)) = N) \\ \forall X_1 X_2 \dots X_k ((\neg \exists N X_1 = N) \rightarrow weight(tuple_k(X_1, X_2, \dots, X_k)) = 0).$$

Expression $FiniteWeight(t_{set})$ stands for the second-order formula

 $\exists f(InjectiveWeight(f, t_{set}) \land \exists N ImageWeight(f, t_{set}, 0, N))$

 $FiniteSum(t_{set})$ stands for the formula:

$$\forall T (T \in t_{set} \rightarrow sum(t_{set}) = sum(rem(t_{set}, T)) + weight(T))$$

Thus, sum is formalized:

$$\forall S \left(ZeroWeight(S) \to sum(S) = \overline{0} \right) \tag{4}$$

$$\forall S (FiniteWeight(S) \rightarrow FiniteSum(S)) \tag{5}$$

$$\forall S \left(\neg FiniteWeight(S) \rightarrow sum(S) = \overline{0}\right) \tag{6}$$

Finite Aggregates

An interpretation *I* has finite aggregates if set $set_{|E/X|}(\mathbf{x})^{I}$ is finite for every aggregate symbol E/X and any list \mathbf{x} of ground program terms of the same length as \mathbf{X} .

First-Order Axioms

In the case of finite aggregates, we can replace second-order sentences:

$$\forall S (FiniteWeight(S) \rightarrow FiniteSum(S))$$

 $\forall S (\neg FiniteWeight(S) \rightarrow sum(S) = \overline{0})$

with first-order sentence

$$\forall X \ S(Subset(S, set_{|E/X|}(X)) \rightarrow FiniteSum(S))$$