1. Background

2. Logic Programs to Many-Sorted FOL

3. Semantics of Logic Programs With Aggregates

4. Axiomatization of Aggregates

5. First-Order Characterization
1 Background

2 Logic Programs to Many-Sorted FOL

3 Semantics of Logic Programs With Aggregates

4 Axiomatization of Aggregates

5 First-Order Characterization
Motivation: Formal Verification of Programs With Aggregates

- Aggregates are widely used ASP constructs
- They intuitively represent functions on sets

Example: Paths in a graph

\[\text{cost}(a, b, 3). \quad \text{cost}(b, c, 7). \quad \text{cost}(c, a, 1). \]
\[\text{path}(a, b). \quad \text{path}(b, c). \quad \text{path}(c, a). \]
\[\text{expensive} :- \sum \{ C, X, Y : \text{path}(X, Y), \text{cost}(X, Y, C) \} \geq 5. \]
Grounding replaces variables with constants from the program signature.

\[p(X) :- q(X, Y). \]

might be replaced by rules

\[p(1) :- q(1, 1). \]
\[p(1) :- q(1, 2). \]
\[p(2) :- q(2, 1). \]
\[\ldots \]
Motivation: Formal Verification of Non-ground Programs

Disadvantages of grounding

1. Reasoning about the two-step ground and solve procedure is cumbersome
2. Inseparability of problem class and instance

Automatic Verification

1. First-order theorem provers can help verify the adherence of a first-order theory to a specification
2. We would like to translate ASP programs with aggregates into first-order theories
Defining Aggregate Semantics

- The semantics of aggregates are traditionally captured via grounding.
- Our goal is to characterize aggregates using the language of classical logic.

\(\sum(\Delta) \)

We wish to express that \(\sum \) is a function on a set of tuples:
\(\sum(\Delta) \) is the numeral corresponding to the sum of the weights of all tuples in \(\Delta \), if \(\Delta \) contains finitely many tuples with non-zero weights; and 0 otherwise.
Example: \(\sum(\{\langle 2, a \rangle, \langle 3, b \rangle, \langle c, d \rangle \}) = 5 \)
Define a **syntactic transformation** from logic programs with aggregates into a theory in many-sorted first-order logic with some meta-logical restrictions on “standard” interpretations.

Define the semantics of these logic programs in terms of a many-sorted generalization of the **SM operator**.

Replace some restrictions on standard models with equivalent **axiomatizations** in many-sorted SOL.

Show that for programs with finite aggregates, the second-order SM characterization can be represented with a **first-order characterization**.

Demonstrate that our semantics coincide with that of Clingo.
Table of Contents

1 Background

2 Logic Programs to Many-Sorted FOL

3 Semantics of Logic Programs With Aggregates

4 Axiomatization of Aggregates

5 First-Order Characterization
Program Syntax

We consider programs of a typical ASP syntax.

An aggregate element has the form

\[t_1, \ldots, t_k : l_1, \ldots, l_m \]

An aggregate atom has the form

\[\#\text{op}\{E\} \prec u \]

Rules have the form

\[\text{Head} :: B_1, \ldots, B_n, \]

Example

\[s(X) :: q(X), \#\text{sum}\{Y : r(X, Y, Z)} \geq 1. \]
\[t :: \#\text{sum}\{Y, Z : r(X, Y, Z)} \geq 1. \]
\[q(a). \ q(b). \ q(c). \]
Translation τ^*

- Atomic formulas are translated as themselves;
- An aggregate atom A of form $\#\sum\{E\} \prec u$ is translated
 \[\text{sum(set}_{|E/|X|}(X)) \prec u\]
 where $\text{set}_{|E/|X|}$ is a function symbol that takes as many arguments of the program sort as there are variables in X (the global variables in the aggregate rule);
- Literals of the form $not A$ become $\neg\tau^* A$;
- Literals of the form $not not A$ become $\neg\neg\tau^* A$;
- Rules are translated to the universal closure across global variables of the following:
 \[\tau^* B_1 \land \cdots \land \tau^* B_n \rightarrow \tau^* \text{Head},\]
Example

\[e_1 = Y : r(X, Y, Z) / X \]
\[e_2 = Y, Z : r(X, Y, Z) \]

\[
q(X) \land \text{sum}(\text{set}_{e_1}(X)) \geq 1 \rightarrow s(X)
\]
\[
\text{sum}(\text{set}_{e_2}) \geq 1 \rightarrow t
\]
\[
q(a) \quad q(b) \quad q(c)
\]
\[
r(a, 1, a) \quad r(b, -1, a) \quad r(b, 1, a) \quad r(b, 1, b) \quad r(c, 0, a)
\]

Where where \(e_1 \) and \(e_2 \) are the names for aggregate symbols \(Y : r(X, Y, Z) / X \) and \(Y, Z : r(X, Y, Z) \)
Table of Contents

1 Background

2 Logic Programs to Many-Sorted FOL

3 Semantics of Logic Programs With Aggregates

4 Axiomatization of Aggregates

5 First-Order Characterization
The SM operator transforms a first-order formula into a second-order one. If \(u \) and \(p \) are tuples of predicate constants, then by \(\text{SM}_p[F] \) we denote the second-order formula

\[
F \land \neg \exists u ((u < p) \land F^*(u))
\]

Many-Sorted SM

We generalize the unsorted definition of the SM operator to the many-sorted setting by mandating that arities respect sort information.
Stable Models and Agg-Interpretations

As a preliminary step, we restrict our attention to **agg-interpretations**:

1. the domain $|I|^{sprg}$ is the set containing all ground program terms;
2. I interprets each ground program term as itself;
3. universe $|I|^{set}$ is the set of all sets of non-empty tuples that can be formed with elements from $|I|^{sprg}$;
4. for each aggregate symbol E/X, $\text{set}_{|E/X|}(x)^I$ is the set of all tuples of ground program terms that satisfy the list of literals from the corresponding aggregate element;
5. $\text{sum}(t_{set})^I$ is $\text{sum}(t_{set}^I)$;

Stable Models

We say that an agg-interpretation I is a **stable model** of program Π if it satisfies the second-order sentence $\text{SM}_p[\tau^*\Pi]$ where p is the list of all predicate symbols in Π

$$\text{SM}[\tau^*\Pi] \land \Lambda$$
\langle a \rangle
\langle b \rangle
\ldots
\langle 1 \rangle
\ldots
\langle 1, a \rangle
\ldots
Many-sorted first-order formulas

\[q(X) \land \text{sum}(\text{set}_{e1}(X)) \geq 1 \rightarrow s(X) \]
\[q(a) \quad q(b) \quad q(c) \]
\[r(a,1,a) \quad r(b,−1,a) \quad r(b,1,a) \quad r(b,1,b) \quad r(c,0,a) \]

Where $e1$ is the name of aggregate symbol $Y : r(X, Y, Z)/X$ and

\[q^I = \{a, b, c\} \]
\[r^I = \{(a,1,a), (b,−1,a), (b,1,a), (b,1,b), (c,0,a)\}. \]

Consequently:

\[\text{set}_{e1}(a)^I = \{(1)\} \quad \text{sum}(\text{set}_{e1}(a))^I = 1 \]
\[\text{set}_{e1}(b)^I = \{(-1), (1)\} \quad \text{sum}(\text{set}_{e1}(b))^I = 0 \]
1. Background

2. Logic Programs to Many-Sorted FOL

3. Semantics of Logic Programs With Aggregates

4. Axiomatization of Aggregates

5. First-Order Characterization
Removing Conditions 4 & 5

Recall that:

- Condition 4 defines the behavior of the set function symbols
- Condition 5 defines the behavior of the sum function symbol

We can refine these conditions with the following:

- Extend our program signature to include tuples and integers
- Make assumptions about the form of the tuple and set universes
- Define the behavior of tuple construction, addition and set membership

This results in more assumptions, but they are more thoroughly studied in arithmetic and set theory. \(P(|I|_{\text{tuple}}) = |I|_{\text{set}} \)
A many-sorted interpretation \(I \) is considered standard if:

1. the domain \(|I|^{s_{\text{prg}}} \) is the set containing all ground program terms;
2. \(I \) interprets each ground program term as itself;
3. universe \(|I|^{s_{\text{set}}} \) is the set of all sets of non-empty tuples that can be formed with elements from \(|I|^{s_{\text{prg}}} \);
4. the domain \(|I|^{s_{\text{int}}} \) is the set of all numerals;
5. \(I \) interprets \(\overline{m} + \overline{n} \) as \(\overline{m + n} \),
6. universe \(|I|^{s_{\text{tuple}}} \) is the set of all tuples of form \(\langle d_1, \ldots, d_m \rangle \) with \(m \geq 1 \) and each \(d_i \in |I|^{s_{\text{prg}}} \);
7. \(I \) interprets each tuple term of form \(\text{tuple}_k(t_1, \ldots, t_k) \) as the tuple \(\langle t_1^I, \ldots, t_k^I \rangle \).
8. \(I \) interprets object constant \(\overline{\emptyset} \) as the empty set \(\emptyset \);
9. \(I \) satisfies \(t_1 \in t_2 \) iff tuple \(t_1^I \) belongs to set \(t_2^I \).
Characterizing \textit{sum}

\textit{FiniteSum}(t_{set}) stands for the formula:

\[
\forall T (T \in t_{set} \rightarrow \text{sum}(t_{set}) = \text{sum}(\text{rem}(t_{set}, T)) + \text{weight}(T))
\]

Thus, \textit{sum} is formalized:

\[
\forall S \ (\text{ZeroWeight}(S) \rightarrow \text{sum}(S) = 0) \quad (1)
\]

\[
\forall S \ (\text{FiniteWeight}(S) \rightarrow \text{FiniteSum}(S)) \quad (2)
\]

\[
\forall S \ (\neg \text{FiniteWeight}(S) \rightarrow \text{sum}(S) = 0) \quad (3)
\]

Adding axioms restricts satisfying interpretations to exactly those that satisfy the meta-logical conditions 4 and 5.
Table of Contents

1. Background

2. Logic Programs to Many-Sorted FOL

3. Semantics of Logic Programs With Aggregates

4. Axiomatization of Aggregates

5. First-Order Characterization
Sets With Finite Weight

Second-order Characterization

To capture the behavior of \sum, we need second-order axioms (omitted) to express that a set has finitely many tuples with non-zero weight.

First-order Characterization

- In the case of finite aggregates, we can replace these second-order sentences with axioms in many-sorted first-order logic.
- Tight programs can be represented in first-order logic instead of using the SM operator.
- The key result is that standard interpretations satisfying all axioms and first-order translations of *tight programs with finite aggregates* are stable models.
Conclusion

Contribution
A nonground characterization of aggregate semantics that coincides with the ASP-Core-2 standard and the solver Clingo

Limitations
Our semantics coincides with that of Clingo only when there exists no positive recursion through aggregates

Future Work
- Anthem translates certain ASP programs to first-order theories
- Utilizes Vampire to automatically verify ASP programs
- We hope to extend Anthem to programs with aggregates
Set Formation, Set Minus, and Weight

We can associate each aggregate element of form (10) with a unique set:

\[\forall X \ T (T \in \text{set}_{|E \setminus X|}(X) \leftrightarrow \exists Y \ (T = \text{tuple}_k(t_1, \ldots, t_k) \land l_1 \land \cdots \land l_m)) \]

where \(Y \) is the list of all the variables occurring in \(E \) that are not in \(X \). Similarly, the notion of set minus can be captured:

\[\forall STS' (\text{rem}(S, T) = S' \leftrightarrow \forall T' (T' \in S' \leftrightarrow (T' \in S \land T' \neq T))) \]

Finally, the weight of a tuple is the integer weight of its first element:

\[\forall NX_2 \ldots X_k \ \text{weight} (\text{tuple}_k(N, X_2, \ldots, X_k)) = N \]

\[\forall X_1 X_2 \ldots X_k ((\neg \exists N \ X_1 = N) \rightarrow \text{weight} (\text{tuple}_k(X_1, X_2, \ldots, X_k)) = 0) \].
Expression $\text{FiniteWeight}(t_{set})$ stands for the second-order formula

$$\exists f \left(\text{InjectiveWeight}(f, t_{set}) \land \exists N \ \text{ImageWeight}(f, t_{set}, 0, N) \right)$$

$\text{FiniteSum}(t_{set})$ stands for the formula:

$$\forall T \left(T \in t_{set} \rightarrow \text{sum}(t_{set}) = \text{sum}(\text{rem}(t_{set}, T)) + \text{weight}(T) \right)$$

Thus, sum is formalized:

$$\forall S \left(\text{ZeroWeight}(S) \rightarrow \text{sum}(S) = 0 \right)$$ \hspace{1cm} (4)

$$\forall S \left(\text{FiniteWeight}(S) \rightarrow \text{FiniteSum}(S) \right)$$ \hspace{1cm} (5)

$$\forall S \left(\neg \text{FiniteWeight}(S) \rightarrow \text{sum}(S) = 0 \right)$$ \hspace{1cm} (6)
Finite Aggregates

An interpretation I has finite aggregates if set $\text{set}_{E/X}(x)^I$ is finite for every aggregate symbol E/X and any list x of ground program terms of the same length as X.

First-Order Axioms

In the case of finite aggregates, we can replace second-order sentences:

\[
\forall S \ (\text{FiniteWeight}(S) \rightarrow \text{FiniteSum}(S)) \\
\forall S \ (\neg \text{FiniteWeight}(S) \rightarrow \text{sum}(S) = 0)
\]

with first-order sentence

\[
\forall X \ S \left(\text{Subset}(S, \text{set}_{E/X}(X)) \rightarrow \text{FiniteSum}(S) \right)
\]