
Arguing Correctness of ASP Programs with Aggregates

Jorge Fandinno Zach Hansen Yuliya Lierler

University of Nebraska Omaha

September 2022

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 1 / 22

Table of Contents

1 Introduction

2 Logic Programs to Many-Sorted FOL

3 Semantics of Logic Programs With Aggregates

4 Arguing Correctness of the Graph Coloring Encoding

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 2 / 22

Table of Contents

1 Introduction

2 Logic Programs to Many-Sorted FOL

3 Semantics of Logic Programs With Aggregates

4 Arguing Correctness of the Graph Coloring Encoding

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 3 / 22

Motivation

Program Verification

ASP is a promising approach to producing trustworthy AI

We wish to enhance the methodology for proving correctness of ASP
programs with aggregates

Desirable qualities include modularity, reusability, elaboration
tolerance, and potential for automation

Program Rewriting

An ASP program can be viewed as a formal specification

Subsequent rewrites must be proven to be equivalent to the original

Eventual extensions of anthema may incorporate this
program-to-program verification

aJ. Fandinno et al. “Verifying Tight Logic Programs with anthem and vampire”. In: Theory and Practice of Logic
Programming 20.5 (2020), pp. 735–750

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 4 / 22

VLP Methodology

Verification Methodology for modular ASP programs:1

Step I: Decompose the informal description of the problem into
independent (natural language) statements.

Step II: Fix the public predicates used to represent the problem and its
solutions.

Step III: Formalize the specification of the statements as a non-ground
modular program, possibly introducing auxiliary predicates.

Step IV: Construct an argument (a “metaproof” in natural language) for
the correspondence between the constructed program and the
informal description of the problem.

1P. Cabalar, J. Fandinno, and Y. Lierler. “Modular Answer Set Programming as a Formal Specification Language”. In:
Theory and Practice of Logic Programming 20.5 (2020), pp. 767–782

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 5 / 22

The Graph Coloring (GC) Problem

Choice Rules With Cardinality Bounds

{assign(V,C) : color(C) } = 1 :- vertex(V).

:- edge(V1,V2), assign(V1,C), assign(V2,C).

Rewritten With Aggregates

assign(V,C) :- vertex(V), color(C), not not assign(V,C).

:- vertex(V), not #count{ V,C : assign(V,C), color(C) } = 1.

:- edge(V1,V2), assign(V1,C), assign(V2,C).

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 6 / 22

Table of Contents

1 Introduction

2 Logic Programs to Many-Sorted FOL

3 Semantics of Logic Programs With Aggregates

4 Arguing Correctness of the Graph Coloring Encoding

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 7 / 22

Program Syntax

We consider programs of a typical ASP syntax.
An aggregate element has the form

t1, . . . , tk : l1, . . . , lm

An aggregate atom has the form

#op{E} ≺ u

We consider op to be count or sum. For example,

#count{ V,C : assign(V,C), color(C) } = 1, (1)

#sum{ K,X,Y : in(X,Y), cost(K,X,Y) } > J. (2)

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 8 / 22

Program Syntax Continued

Rules have the form

Head :- B1, . . . ,Bn,

Choice rules have the form

{A0 : A1, . . . ,Ak} ≺ u :- B1, . . . ,Bn.

where each Ai is an atom, each Bi is a literal.
Abbreviation for:

A0 :- A1, . . .Ak , B1, . . . ,Bn, not not A0.

:- B1, . . . ,Bn, not #count{t : A0,A1, . . . ,Ak} ≺ u.

where t is a list of program terms such that A0 is of the form p(t).

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 9 / 22

Translation τ ∗

Translating Aggregates

An aggregate atom A of form #op{E} ≺ u is translated

count(set |E/X|(X)) ≺ u or sum(set |E/X|(X))

where set |E/X| is a function symbol that takes as many arguments of the
program sort as there are variables in X (the global variables in the
aggregate rule).

Translating Rules

Rules are translated to the universal closure across global variables of the
following:

τ∗B1 ∧ · · · ∧ τ∗Bn → τ∗Head .

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 10 / 22

Example

GC Program (Π)

assign(V,C) :- vertex(V), color(C), not not assign(V,C).

:- vertex(V), not #count{ V,C : assign(V,C), color(C) } = 1.

:- edge(V1,V2), assign(V1,C), assign(V2,C).

Many-sorted First-order formula τ ∗(Π)

∀VC
(
vertex(V) ∧ color(C) ∧ ¬¬assign(V ,C) → assign(V ,C)

)
∀V (vertex(V) ∧ ¬count(setasg (V)) = 1 → ⊥)

∀V 1 V 2 C
(
edge(V 1,V 2) ∧ assign(V 1,C) ∧ assign(V 1,C) → ⊥

)
where asg is the set symbol V ,C : assign(V ,C), color(C)/V .

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 11 / 22

Table of Contents

1 Introduction

2 Logic Programs to Many-Sorted FOL

3 Semantics of Logic Programs With Aggregates

4 Arguing Correctness of the Graph Coloring Encoding

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 12 / 22

Many-Sorted SM Operator

Many-Sorted SM

Our treatment of aggregates uses a many-sorted generalization of the SMa

operator mandating that arities respect sorts.

aP. Ferraris, J. Lee, and V. Lifschitz. “Stable models and circumscription”. In: Artificial Intelligence 175.1 (2011),
pp. 236–263

Agg-interpretations

We restrict our attention to certain types of standard interpretations that
fix the interpretation of some symbols.
Note that some of these conditions can be replaced by first or second
order axiomatizations.a

aJ. Fandinno, Z. Hansen, and Y. Lierler. “Axiomatization of Aggregates in Answer Set Programming”. In: Proceedings of
the Thirty-six National Conference on Artificial Intelligence (AAAI’22). AAAI Press, 2022

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 13 / 22

Splitting Theorem

Example

A many-sorted generalization of the Splitting Theorema allows us to
decompose programs into modules. Take F1 to be sentences

∀VC
(
vertex(V) ∧ color(C) ∧ ¬¬assign(V ,C) → assign(V ,C)

)
(3)

∀V (vertex(V) ∧ ¬count(setasg (V)) = 1 → ⊥) (4)

and F2 to be sentence

∀V 1 V 2 C
(
edge(V 1,V 2) ∧ assign(V 1,C) ∧ assign(V 1,C) → ⊥

)
(5)

Then SMassign[(3) ∧ (4) ∧ (5)] is equivalent to SMassign[(3) ∧ (4)] ∧ (5)
Here we consider p to be assign and q to be empty.

aP. Ferraris et al. “Symmetric Splitting in the General Theory of Stable Models”. In: Proceedings of the Twenty-first
International Joint Conference on Artificial Intelligence (IJCAI’09). Ed. by C. Boutilier. AAAI/MIT Press, 2009, pp. 797–803

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 14 / 22

Table of Contents

1 Introduction

2 Logic Programs to Many-Sorted FOL

3 Semantics of Logic Programs With Aggregates

4 Arguing Correctness of the Graph Coloring Encoding

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 15 / 22

Functional Relations

Motivating Example

Consider the GC problem: predicate assign should encode a function from
vertices to colors.

Generalization

A relation r encodes function f : A −→ B when r = {(a, f (a)) | a ∈ A}.
Let FunA,B be the conjunction of formulas

∀X
(
G (X) ∧ ¬count(set fe(X)) = 1 → ⊥

)
(6)

∀XY
(
G (X) ∧ H(Y) ∧ ¬¬f (X ,Y) → f (X ,Y)

)
(7)

where fe is the name of the set symbol X ,Y : f (X ,Y),H(Y)/X .
Then, I |= SMf [FunA,B] iff (f /2)I encodes a function from A to B.

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 16 / 22

Proof Sketch

By the conditions of agg-interpretations

Consider set symbol X ,Y : f (X ,Y),H(Y)/X (named fe).
For an agg-interp I and a domain element a, set fe(a)

I is the set of
two-tuples ⟨a,Y ⟩ s.t. f (a,Y) and H(Y) hold under I . Thus,
count(set fe(a))

I is the number of domain elements b s.t. f (a, b) and H(b)

By the Splitting Theorem

SMf [(6) ∧ (7)] = SMf [(7)] ∧ (6)

By the Completion Theorem

SMf [(7)] = ∀XY
(
f (X ,Y) ↔ G (X) ∧ H(Y) ∧ ¬¬f (X ,Y)

))
↔ ∀XY

(
f (X ,Y) → G (X) ∧ H(Y)

)
If G (a) holds for a ∈ A, then | {b | b ∈ B ∧ f (a, b) ∧ H(b)} |= 1
Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 17 / 22

The Graph Coloring (GC) Problem

Instances are triples ⟨V ,E ,C ⟩
⟨V ,E ⟩ is a graph with vertices V and edges E ⊆ V × V , and

C is a set of labels named colors.

Solutions

CF1 a function asg : V −→ C such that

CF2 every edge (a, b) ∈ E satisfies condition asg(a) ̸= asg(b).

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 18 / 22

The Graph Coloring (GC) Problem

VLP Step 1

C1 find an assignment from nodes to colors such that

C2 connected nodes do not have the same color.

VLP Step 2

Select public predicates: edge/2, vertex/1, color/1, assign/2

VLP Step 3

Formalize statements as modules:

SMassign[τ
∗({assign(V,C) : color(C) } = 1 :- vertex(V)

)
]

τ∗
(
:- edge(V1,V2), assign(V1,C), assign(V2,C).

)
Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 19 / 22

The GC Problem

Theorem 3

Let I be an agg-interp such that ⟨vertex I , edge I , color I ⟩ forms an instance
of the Graph Coloring problem. Then, I is a model of our modules iff
(assign/2)I encodes a function that forms a solution to the considered
instance.

VLP Step 4 (Part 1)

The previous result on functional relations proves that

I |= SMassign[τ
∗({assign(V,C) : color(C) } = 1 :- vertex(V)

)
]

iff (assign/2)I encodes a function asg : vertex I −→ color I

s.t. (assign/2)I = {(a, asg(a)) | a ∈ vertex I}.

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 20 / 22

The GC Problem

VLP Step 4 (Part 2)

τ∗
(
:- edge(V1,V2), assign(V1,C), assign(V2,C).

)
is equivalent to

∀V 1 V 2 C1 C2
(
edge(V 1,V 2) ∧ assign(V 1,C1)∧assign(V 2,C2)

→ C1 ̸= C2
)
.

This sentence is satisfied by I iff every edge (a, b) ∈ edge I satisfies
asg(a) ̸= asg(b).

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 21 / 22

Conclusion

Contribution

1. We have extended the VLP methodology to programs with aggregates
(no reference to grounding or specific instances).
2. We showcase the utility of “recycling” proofs (the paper extends the
HCP to the TSP).
3. Both count and sum are discussed in the paper.

Limitations

The many-sorted aggregate semantics are only applicable to aggregates
without positive recursion.

Future Work

Removing the recursion limitation and extending anthem to support
aggregates.

Fandinno, Hansen, Lierler (UNO) Arguing Aggregate Correctness September 2022 22 / 22

	Introduction
	Logic Programs to Many-Sorted FOL
	Semantics of Logic Programs With Aggregates
	Arguing Correctness of the Graph Coloring Encoding

