

PPattach Tutorial

System PPAttach tackles the problem of prepositional phrase attachment by incorporating semantic

knowledge derived from the lexico-semantic ontologies such as VERBNET and WORDNET. The

system assumes input in the form of set of tuples

T1: (verb, noun, preposition, noun)

For a given set of tuples PPAttach will return its decision on each tuple on whether it triggers verb or

noun attachment. PPAttach uses machine learning methods to implement its decision procedure.

Machine learning methods are commonly used for implementing classification procedures called

classifiers. In supervised learning, the classifier is first trained on a set of labeled data (training data)

that is representative of the domain of interest. Typically labeled data consists of pairs of input objects

and a desired output. An input object is often summarized by so called feature vector. The trained

classifier is then used to carry out classification decisions for unseen data (testing data). PPAttach uses

classic “Ratanaparkhi” dataset, composed of labeled/annotated tuples of the form (T1), for “training”

and “testing”. Weka – a machine learning tool of the University of Waikato

http://www.cs.waikato.ac.nz/ml/weka/ – is used within the framework to carry out the classification.

Site

http://www.unomaha.edu/nlpkr/software/ppattach/

is the project's website which contains a link to the paper on

[1] “Prepositional Phrase Attachment Problem Revisited: How VERBNET Can Help” by Daniel

Bailey, Yuliya Lierler, Benjamin Susman, In Proceedings of the 11th International Conference on

Computational Semantics (IWCS), 2015.

This paper is the best resource for details on the implemented techniques.

This document provides directions on setting up, running, and extending the PPattach system. The

PPattach system is composed of two main components. One component is responsible for building

feature vectors for given tuples of the form (T1), another component is responsible for processing these

feature vectors and performing the classification itself. The former component is written in python by

the authors of the project. The later component relies on Weka.

Project Setup:

Instructions are provided for Linux users (but modulo command line commands these instractions can

easily be adapted on Windows).

For PKI-Linux lab users:

% cp -R /nlpkr/ppattach/ __the_directory_of_your_choice__

For general public:

Download and unzip the following file:

http://www.unomaha.edu/nlpkr/software/ppattach/ppattach.zip

in __the_directory_of_your_choice__ .

Command

% pwd

http://verbs.colorado.edu/~mpalmer/projects/verbnet.html
http://wordnet.princeton.edu/
http://www.cs.waikato.ac.nz/ml/weka/
http://www.unomaha.edu/nlpkr/software/ppattach/
http://www.unomaha.edu/nlpkr/software/ppattach/ppattach.zip

will give you the complete path to __the_directory_of_your_choice__

We will refer to this path as

 /home/ylierler/

so that once you copy or download the project files you will have the directory

/home/ylierler/ppattach

that includes the following files and directories:

1. data

2. code

3. README.docx

4. run-naivebayes-weka.sh

5. weka

File structure explanation:

• Data

◦ data directory contains the tuples from the complete Ratanaparkhi's dataset. In this

directory, each filename represents a separation of preposition(s). For example, the file

named by consists only of tuples of which the preposition by is used. The file all consists of

all prepositions and not_of consists of all prepositions except of.

• Code

◦ code directory contains one of the main parts of PPattach system. Program ppattach.py is

responsible for generating the feature vectors given a particular tuple set from data in a

format that is acceptable by Weka. The output is saved in the weka directory. A description

of each existing feature in PPattach is summarized in [1].

◦ ppattach.py – This is the main driver of the program

◦ features.py – This contains all the implemented features outlined in [1]

◦ summarizer.py – This transforms the results gathered from each feature into a Weka

compatible file format (.arff). All resultant files are put in the weka directory

◦ additionalFeatures.py – This is where additional features can be added

• README.doc

◦ This file

• run-naivebayes-weka.sh

◦ Runs Weka (on the generated .arff files) using the NaiveBayes classifier with 10 fold cross-

validation

◦ Assumes Weka is installed and weka.jar is in the CLASSPATH.

• Weka

◦ Contains all the Weka compatible files generated from the feature vectors established by

PPattach

Command Line Instructions:

% cd /home/ylierler/ppattach

% python code/ppattach.py -h

will instruct the main source of this project, code/ppattach.py, to produce the information on the

arguments that the program takes.

When running “python code/ppattach.py” you have the option to set your own command line

arguments. The prepositions to test against can be specified via the '-p' directive. The '-f' directive

specifies features one would like to consider.

For example, to test the preposition “by” with the “verbNetFull” and “nominalization” features, I could

do so by altering the command line (program) arguments as follows:

% python code/ppattach.py -p by -f verbNetFull nominalization

Note: Each run of PPattach effectively replaces the contents of the weka folder. In the previous

example, by-generic.arff and by-generic-plus.arff would be generated (and overwrite the file if it were

already present)

Testing with Weka

Once your data has been populated, you are ready to test your results with the classifier.

Linux

Run the following:

% cd /home/ylierler/ppattach

% sh run-naivebayes-weka.sh

The output can be redirected to a file if you'd like.

Windows

In Explorer (or the command line) go to /home/ylierler/ppattach/.

 Run “run-naivebayes-weka.bat”.

 The output will be stored in “results.txt” or an output file can be specified as a command line

parameter.

Eclipse Setup:

1. Open Eclipse.

2. Go to: File → New → Project.. →PyDev -> PyDev Project

Create a Python Project

Project name: ppattach

Uncheck Use default location

Location: /home/ylierler/ppattach/

Ensure Grammar Version is 2.7

(In case you are prompted to configure Interpreter: use autoconfig option)

3. Go to: Run → Run As → Python Run → New

 Change Name to ppattach ppattach.py

 Change Project to ppattach

 Change Main Module to ${workspace_loc:ppattach/code/ppattach.py}

4. Now go to the Arguments Tab →Working directory

Change Working directory to Other: ${workspace_loc:ppattach}

Click Apply button and then Close button

Running in Eclipse:

Getting Started

Start the system by

Go to: Run → Run As → 1 Python Run → Select code/ppattach.py

Command line arguments can be added by going to the menu:

Run → Run Configurations -> Arguments Tab → Program arguments

In this area, for example, you can type “-h”, then click “Apply” and “Run”

An explanation of valid command line arguments should be listed in the console. This is your main

way to interface with PPattach.

SAMPLE ASSIGNMENT for a natural language processing project:

Feature Development

All development should be done in code/additionalFeatures.py. A dummy feature has been given in this

file. You may call the feature(s) whatever you want, but ensure that the results dictionary uses the

features' name as a key. The python dictionary results is an instance variable of code/features.py and is

inherited by code/additionalFeatures.py

Ideas for feature development may include:

• Analyzing a specific preposition and creating relevant features to capture this analysis (what

was done with 'with' [1]):

- in

- for

- on

- from

- to

• Utilizing or improving on existing lexical ontologies in creating new features

- Wordnet,

- Nomlex,

- NomBank,

- Propbank ...

