
Under consideration for publication in Theory and Practice of Logic Programming 1

System Description: SMT-based Constraint Answer Set
Solver EZSMT

BENJAMIN SUSMAN and YULIYA LIERLER
Department of Computer Science, University of Nebraska at Omaha

Omaha, Nebraska 68182, USA
(e-mail: bsusman@unomaha.edu, ylierler@unomaha.edu)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Constraint answer set programming is a promising research direction that integrates answer set program-
ming with constraint processing. Recently, the formal link between this research area and satisfiability
modulo theories (or SMT) was established. This link allows the cross-fertilization between traditionally
different solving technologies. The paper presents the system EZSMT, one of the first SMT-based solvers for
constraint answer set programming. It also presents the comparative analysis of the performance of EZSMT

in relation to its peers including solvers EZCSP, CLINGCON, and MINGO. Experimental results demonstrate
that SMT is a viable technology for constraint answer set programming.

1 Introduction

Constraint answer set programming (CASP) is an answer set programming paradigm that inte-
grates traditional answer set solving techniques with constraint processing. In some cases this ap-
proach yields substantial performance gains. Such systems as CLINGCON (Gebser et al., 2009),
EZCSP (Balduccini, 2009), and INCA (Drescher and Walsh, 2010) are fine representatives of
CASP technology. Satisfiability Modulo Theories (SMT) is a related paradigm that integrates tra-
ditional satisfiability solving techniques with specialized “theory solvers” (Barrett et al., 2015).
It was shown that under a certain class of SMT theories, these areas are closely related (Lierler
and Susman, 2016).

Lierler and Susman (2016) presented theoretical grounds for using SMT systems for comput-
ing answer sets of a broad class of “tight” constraint answer set programs. Here we develop a
system EZSMT that roots on that theoretical basis. The EZSMT solver takes as an input a constraint
answer set program and translates it into so called constraint formula using the method related
to forming logic program’s completion. Lierler and Susman illustrated that constraint formulas
coincide with formulas that SMT systems process. To interface with the SMT solvers, EZSMT

utilizes the standard SMT-LIB language (Barrett et al., 2015). The empirical results carried out
within this project suggest that SMT technology forms a powerful tool for finding solutions to
programs expressed in CASP formalism. In particular, we compare the performance of EZSMT

with such systems as EZCSP, CLINGCON, MINGO (Liu et al., 2012), and CMODELS (Giunchiglia
et al., 2006) on six benchmarks that have been previously shown to be challenging for “pure”
answer set programming approaches (exhibited by answer set solver CMODELS in experiments
of this paper). The experimental analysis of this work compares and contrasts three distinct areas
of automated reasoning, namely, (constraint) answer set programming, SMT, and integer mixed
programming. This can be seen as one more distinct contribution of this work.

2 Benjamin Susman and Yuliya Lierler

The outline of the paper follows. We review the concepts of generalized constraint satisfaction
problems, logic programs, and input completion. We next introduce so called EZ constraint an-
swer set programs and EZ constraint formulas. We subsequently present the EZSMT solver and
conclude by discussing empirical results comparing EZSMT to other leading CASP systems.

2 Preliminaries

Generalized Constraint Satisfaction Problems We now present primitive constraints as defined
by Marriott and Stuckey (1998, Section 1.1) using the notation convenient for our purposes. We
refer to this concept as a constraint dropping the word “primitive”. We then define a generalized
constraint satisfaction problem that Marriott and Stuckey refer to as “constraint”.

Signature, lexicon, constraints We adopt the following convention: for a function ν and an
element x, by xν we denote the value that function ν maps x to (in other words, xν = ν(x)).

A domain is a nonempty set of elements (values). A signature Σ is a set of variables, predicate
symbols, and function symbols (or f-symbols). Predicate and function symbols are associated with
a positive integer called arity. By Σ|v , Σ|r, and Σ|f we denote the subsets of Σ that contain all
variables, all predicate symbols, and all f-symbols respectively. For instance, Table 1 includes
the definition of sample signature Σ1, where s and r are variables, E is a predicate symbol of
arity 1, and Q is a predicate symbol of arity 2. Then, Σ1|v = {s, r}, Σ1|r = {E,Q}, Σ1|f = ∅.

Table 1: Example definitions for signature, valuation, lexicon

Σ1 {s, r, E,Q} D1 {1, 2, 3}
ρ1 a function that maps Σ1|r into relations L1 lexicon (Σ1, D1, ρ1)

Eρ1 = {〈1〉}, Qρ1 = {〈1, 1〉, 〈2, 2〉, 〈3, 3〉}
ν1 valuation over L1, where sν1 = 1 and rν1 = 1 ν2 valuation over L1, where sν2 = 2 and rν2 = 1

A lexicon is a tuple (Σ, D, ρ, φ), where (i) Σ is a signature, (ii) D is a domain, (iii) ρ is a
function from Σ|r to relations on D so that an n-ary predicate symbol is mapped into an n-ary
relation on D, and (iv) φ is a function from Σ|f to functions so that an n-ary f-symbol is mapped
into a function Dn → D. For a lexicon L = (Σ, D, ρ, φ), we call any function ν : Σ|v → D a
valuation over L. Table 1 presents definitions of sample domainD1, function ρ1, lexicon L1, and
valuations ν1 and ν2 over L1. A term over signature Σ and domain D (or a lexicon (Σ, D, ρ, φ))
is either (i) a variable in Σ|v , (ii) a domain element in D, or (iii) an expression f(t1, . . . , tn),
where f is an f-symbol of arity n in Σ|f and t1, . . . , tn are terms over [Σ, D].

A constraint is defined over lexicon L = (Σ, D, ρ, φ). Syntactically, a constraint is an expres-
sion of the form

P (t1, . . . , tn), or (1)

¬P (t1, . . . , tn), (2)

where P is a predicate symbol from Σ|r of arity n and t1, . . . , tn are terms over L. Semantically,
we first specify recursively a value that valuation ν over lexicon (Σ, D, ρ, φ) assigns to a term τ

over the same lexicon. We denote this value by τν,φ and define it as follows:
• for a term that is a variable x in Σ|v , xν,φ = xν ,
• for a term that is a domain element d in D, dν,φ is d itself,

SMT-based Constraint Answer Set Solver EZSMT 3

• for a term τ of the form f(t1, . . . , tn), f(t1, . . . , tn)ν,φ = fφ(tν,φ1 , . . . , tν,φn).

Second, we define what it means for valuation to be a solution of a constraint over the same lexi-
con. We say that ν over lexiconL satisfies (is a solution to) constraint of the form (1) overLwhen
〈tν,φ1 , . . . , tν,φn 〉 ∈ P ρ. Valuation ν satisfies constraint of the form (2) when 〈tν,φ1 , . . . , tν,φn 〉 6∈ P ρ.

For instance, expressions
¬E(s), ¬E(2), Q(r, s) (3)

are constraints over lexicon L1. Valuation ν1 satisfies constraints ¬E(2), Q(r, s), but does not
satisfy ¬E(s). Valuation ν2 satisfies constraints ¬E(s), ¬E(2), but does not satisfy Q(r, s).

A generalized constraint satisfaction problem (GCSP) C is a finite set of constraints over the
same lexicon. By LC we denote the lexicon of constraints in GCSP C. We say that a valuation ν
over LC satisfies (is a solution to) GCSP C, when ν is a solution to every constraint in C. For
example, any subset of constraints in (3) forms a GCSP. Sample valuation ν2 from Table 1 sat-
isfies GCSP composed of the first two constraints in (3). Neither ν1 nor ν2 satisfies the GCSP
composed of all of the constraints in (3).

It is worth noting that syntactically, constraints are similar to ground literals of SMT. (In
predicate logic, variables as defined here are referred to as object constants or function symbols
of 0 arity.) Lierler and Susman (2016) illustrated that given a GCSP C one can construct the
“uniform” Σ-theory U(C) based on the last three elements the GCSP’s lexicon. Semantically, a
GCSP C can be understood as a conjunction of its elements so that U(C)-models (as understood
in SMT) of this conjunction coincide with solutions of C.

Linear and Integer Linear Constraints We now define “numeric” signatures and lexicons and
introduce linear constraints that are commonly used in practice. The EZSMT system provides
support for such constraints.

A numeric signature is a signature that satisfies the following requirements (i) its only predi-
cate symbols are <, >, ≤, ≥, =, 6= of arity 2, and (ii) its only f-symbols are +, × of arity 2. We
use the symbolA to denote a numeric signature. Let Z and R be the sets of integers and real num-
bers respectively. Let ρZ and ρR be functions that map predicate symbols {<,>,≤,≥,=, 6=} into
usual arithmetic relations over integers and over reals, respectively. Let φZ and φR be functions
that map f-symbols {+,×} into usual arithmetic functions over integers and over reals, respec-
tively. We can now define the following lexicons (i) an integer lexicon of the form (A,Z, ρZ, φZ),
and a numeric lexicon of the form (A,R, ρR, φR).

A (numeric) linear expression has the form

a1x1 + · · ·+ anxn, (4)

where a1, . . . , an are real numbers and x1, . . . , xn are variables over real numbers. When ai = 1

(1 ≤ i ≤ n) we may omit it from the expression. We view expression (4) as an abbreviation
for the following term +(×(a1, x1),+(×(a2, x2), · · · + (×(an−1, xn−1),×(an, xn)) . . .) over
some numeric lexicon (A,R, ρR, φR), whereA contains x1, . . . , xn as its variables. For instance,
2x+ 3y is an abbreviation for the expression +(×(2, x),×(3, y)). An integer linear expression
has the form (4), where a1, . . . , an are integers, and x1, . . . , xn are variables over integers.

We call a constraint linear (integer linear) when it is defined over some numeric (integer)
lexicon and has the form ./ (e, k) where e is a linear (integer linear) expression, k is a real
number (an integer), and ./ belongs to {<,>,≤,≥,=, 6=}. We can denote ./ (e, k) using usual
infix notation as follows e ./ k.

We call a GCSP a (integer) linear constraint satisfaction problem when it is composed of

4 Benjamin Susman and Yuliya Lierler

(integer) linear constraints. For instance, consider integer linear constraint satisfaction problem
composed of two constraints x > 4 and x < 5 (here signature A is implicitly defined by re-
stricting its variable to contain x). When the lexicon of GCSP is clear from the context, as in this
example, we omit an explicit reference to it. It is easy to see that this problem has no solutions.
On the other hand, linear constraint satisfaction problem composed of the same two constraints
has infinite number of solutions, including valuation that assigns x to 4.1.

Logic Programs and Input Completion A vocabulary is a set of propositional symbols also
called atoms. As customary, a literal is an atom a or its negation ¬a. A (propositional) logic
program over vocabulary σ is a set of rules of the form

a← b1, . . . , b`, not b`+1, . . . , not bm, not not bm+1, . . . , not not bn (5)

where a is an atom over σ or ⊥, and each bi, 1 ≤ i ≤ n, is an atom in σ. We will sometimes use
the abbreviated form for rule (5), i.e., a← B, whereB stands for the right hand side of the arrow
in (5) and is also called a body. We sometimes identify body B with the propositional formula

b1 ∧ . . . ∧ b` ∧ ¬b`+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn. (6)

and rule (5) with the propositional formula B → a. We call expressions b1 ∧ . . . ∧ b` and
¬b`+1 ∧ . . . ∧ ¬bm in (6) strictly positive and strictly negative respectively. The expression a is
the head of the rule. When a is⊥, we often omit it. We call such a rule a denial. We write hd(Π)

for the set of nonempty heads of rules in Π. We refer the reader to the paper (Lifschitz et al.,
1999) for details on the definition of an answer set.

We call a rule whose body is empty a fact. In such cases, we drop the arrow. We sometimes
may identify a set X of atoms with a set of facts {a. | a ∈ X}. Also, it is customary for a given
vocabulary σ, to identify a setX of atoms over σ with (i) a complete and consistent set of literals
over σ constructed as X ∪{¬a | a ∈ σ \X}, and respectively with (ii) an assignment function or
interpretation that assigns truth value true to every atom in X and false to every atom in σ \X .

We now restate the definitions of input answer set and input completion (Lierler and Susman,
2016). These concepts are instrumental in defining constraint answer set programs and building
a link towards using SMT solvers for solving such programs. In particular, it is well known that
for the large class of logic programs, referred to as “tight” programs, its answer sets coincide
with models of its completion, as shown by Fages (1994). A similar relation holds between input
answer sets of a program and models of input completion.

Definition 1
For a logic program Π over vocabulary σ, a set X of atoms over σ is an input answer set of Π

relative to vocabulary ι ⊆ σ, when X is an answer set of the program Π ∪ ((X ∩ ι) \ hd(Π)).

Definition 2
For a program Π over vocabulary σ, the input-completion of Π relative to vocabulary ι ⊆ σ,
denoted by IComp(Π, ι), is defined as the set of propositional formulas that consists of the
implications B → a for all rules (5) in Π and the implications a →

∨
a←B∈ΠB for all atoms a

occurring in (σ \ ι) ∪ hd(Π).

Tightness is a syntactic condition on a program that can be verified by means of its dependency
graph. The dependency graph of Π is the directed graph G such that (i) the vertices of G are the
atoms occurring in Π, and (ii) for every rule a ← B in Π whose head is not ⊥, G has an edge
from a to each atom in strictly positive part of B. A program is called tight if its dependency
graph is acyclic.

SMT-based Constraint Answer Set Solver EZSMT 5

Theorem 1
For a tight program Π over vocabulary σ and vocabulary ι ⊆ σ, a set X of atoms from σ

is an input answer set of Π relative to ι if and only if X satisfies program’s input-completion
IComp(Π, ι).

3 EZ Constraint Answer Set Programs and Constraint Formulas

We now introduce EZ programs accepted by the CASP solver EZCSP. The EZSMT system accepts
subclass of these programs (as it poses additional tightness restrictions).

Let σr and σi be two disjoint vocabularies. We refer to their elements as regular and irregular
atoms respectively. For a program Π and a propositional formula F , by At(Π) and At(F) we
denote the set of atoms occurring in Π and F , respectively.

Definition 3
An EZ constraint answer set program (or EZ program) over vocabulary σr∪σi is a triple 〈Π,B, γ〉,
where
• Π is a logic program over the vocabulary σr ∪ σi such that

— atoms from σi only appear in strictly negative part of the body1 and
— any rule that contains atoms from σi is a denial,

• B is a set of constraints over the same lexicon, and
• γ is an injective function from the set σi of irregular atoms to the set B of constraints.

For an EZ program P = 〈Π,B, γ〉 over σr ∪ σi, a set X ⊆ At(Π) is an answer set of P if
• X is an input answer set of Π relative to σi, and
• the GCSP {γ(a)|a ∈ X ∩ σi} has a solution.

This form of a definition of EZ programs is inspired by the definition of constraint answer set
programs presented in (Lierler and Susman, 2016) that generalize the CLINGCON language by
Gebser et al. (2009). There are two major differences between EZCSP and CLINGCON languages.
First, the later allows irregular atoms to appear in non-denials (though such atoms cannot occur
in heads). Second, the third condition on answer sets of CLINGCON programs states that the
GCSP {γ(a)|a ∈ X ∩ σi} ∪ {¬γ(a)|a ∈ (At(Π) ∩ σi) \X} has a solution.

Ferraris and Lifschitz (2005) showed that a choice rule {a} ← B2 can be seen as an abbrevi-
ation for a rule a← not not a,B. We adopt this abbreviation.

Example 1
Let us consider sample EZ program. Let Σ2 be the numeric signature containing a single vari-
able x. By L2 we denote the integer lexicon ([Σ2,Z], ρZ). We are now ready to define an EZ
program P1 = 〈Π1,BL2

, ν1〉 over lexicon L2, where
• Π1 is the program presented in Figure 1. The set of irregular atoms of Π1 is {|x ≥ 12|, |x <

12|, |x ≥ 0|, |x ≤ 23|}. (We use vertical bars in our examples to mark irregular atoms.)
The remaining atoms form the regular set.

• BL2
is the set of all integer linear constraints overL2, which obviously includes constraints

{x ≥ 12, x < 12, x ≥ 0, x ≤ 23}, and

1 The fact that atoms from σi only appear in strictly negative part of the body rather than in any part of the body is
inessential for the kind of constraints the EZCSP system allows.

2 Choice rules were introduced in (Niemelä and Simons, 2000) and are commonly used in answer set programming.

6 Benjamin Susman and Yuliya Lierler

Π1 Reading of a rule

{switch}. Action switch is exogenous
lightOn← switch, not am. Light is on (lightOn) during the night (not am) when switch has occurred.
← not lightOn. The light must be on.
{am}. It is night (not am) or morning (am)
← not am, not |x ≥ 12|. It must be am when it is not the case that x ≥ 12 (x is understood as the hours).
← am, not |x < 12|. It must be am when it is x < 12.
← not |x ≥ 0|. Variable x must be nonnegative.
← not |x ≤ 23|. Variable x must be less than or equal to 23.

Fig. 1: Program Π1 and annotations of its rules.

• function γ1 is defined in intuitive manner so that for instance irregular atom |x ≥ 12| is
mapped to integer linear constraint x ≥ 12.

Consider the set
{switch, lightOn, |x ≥ 12|, |x ≥ 0|, |x ≤ 23|} (7)

over atoms At(Π1). This set is the only input answer set of Π1 relative to its irregular atoms.
Also, the integer linear constraint satisfaction problem with constraints

{γ1(|x ≥ 12|), γ1(|x ≥ 0|), γ1(|x ≤ 23|)} = {x ≥ 12, x ≥ 0, x ≤ 23} (8)

has a solution. There are 12 valuations ν1 . . . ν12 over L2, which satisfy this GCSP: xν1 = 12,
. . . , xν12 = 23. It follows that set (7) is an answer set of P1.

Just as we defined EZ constraints answer set programs, we can define EZ constraint formulas.

Definition 4
An EZ constraint formula over the vocabulary σr ∪ σi is a triple 〈F,B, γ〉, where
• F is a propositional formula over the vocabulary σr ∪ σi,
• B is a set of constraints over the same lexicon, and
• γ is an injective function from the set σi of irregular atoms to the set B of constraints.

For a constraint formula F = 〈F,B, γ〉 over σr ∪ σi, a set X ⊆ At(F) is a model of F if
• X is a model of F , and
• the GCSP {γ(a)|a ∈ X ∩ σi} has a solution.

Following theorem captures a relation between EZ programs and EZ constraint formulas. This
theorem is an immediate consequence of Theorem 1.

Theorem 2
For an EZ program P = 〈Π,B, γ〉 over the vocabulary σ = σr ∪σi and a set X of atoms over σ,
when Π is tight, X is an answer set of P if and only if X is a model of EZ constraint formula
〈IComp(Π, σi),B, γ〉 over σ.

In the sequel, we will abuse the term “tight”. We will refer to an EZ program P = 〈Π,B, γ〉 as
tight when its first member Π has this property.

Linear and Integer Linear EZ Programs We now review the more refined details behind
programs supported by EZCSP. These EZ programs are of particular form:
1. 〈Π,BL, γ〉, where L is a numeric lexicon and BL is the set of all linear constraints over L, or
2. 〈Π,BL, γ〉, where L is an integer lexicon and BL is the set of all integer linear constraints

over L.

SMT-based Constraint Answer Set Solver EZSMT 7

We refer to the former as EZ programs modulo linear constraints (or EZ(L) programs), whereas
to the latter as EZ programs modulo integer linear constraints (or EZ(IL) programs). Similarly,
we can define EZ constraint formulas modulo linear constraints and EZ constraint formulas mod-
ulo integer linear constraints. Lierler and Susman (2016) showed that such constraint formulas
coincide with formulas in satisfiability modulo linear arithmetic, or SMT(L), and satisfiability
modulo integer linear arithmetic, or SMT(IL), respectively.

The EZ program P1 from Example 1 is an EZ(IL) program. Listing 1 presents this program in
the syntax accepted by the EZCSP solver. We refer to this syntax as the EZCSP language. Line 1
in Listing 1 specifies that this is an EZ(IL) program. Line 2, first, declares that variable x is in
the signature of program’s integer lexicon. Second, it specifies that x may be assigned values
in range from 0 till 23. Thus, Line 2 essentially encodes the last two rules in Π1 presented in
Figure 1. Lines 3-6 follow the first four lines of Π1 modulo replacement of symbol ← with
symbols :-. In the EZCSP language, all irregular atoms are enclosed in a “required” statement
and are syntactically placed in the head of their rules. So that Lines 7 and 8 encode the last two
rules of Π1, respectively. If a denial of an EZ program contains more than one irregular atom
then in the EZCSP language disjunction in required statement is used to encode such rules. For
instance, an EZ rule

← not |x > 5|, not |x < 12|

has the form required(x > 5 ∨ x < 12). in the EZCSP syntax. (One may also use conjunction
and implication within the required syntax.)
1 cspdomain (fd) .
2 c s p v a r (x , 0 , 2 3) .
3 { s w i t c h } .
4 l i g h t O n :− s w i t c h n o t am .
5 :− n o t l i g h t O n .
6 {am } .
7 r e q u i r e d (x ≥ 12) :− n o t am .
8 r e q u i r e d (x < 12) :− am .

Listing 1: EZCSP Program

4 The EZSMT Solver

By Theorem 2, it follows that answer sets of a tight EZ program coincide with models of a con-
straint formula that corresponds to the input completion of the EZ program relative to its irregu-
lar atoms. Thus, tight EZ(L) and EZ(IL) programs can be converted to “equivalent” SMT(L) and
SMT(IL) formulas, respectively. This fact paves a way to utilizing SMT technology for solving
tight EZ programs. The EZSMT system introduced in this work roots on these ideas.

In a nutshell, the EZSMT system takes a tight EZ(L) or EZ(IL) program written in the EZCSP

language and produces an equivalent SMT(L) or SMT(IL) formula written in the SMT-LIB lan-
guage that is a common input language for SMT solvers (Barrett et al., 2015). Subsequently,
EZSMT runs a compatible SMT solver, such as CVC4 (Barrett et al., 2011) or Z3 (De Moura and
Bjørner, 2008), to compute models of the program.

Few remarks are due with respect to the SMT-LIB language. This language allows the SMT
research community to develop benchmarks and run solving competitions using standard inter-
face of common input language. Barret et al. (2015) define the syntax and usage of SMT-LIB.
As opposed to constraint answer set programming languages, which are regarded as declarative
programming languages, SMT-LIB is a low-level specification language. It is not intended to be a
modeling language, but geared to be easily interpretable by SMT solvers and serve as a standard

8 Benjamin Susman and Yuliya Lierler

interface to these systems. As such, this work provides an alternative to SMT-LIB for utilizing
SMT technology. It advocates the use of tight EZ programs as a declarative programming inter-
face for SMT solvers. Also the availability of SMT-LIB immediately enables its users to interface
multiple SMT-solvers as off-the-shelve tools without the need to utilize their specialized APIs.

The EZSMT Architecture We now present details behind the EZSMT system. Figure 2 illustrates
its pipeline. We use the EZ program from Example 1 to present a sample workflow of EZSMT.

1 - Preprocessing via EZCSP

2 - Grounding via GRINGO

3 - Input Completion via CMODELS

4 - Transformer

5 - SMT Solver

EZCSP Program

EZCSP’ Program - Syntactic transformation for grounding

Ground Logic Program

Clausified Input Completion, i.e. constraint formula

SMT-LIB Formula

Models

Fig. 2: EZSMT Pipeline

Preprocessing and Grounding In this paper, we formally introduced EZ programs over a sig-
nature that allows propositional atoms or irregular atoms. In practice, EZCSP language, just as
traditional answer set programming languages, allows the users to utilize non-irregular atoms
with schematic-variables. The process of eliminating these variables is referred to as ground-
ing (Gebser et al., 2011). It is a well understood process in answer set programming and off the
shelf grounders exist, e.g., the GRINGO system3 (Gebser et al., 2011). The EZSMT solver also
allows schematic-variables (as they are part of the EZCSP language) and relies on GRINGO to
eliminate these variables.

Prior to applying GRINGO, all irregular atoms in the input program must be identified to be
properly processed while grounding. The “required” keyword in the EZCSP language allows us
to achieve this so that the rules with the “required” expression in the head are converted into an
intermediate language. The invocation of the EZCSP system with the --preparse-only flag
performs the conversion. The preprocessing performed by EZCSP results in a valid input program
for the grounder GRINGO.

3 http://potassco.sourceforge.net

http://potassco.sourceforge.net

SMT-based Constraint Answer Set Solver EZSMT 9

For instance, the application of EZCSP with --preparse-only flag on the program in List-
ing 1 results in the program that replaces last two rules of original program by the following rules

r e q u i r e d (ezcsp__geq (x , 12)) :− n o t am .
r e q u i r e d (e z c s p _ _ l t (x , 12)) :− am .

Program’s Completion The third block in the pipeline in Figure 2 is responsible for three tasks.
First, it determines whether the program is tight or not. Given a non tight program the system will
exit with the respective message. Second, it computes the input completion of a given program
(recall, that this input completion can be seen as an SMT program). Third, the input completion
is clausified using Tseitin transformations so that the resulting formula is in conjunctive normal
form. This transformation preserves the models of the completion modulo original vocabulary.
The output from this step is a file in a DIMACS4-inspired format. System CMODELS (Giunchiglia
et al., 2006) is used to perform the described steps. It is invoked with the --cdimacs flag.

For example, given the grounding produced by GRINGO for the preprocessed program in List-
ing 1, CMODELS will produce the output presented in Listing 2. This output encodes the clausi-
fied input completion of the EZ program in Example 1 and can be viewed as an SMT formula.

smt c n f 5 8
−s w i t c h s w i t c h 0
−s w i t c h l i g h t O n 0
−l i g h t O n s w i t c h 0
cspdomain (fd) 0
c s p v a r (x , 0 , 2 3) 0
s w i t c h 0
l i g h t O n 0
r e q u i r e d (ezcsp__geq (x , 1 2)) 0

Listing 2: Completion of EZCSP Program

The first line in Listing 2 states that there are 5 atoms and 8 clauses in the formula. Each other line
stands for a clause, for instance, line -switch switch 0 represents clause ¬switch ∨ switch.

It is important to note that just as the EZCSP language accepts programs with schematic vari-
ables, it also accepts programs with so called weight and cardinality constraint rules introduced
in (Niemelä and Simons, 2000). System CMODELS eliminates such rules in favor of rules of
the form (5) discussed here. (The translation used by CMODELS was introduced in (Ferraris and
Lifschitz, 2005).) Thus, solver EZSMT is capable of accepting programs that contain weight and
cardinality constraint rules.
Transformation The output program from CMODELS serves as input to the Transformer block
in the EZSMT pipeline. Transformer converts the SMT formula computed by CMODELS into the
SMT-LIB syntax. For instance, given the SMT program presented in Listing 2, the Transformer
produces the following SMT-LIB code.
1 (s e t−o p t i o n : i n t e r a c t i v e −mode t r u e)
2 (s e t−o p t i o n : produce−models t r u e)
3 (s e t−o p t i o n : produce−a s s i g n m e n t s t r u e)
4 (s e t−o p t i o n : p r i n t−s u c c e s s f a l s e)
5 (check−s a t)
6 (ge t−model)
7 (s e t−l o g i c QF_LIA)
8 (d e c l a r e−fun | l i g h t O n | () Bool)
9 (d e c l a r e−fun | r e q u i r e d (ezcsp__geq (x , 1 2)) | () Bool)

10 (d e c l a r e−fun | s w i t c h | () Bool)

4 http://www.satcompetition.org/2009/format-benchmarks2009.html

http://www.satcompetition.org/2009/format-benchmarks2009.html

10 Benjamin Susman and Yuliya Lierler

11 (d e c l a r e−fun | c s p v a r (x , 0 , 2 3) | () Bool)
12 (a s s e r t (o r (n o t | s w i t c h |) | s w i t c h |))
13 (a s s e r t (o r (n o t | s w i t c h |) | l i g h t O n |))
14 (a s s e r t (o r (n o t | l i g h t O n |) | s w i t c h |))
15 (a s s e r t | c s p v a r (x , 0 , 2 3) |)
16 (a s s e r t | s w i t c h |)
17 (a s s e r t | l i g h t O n |)
18 (a s s e r t | r e q u i r e d (ezcsp__geq (x , 1 2)) |)
19 (d e c l a r e−fun | x | () I n t)
20 (a s s e r t (= > | r e q u i r e d (ezcsp__geq (x , 1 2)) | (>= | x | 12)))
21 (a s s e r t (= > | c s p v a r (x , 0 , 2 3) | (<= 0 | x |)))
22 (a s s e r t (= > | c s p v a r (x , 0 , 2 3) | (>= 23 | x |)))

The resultant SMT-LIB specification can be described as follows:
(i) Lines 1-6 are responsible for setting directives necessary to indicate to an SMT solver that

it should find a model of the program after satisfiability is determined (Barrett et al., 2015).
(ii) In line 7, the Transformer instructs an SMT solver to use quantifier-free linear integer

arithmetic (QF_LIA) (Barrett et al., 2015) to solve given SMT(IL) formula. (The clause
cspdomain(fd) 0 from Listing 2 serves as an indicator that the given formula is an
SMT(IL) formula.)

(iii) Lines 8-11 are declarations of the atoms in our sample program as boolean variables (called
functions in the SMT-LIB parlance).

(iv) Lines 12-18 assert the clauses from Listing 2 to be true.
(v) Line 19 declares variable x to be an integer.

(vi) Line 20 expresses the fact that if the irregular atom required(ezcsp__geq(x,12))
holds then the constraint x ≥ 12 must also hold. In other words, it plays a role of a
mapping γ1 from Example 1.

(vii) Lines 21-22 declares the domain of variable x to be in range from 0 to 23 (recall how
cspvar(x,0,23) from Listing 1 encodes this information).

SMT Solver The final step is to use an SMT solver that accepts input in SMT-LIB. The output
produced by CVC45 given the SMT-LIB program listed last follows:

s a t
(model
(d e f i n e−fun l i g h t O n () Bool t r u e)
(d e f i n e−fun | r e q u i r e d (ezcsp__geq (x , 1 2)) | () Bool t r u e)
(d e f i n e−fun s w i t c h () Bool t r u e)
(d e f i n e−fun | c s p v a r (x , 0 , 2 3) | () Bool t r u e)
(d e f i n e−fun x () I n t 12))

The first line of the output indicates that a satisfying assignment exists. The subsequent lines
present a model that satisfies the given SMT-LIB program. Note how this model corresponds to
answer set (7). Also, the solver identified one of the possible valuations for x that satisfies integer
linear constraint satisfaction problem (8), this valuation maps x to 12.

Limitations Due to the fact that the EZSMT solver accepts programs in the EZCSP language, it
is natural to compare the system to the EZCSP solver. The EZSMT system faces some limitations
relative to EZCSP. The EZSMT solver accepts only a subset of the EZCSP language. In particular,
it supports a limited set of its global constraints (Balduccini and Lierler, 2016). Only, the global
constraints all_different and sum are supported by EZSMT. Also, EZSMT can only be used on
tight EZCSP programs. Yet, we note that this is a large class of programs. No support for min-
imize and maximize statements of EZCSP or GRINGO languages is present. In addition, solver

5 We note that the output format of the SMT solver Z3 is of the same style as that of CVC4.

SMT-based Constraint Answer Set Solver EZSMT 11

EZSMT computes only a single answer set. Modern SMT solvers are often used for establishing
satisfiability of a given formula rather than for finding its models. For instance, the SMT-LIB
language does not provide a directive to instruct an SMT solver to find all models for its input.
To bypass this obstacle one has to promote (i) the extensions of the SMT-LIB standard to allow a
directive for computing multiple models as well as (ii) the support of this functionality by SMT
solvers. Alternatively, one may abandon the use of SMT-LIB and utilize the specialized APIs of
SMT solvers in interfacing these systems. The later solution seems to lack the generality as it im-
mediately binds one to peculiarities of APIs of distinct software systems. Addressing mentioned
limitations of EZSMT is a direction of future work.

5 Experimental Results

In order to demonstrate the efficacy of the EZSMT system and to provide a comparison to other
existing CASP solvers, six problems have been used to benchmark EZSMT. The first three bench-
marks stem from the Third Answer Set Programming Competition, 20116 (ASPCOMP). The
selected encodings are: weighted sequence, incremental scheduling, and reverse folding. Bal-
duccini and Lierler (2016) use these three problems to assess performance of various configura-
tions of the EZCSP and CLINGCON systems. We utilize the encodings for EZCSP and CLINGCON

stemming from this earlier work for these problems. We also adopted these encodings to fit
the syntax of the MINGO language to experiment with this system. The last three benchmarks
originate from the assessment of solver MINGO (Liu et al., 2012). This system translates CASP
programs into mixed integer programming formalism and utilizes IBM ILOG CPLEX7 system
to find solutions. The selected problems are: job shop, newspaper, and sorting. We used the en-
codings provided in (Liu et al., 2012) for MINGO, CLINGCON, and CMODELS. We adopted the
CLINGCON encoding to fit the syntax of the EZCSP language to experiment with EZCSP and
EZSMT. All six mentioned benchmarks do not scale when using traditional answer set solvers.
The EZSMT system, encodings, and instances used for benchmarking are available at the EZSMT

site: http://unomaha.edu/nlpkr/software/ezsmt/.
All experiments were conducted on a computer with an Intel Core i7-940 processor running

Ubuntu 14.04 LTS (64-bit) operating system. Each benchmark was allocated 4 GB RAM, a single
processor core, and given an 1,800 second timeout. No benchmarks were run simultaneously.

Five CASP solvers and one answer set (ASP) solver were benchmarked:
- EZSMT v. 1.0 with CVC4 v. 1.4 as the SMT solver (EZSMT- CVC4),
- EZSMT v. 1.0 with Z3 v. 4.4.2 - 64 bit as the SMT solver (EZSMT- Z3),
- CLINGCON v. 2.0.3 with constraint solver GECODE v. 3.7.3 and ASP solver CLASP v. 1.3.10,
- EZCSP v. 1.6.20 with constraint solver B-Prolog v. 7.4 #3 and ASP solver CMODELS v. 3.86,
- MINGO v. 2012-09-30 with mixed integer solver CPLEX v. 12.5.1.0, and
- ASP solver CMODELS v. 3.86 (Giunchiglia et al., 2006).
All of these systems invoke grounder GRINGO versions 3.0.+ during their executions. Time spent
in grounding is reported as part of the solving time. The best performing EZCSP configuration,
as reported in (Balduccini and Lierler, 2016), was used for each run of the ASPCOMP bench-
marks. All other systems were run under their default configurations. We note that for systems

6 https://www.mat.unical.it/aspcomp2011
7 http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

http://unomaha.edu/nlpkr/software/ezsmt/
https://www.mat.unical.it/aspcomp2011
http://www.ibm.com/software/commerce/optimization/cplex-optimizer/

12 Benjamin Susman and Yuliya Lierler

Table 2: ASPCOMP 2011 and MINGO Benchmarks

Benchmark EZSMT- CVC4 EZSMT- Z3 CLINGCON EZCSP MINGO CMODELS
(number of instances) Cumulative Time (timeout)

Reverse folding (50) 47948 (22) 4873 (2) 2014 (1) 559 14962 (1) 84616 (47)

Weight. sequence (30) 24.2 23.3 187 13879 1330 54000 (30)

Incr. scheduling (30) 10277 (5) 9135 (5) 20417 (11) 37332 (20) 13626 (7) 54000 (30)

Job shop (100) 106 48.8 2.77 180000 (100) 1137 163106 (90)

Newspaper (100) 7.68 3.77 0.02 3.53 54.2 111615 (53)

Sorting (189) 646 233 31.7 103 8282 271004 (141)

EZSMT-CVC4, EZSMT-Z3, and EZCSP identical encodings across the benchmarks were used. The
formalizations for other solvers can be seen as syntactically different versions of these encodings.

At a high-level abstraction, one may summarize the architectures of the CLINGCON and EZCSP

solvers as ASP-based solvers plus constraint solver. Given a constraint answer set program
〈Π,B, γ〉, both CLINGCON and EZCSP first use an answer set solver to (partially) compute an in-
put answer set of Π. Second, they contact a constraint solver to verify whether respective GCSP
has a solution. As mentioned earlier, MINGO’s solving is based on mixed integer programming.

Table 2 presents the experimental results. Each name of a benchmark is annotated with the
number of instances used in the experiments. The collected running times are reported in cumu-
lative fashion. The number in parenthesis annotates the number of timeouts or memory outs (that
we do not distinguish). Any instance which timed-out/memory-out is represented in cumulative
time by adding the maximum allowed time for an instance (1,800 seconds). For instance, answer
set solver CMODELS timed out on all 30 instances of the weighted sequence benchmark so that
the cumulative time of 54,000 is reported. Bold font is used to mark the best performing solver.

In the reverse folding benchmark, the difference between SMT solvers used for EZSMT be-
comes very apparent. In this case, the Z3 solver performed better than CVC4 by an order of
magnitude. This underlines both the importance of solver selection and difference between SMT
solvers. These observations mark the significance of the flexibility that EZSMT provides to its
users as they are free to select different SMT solvers as appropriate to the instances and encod-
ings. Indeed, SMT solvers are interfaced via the standard SMT-LIB language by EZSMT.

In the weighted sequence benchmark, we note that no CASP system timed out. In this case,
the EZSMT system features a considerable speedup. It noticeably outperforms CLINGCON and
EZCSP by multiple orders of magnitude.

In incremental scheduling, the original EZCSP encoding includes a global constraint, cumu-
lative, which is not supported by EZSMT. To benchmark EZSMT on this problem, the encoding
was rewritten to mimic a method used in the CLINGCON encoding that also does not support the
cumulative global constraint. Columns EZSMT-CVC4, EZSMT-Z3, EZCSP in Table 2 represent in-
stances run on the rewritten encoding. Solver EZSMT times out the least, followed by CLINGCON

timing out on over one-third the instances, and finally EZCSP, which times out on about half the
instances. We note that on the original encoding with cumulative constraint EZCSP performance

SMT-based Constraint Answer Set Solver EZSMT 13

is captured by the following numbers 26691 (14). Thus, the use of the cumulative global con-
straint allowed EZCSP to run more instances to completion. All solvers times out on the same 5
instances, which EZSMT-CVC4 and EZSMT-Z3 times out on.

The last three lines in Table 2 report on the three benchmarks from (Liu et al., 2012). In
general, we observe that CLINGCON features the fastest performance, followed by EZSMT and
MINGO for these benchmarks.

Overall, the benchmarks reveal several aspects of the EZSMT solver. First, as demonstrated by
the reverse folding results in Table 2, the underlying SMT solving technology selected for the
SMT-LIB program produced by EZSMT is important. Next, the weighted sequence and the in-
cremental scheduling results demonstrate the efficacy of EZSMT approach. Furthermore, Table 2
shows that EZSMT outperforms MINGO across the board.

The ASPMT2SMT system (Bartholomew and Lee, 2014) is closely related to EZSMT in a sense
that it utilizes SMT technology for finding solutions to first order formulas under stable model
semantics forming so called ASPMT language. The EZ programs can be seen as a special case
of ASPMT formulas. Just as EZSMT poses restriction on its programs to be tight, ASPMT2SMT

poses a similar restriction on its theories. The ASPMT2SMT solver utilizes SMT solver Z3 to find
models of ASPMT theories by interfacing this system via its API. This tight integration with
Z3 allows ASPMT2SMT to find multiple/all models of its theories in contrast to EZSMT. Yet, the
fact that EZSMT advocates the use of the standard SMT-LIB language makes its approach more
open towards new developments in the SMT solving technology as it is not tied to any particular
SMT solver via its specific API. We do not present the times for the ASPMT2SMT system as the
ASPMT language differs from the input languages of other systems that we experimented with
so that encodings of our benchmarks for ASPMT2SMT are not readily available. Yet, EZSMT-Z3
times should mimic these by ASPMT2SMT as both systems rely on forming program’s completion
in the process of translating inputs in their respective languages into SMT formulas. Verifying
this claim is part of the future work.

6 Conclusions and Future Work

This work presents the EZSMT system, which is able to take tight constraint answer set programs
and rewrite them into the SMT-LIB formulas that can be then processed by SMT solvers. The
EZSMT solver parallels the efforts of the ASPMT2SMT system (Bartholomew and Lee, 2014) that
utilizes SMT technology for solving programs in related formalism. Our experimental analysis
illustrates that the EZSMT system is capable of outperforming other cutting-edge CASP solvers.
Niemela (2008) characterized answer sets of “normal” logic programs in terms of “level rank-
ings” and developed a mapping from such programs to so called difference logic. Mapping of the
kind has been previously exploited in the design of solvers DINGO (Janhunen et al., 2011) and
MINGO (Liu et al., 2012). We believe that these ideas are applicable in the settings of EZ(IL) and
EZ(L) programs. Verifying this claim and adopting the results within EZSMT to allow this solver
to process non tight programs is the direction of future work.

Acknowledgments: We would like to thank Martin Brain for the discussions that led us to under-
take this research.

References

BALDUCCINI, M. 2009. Representing constraint satisfaction problems in answer set program-

14 Benjamin Susman and Yuliya Lierler

ming. In ICLP Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP), https://www.mat.unical.it/ASPOCP09/.

BALDUCCINI, M. AND LIERLER, Y. 2016. Constraint answer set solver EZCSP and why inte-
gration schemas matter. Unpublished draft, available at https://works.bepress.com/yuliya_
lierler/64/.

BARRETT, C., CONWAY, C. L., DETERS, M., HADAREAN, L., JOVANOVIĆ, D., KING, T.,
REYNOLDS, A., AND TINELLI, C. 2011. Cvc4. In Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV’11), volume 6806 of LNCS. Springer.

BARRETT, C., FONTAINE, P., AND TINELLI, C. 2015. The SMT-LIB Standard: Version 2.5.
Tech. rep., Department of Computer Science, The University of Iowa.

BARTHOLOMEW, M. AND LEE, J. 2014. System aspmt2smt: Computing aspmt theories by
smt solvers. In European Conference on Logics in Artificial Intelligence, JELIA. Springer,
529–542.

DE MOURA, L. AND BJØRNER, N. 2008. Z3: An efficient smt solver. In Proceedings of the
Theory and Practice of Software, 14th International Conference on Tools and Algorithms for
the Construction and Analysis of Systems. 337–340.

DRESCHER, C. AND WALSH, T. 2010. A translational approach to constraint answer set solving.
Theory and Practice of Logic programming (TPLP) 10, 4-6, 465–480.

FAGES, F. 1994. Consistency of Clark’s completion and existence of stable models. Journal of
Methods of Logic in Computer Science 1, 51–60.

FERRARIS, P. AND LIFSCHITZ, V. 2005. Weight constraints as nested expressions. Theory and
Practice of Logic Programming 5, 45–74.

GEBSER, M., KAMINSKI, R., KÖNIG, A., AND SCHAUB, T. 2011. Advances in gringo se-
ries 3. In Proceedings of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR). Springer, 345–351.

GEBSER, M., OSTROWSKI, M., AND SCHAUB, T. 2009. Constraint answer set solving. In
Proceedings of 25th International Conference on Logic Programming. Springer, 235–249.

GIUNCHIGLIA, E., LIERLER, Y., AND MARATEA, M. 2006. Answer set programming based
on propositional satisfiability. Journal of Automated Reasoning 36, 345–377.

JANHUNEN, T., LIU, G., AND NIEMELA, I. 2011. Tight integration of non-ground answer
set programming and satisfiability modulo theories. In Proceedings of the 1st Workshop on
Grounding and Transformations for Theories with Variables.

LIERLER, Y. AND SUSMAN, B. 2016. Constraint answer set programming versus satisfiabil-
ity modulo theories. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI).

LIFSCHITZ, V., TANG, L. R., AND TURNER, H. 1999. Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence 25, 369–389.

LIU, G., JANHUNEN, T., AND NIEMELA, I. 2012. Answer set programming via mixed integer
programming. In Knowledge Representation and Reasoning Conference.

MARRIOTT, K. AND STUCKEY, P. J. 1998. Programming with Constraints: An Introduction.
MIT Press.

NIEMELÄ, I. 2008. Stable models and difference logic. Annals of Mathematics and Artificial
Intelligence 53, 313–329.

NIEMELÄ, I. AND SIMONS, P. 2000. Extending the Smodels system with cardinality and weight
constraints. In Logic-Based Artificial Intelligence, J. Minker, Ed. Kluwer, 491–521.

https://www.mat.unical.it/ASPOCP09/
https://works.bepress.com/yuliya_lierler/64/
https://works.bepress.com/yuliya_lierler/64/

	Introduction
	Preliminaries
	EZ Constraint Answer Set Programs and Constraint Formulas
	The ezsmt Solver
	Experimental Results
	Conclusions and Future Work

