
Scuola Superiore
dell’Università degli Studi di Udine

Classe Scientifico-Economica

Colloquio di fine anno

AUTOMATED REASONING METHODS IN HYBRID
SYSTEMS

Relatore: Allieva:
Prof. Agostino Dovier Sara Biavaschi

Anno Accademico 2016-2017

Contents

Introduction 2

1 Background 3
1.1 Answer Set Programming . 3
1.2 Logic programs with constraint atoms . 5

2 EZCSP hybrid system 9
2.1 EZCSP language . 9

2.1.1 Syntax . 9
2.1.2 Semantics . 10
2.1.3 General EZ programs . 11

2.2 System Architecture . 12
2.3 EZCSP solver . 14
2.4 Integration schemas . 21

2.4.1 Black-box integration . 21
2.4.2 Grey-box integration . 21
2.4.3 Clear-box integration . 22

3 Application Domains 23
3.1 Blending Problem . 23
3.2 Scheduling Tasks . 26

Bibliography 28

1

Introduction

Answer set programming (ASP) is a declarative language tailored towards modeling
and solving combinatorial optimization problems. It extends computational methods of
SAT using ideas from knowledge representation, logic programming, and nonmonotonic
reasoning. ASP proved to be useful for finding solutions to a variety of programming
tasks, ranging from building decision support systems for the Space Shuttle (see [2]) to
developing reasoning tools in biology (see [5]).

However, ASP is not directly suitable for modeling problems containing variables
ranging over large domains. The process of grounding, i.e. translating a program
containing variables in its propositional equivalent, is often the bottleneck of the solving
algorithm. To overcome this problem researches have spent significant efforts in the
development of systems that integrate ASP with Constraint Logic Programming (CLP),
enriching ASP with the powerful support for numerical computations of CLP. This new
area, called Constraint Answer Set Programming, has already demonstrated promising
results, such as the development of CASP solvers CLINGCON ([7]), ACSOLVER ([10]),
EZCSP ([2]) and EZSMT ([12]).

We begin with a review of ASP and CASP formalisms, then, in Chapter 2, we focus
our attention on the EZCSP system, introducing its language and solver. We prove
formal claims about its solving algorithm by presenting it in a graph-based framework,
as pioneered in [11] with regard to backtrack search procedures for SAT and Satisfiability
Modulo Theories. This approach will allow us to easily highlight key differences between
various configuration of the EZCSP system and in general of hybrid systems. Indeed
these systems have different methods to integrate ASP and CSP solvers, and there is no
single choice of integration schema that achieves best performance in all cases (see [1]).

Finally, in Chapter 3, we propose our encodings, in the EZCSP language, of the Job
Scheduling Problem and of the Blending Problem, two classical problems in operations
research that will allow us to highlight the advantages of hybrid systems over ASP.

2

Chapter 1

Background

1.1 Answer Set Programming
We begin with a review of the syntax and semantics of ASP. Let Σ be a signature
containing a set of constants, a set of function and a set of predicate symbols. Terms
and atoms are formed as usual in the first order logic. A literal is either an atom or its
negation.

Definition 1.1.1. A rule over Σ is a pair (a0,Γ), where a0 is an atom or ⊥ and
Γ = (Γ1,Γ2,Γ3) is a triplet of sets of atoms.

If Γ1 = {a1, . . . , al}, Γ1 = {al+1, . . . , am}, Γ3 = {am+1, . . . , an} we see the rule (a0,Γ)
as a statement of the form

a0 ← a1, . . . , al,not al+1, . . . ,not am,not not am+1, . . . ,not not an (1.1)

neglecting the order of elements in the right hand side of the arrow. The set of these
elements is called the body of the rule, denoted by B, while a0 is called the head. By
Bpos we denote the positive part of the body of a rule 1.1, i.e. Bpos = Γ1. When a0 = ⊥,
we omit ⊥ from the notation and call such rule denial. When the body is empty, we omit
← from the notation and call such rule fact.

Intuitively, a rule states that a reasoner who believes {a1, . . . , al} and has no reason
to believe {al+1, . . . , am} and no reason not to believe {am+1, . . . , an} has to believe a0.
A rule can also be seen as an implication in first order logic in which not is replaced by
the classical negation ¬ and the body is seen as the conjunction of its elements. Thus we
often interpret 1.1 as a clause of the form

a0 ∨ ¬a1 ∨ · · · ∨ ¬al ∨ al+1 ∨ · · · ∨ am ∨ ¬am+1 ∨ · · · ∨ ¬an (1.2)

We say that a set X of atoms satisfies clause 1.2 if a0 ∈ X, or there exists i ∈
{1, . . . , l,m + 1, . . . , n} such that ai 6∈ X, or there exists i ∈ {l + 1, . . . ,m} such that
ai ∈ X.

3

Definition 1.1.2. A regular (logic) program is a pair (Σ,Π), where Σ is a signature and
Π is a finite set of rules over Σ.

Given a program Π, by At(Π) we denote the set of all atoms that occur in the program,
by Lit(Π) the set of all literals over At(Π) and by (Π)cl the set of clauses that correspond
to the rules of Π. Answer sets of a program Π are intuitively subsets of At(Π) that satisfy
(Π)cl without assuming unnecessary atoms. In order to formalize this intuitive idea, we
introduce the following.

Definition 1.1.3. A set M of literals is consistent if no two complementary literals, a
and ¬a, belong to M . It is complete over a set of atoms σ if for any atoms a in σ, a ∈M
or ¬a ∈M .

It is easy to see how a set of atoms X over some set of atoms σ can be identified with
a complete and consistent set of literals over σ:

{a|a ∈ X} ∪ {¬a|a ∈ σ \X}

Vice versa given a set M of literals over σ we can define a set of atoms:

M+ = {a|a ∈M ∩ σ}

Definition 1.1.4. The reduct of a regular program Π with respect to set X of atoms
over At(Π), denoted by ΠX , is obtained from Π deleting
• Each rule such that X does not satisfy its body.
• All expressions of the form “not a” or “not not a” from the body of the remaining
rules.

Definition 1.1.5. A set X of atoms over At(Π) is an answer set of the program Π if X
satisfy (ΠX)cl and is subset minimal among the sets of atoms satisfying (ΠX)cl.

We now present two ways to characterize answer sets of a program.

Theorem 1.1.6. For a program Π, a set Γ of denials, and a consistent and complete set
M of literals over At(Π), M+ is an answer set of Π ∪ Γ if and only if M+ is an answer
set of Π and M is a model of Γcl.

Proof. We need to show that M is an answer set for ΠM+ ∪ ΓM+ iff it is an answer set
for ΠM+ and is a model of Γcl.

Left-to-right: Assume that M+ is subset minimal among the sets of atoms satisfying
(ΠM+ ∪ ΓM+)cl. Then M+ satisfies both (ΠM+)cl and (ΓM+)cl. The second condition
means that M is a model of Γcl. It remains to check the minimality of M+. Let N+

be a subset of M+ that satisfies (ΠM+)cl. Since M+ satisfies (ΓM+)cl, also its subset
N+ satisfies (ΓM+)cl because ΓM+ is a set of denials with positive bodies. Since M+ is
minimal among the sets satisfying (ΠM+ ∪ ΓM+)cl, it follows that N+ = M+.

Right-to-left: Assume that M+ is an answer set for ΠM+ and is a model of Γcl. The
second condition means that M+ satisfies (ΓM+)cl. Consequently, M+ satisfies both
(ΠM+)cl and (ΓM+)cl. It remains to check the minimality of M+. Let N+ be a subset of
M+ that satisfies (ΠM+ ∪ ΓM+)cl. Then, in particular, N+ satisfies (ΠM+)cl. Since M+

is minimal among such sets, it follows that N+ = M+.

4

By Bodies(Π, a) we denote the set of the bodies of all rules of program Π with the
head a. We now formalize the intuitive idea that a set of atoms has no reason to be true:

Definition 1.1.7. A set U of atoms occurring in a program Π is unfounded on a consistent
set M of literals with respect to Π if

∀a ∈ U ∀B ∈ Bodies(Π, a) M ∩B 6= ∅ ∨ U ∩Bpos 6= ∅

Theorem 1.1.8. For a program Π and a consistent and complete set M of literals over
At(Π), M+ is an answer set of Π if and only if M is a model of Π and M+ contains no
non-empty subsets unfounded on M with respect to Π.

Proof. Left-to-right: Assume that M+ is an answer set of Π. Since M+ satisfies (ΠM+)cl,
M+ satisfies Πcl, i.e. M is a model of Π. It remains to verify that M+ contains no
non-empty subsets unfounded on M . Let U be an unfounded subset of M+. We want to
show that M+ \ U satisfies (ΠM+)cl. Let a ∈ Heads(ΠM+) and B ∈ Bodies(ΠM+

, a). If
a 6∈ U , since M+ satisfies a ∨ ¬Bpos and Bpos is composed of positive atoms it follows
that M+ \ U satisfies a ∨ ¬Bpos also. If a ∈ U , it has to be U ∩ Bpos 6= ∅, because if
it were M ∩ B 6= ∅ the rule a ← Bpos would not be in ΠM+ . It follows that M+ \ U
satisfies a ∨ ¬Bpos. Since M+ is minimal among the sets of atoms satisfying (ΠM+)cl, it
follows that M+ = M+ \ U , i.e. U = ∅.

Right-to-left: Assume that M is a model of Π and contains no non-empty subsets
unfounded on M with respect to Π. It is easy to see that since M+ satisfies Π, it satisfies
also ΠM+ . It remains to check the minimality of M+. Let N+ be a subset of M+ that
satisfies ΠM+ . We want to prove that U := M+ \N+ is an unfounded subset of M+. Let
a ∈ U and B ∈ Bodies(Π, a). If M ∩ B = ∅, a← Bpos is a rule of ΠM+ . Since a 6∈ N+

and N+ satisfies a ← Bpos, it has to be Bpos 6⊂ N+, hence U ∩ Bpos 6= ∅. Since M+

contains no non-empty unfounded subsets, we have U = ∅ and N+ = M+.

1.2 Logic programs with constraint atoms
In this section we introduce the CASP formalism and its semantics. We begin recalling
the definition of constraint satisfaction problem, the central matter of constraint logic
programming.

Definition 1.2.1. A constraint satisfaction problem (CSP) is a triple 〈X,D,C〉 where
X is a set of variables, D is a set of values, called domain, and C is a set of constraints.
Every constraint is a pair 〈t, R〉, where t is an n-tuple of variables and R is an n-ary
relation on D. A solution is a function ν : X → D such that for every constraint
〈(x1, . . . , xn), R〉 ∈ C we have (ν(x1), . . . , ν(xn)) ∈ R.

For a constraint c = 〈t, R〉, where D is the domain of its variables and k is the arity
of t, we call the constraint c = 〈t,Dk \R〉 the complement of c.

Definition 1.2.2. A logic program with constraint atoms (CA program) is a quadruple
P = 〈Π, C, γ,D〉, where

5

1. C is an alphabet,
2. Π is a regular logic program such that

(a) a0 6∈ C for every rule 1.1 in Π
(b) C ⊂ At(Π),

3. γ is a function from C to constraints,
4. D is a domain.

Let P = 〈Π, C, γ,D〉 be a CA program. The elements of C are referred to as constraint
atoms, while all atoms in At(Π) \ C are regular. By VP we denote the set of variables
occurring in the constraint {γ(c)|c ∈ C}. By Π[C] we denote Π extended with choice rules
{c} for each constraint atom c ∈ C, where {c} is an abbreviation for the rule

a← not not a.

We call program Π[C] an asp-abstraction of P.
Let M a consistent and complete set of literals over At(Π). By KP,M we denote the

following constraint satisfaction problem

〈VP , D, {γ(c)|c ∈M |C} ∪ {γ(c)|¬c ∈M |C}〉.

We call this constraint satisfaction problem a csp-abstraction of P with respect to M .
We can now define the notion of answer set of a CA program:

Definition 1.2.3. Let P = 〈Π, C, γ,D〉 be a CA program and M be a consistent and
complete set of literals over At(Π). We say that M is an answer set of P if

(a1) M+ is an answer set of Π[C] and

(a2) the constraint satisfaction problem KP,M has a solution.

If M is an answer set of P and ν is a solution of KP,M , we say that the pair 〈M,ν〉
is an extended answer set of P.

CASP solvers such as CLINGCON process CA programs as described above, comput-
ing an answer set of a program or stating that it doesn’t exist. However, the EZCSP
solver interprets CA programs slightly differently: it computes “weak” answer sets. We
now define this notion and discuss the differences.

Let M a consistent and complete set of literals over At(Π). By K̃P,M we denote the
following constraint satisfaction problem

〈VP , D, {γ(c)|c ∈M |C}〉.

Definition 1.2.4. Let P = 〈Π, C, γ,D〉 be a CA program and M be a consistent and
complete set of literals over At(Π). We say that M is a weak answer set of P if

(w1) M+ is an answer set of Π[C] and

(w2) the constraint satisfaction problem K̃P,M has a solution.

6

If M is a weak answer set of P and ν is a solution of K̃P,M , we say that the pair
〈M,ν〉 is an extended weak answer set of P.

The difference between answer sets and weak answer sets lies in their conditions (a2)
and (w2). Obviously answer sets are also weak answer sets, but there can be weak answer
sets that are not answer sets and yield to a counter-intuitive, “unwanted” solution to
the problem. For example, consider sample CA program, where constraint atoms are
denoted with bars:

night← |x < 6|
am← |x < 12|

This program has 3 answer sets (which are also weak answer sets)

{night, am, |x < 6|, |x < 12|}
{¬night, am,¬|x < 6|, |x < 12|}
{¬night,¬am,¬|x < 6|,¬|x < 12|}

and a weak answer set that is not an answer set

{night,¬am, |x < 6|,¬|x < 12|}

and we don’t want to be a solution, as it states that it is currently night but not am
hours.

Nevertheless, when constraint are used only in a certain way, answer set and weak
answer set coincide. This is the case of the EZCSP language. In the following chapter,
after we have formally defined the language, we will clarify this statement showing that
weak answer set found by the solver are in fact answer sets.

The adoption of weak semantics was driven by the belief that it allows for a more
flexible integration of solvers, and by different implementation choices with respect to
other solver such as CLINGCON, which adopt non-weak semantics and allow for the
constraint atoms to occur in arbitrary rules.
Example 1. Here we present a sample CA program P1 = 〈Π1, C1, γ1, D1〉 defined as
follows.

• Π1 is the regular program

{switch}.
lightOn← switch,not am.
← not lightOn.
{am}.
← not am, |x < 12|.
← am, |x ≥ 12|.

• C1 = {|x < 12|, |x ≥ 12|};

7

• γ1 is the function that maps |x < 12| to an inequality x < 12 and |x ≥ 12| to an
inequality x ≥ 12;

• D1 is the range of integers from 0 to 23.

The asp-abstraction Π[C] of P is the regular program built extending Π with choice rules

{|x < 12|}.
{|x ≥ 12|}.

Consistent and complete set

M1 = {switch, lightOn,¬am,¬|x < 12|, |x ≥ 12|}

of literals over At(Π1) is an answer set of P1. Indeed M+
1 is an answer set of Π1[C1] and

the constraint satisfaction problem

KP1,M1 = 〈{x}, D1, {x ≥ 12}〉

has a solution. For instance pair
〈M1, x = 14〉

is an extended answer set of program P.

8

Chapter 2

EZCSP hybrid system

The EZCSP hybrid system has its roots in the development of an approach for integrating
ASP and constraint logic programming. EZCSP language extends ASP language by
adding some particular atoms that encode the desired satisfaction problems. The solver
computes answer sets of the ASP program and solution to the associated constraint
satisfaction problem using arbitrary off-the-shelf solvers.

2.1 EZCSP language
We begin the description of the EZCSP language by defining relation required, which is
used to define the atoms that encode the constraints. Then we introduce the notion of
propositional ez-program and introduce their semantics via a mapping into CA programs.
Finally we define the notion of (non propositional) EZ program and we construct a
mapping from EZ programs to propositional ez-programs.

2.1.1 Syntax

An EZ-atom is an expression of the form

required(β)

where β is an atom. Given an alphabet C, CEZ is the corresponding set of ez-atoms.
A (propositional) ez-program is a tuple

〈E,A, C, γ,D〉

where
• A and C are alphabets so that A, C and CEZ do not share elements;
• E is a regular logic program so that At(E) = A ∪ CEZ and atoms from CEZ only
occur in the head of its rules;
• γ is a function from C to constraints;
• D is a domain.

9

2.1.2 Semantics

We define a map from propositional ez-programs to CA programs:

M : {propositional ez-programs} → {CA programs}
〈E,A, C, γ,D〉 7→ 〈Π, C, γ,D〉.

where Π is the regular logic program that extends E by a denial

← required(β),notβ (2.1)

for every ez-atom required(β) occurring in E.
If E is a propositional ez-program, by PE we denote the corresponding CA program.

Definition 2.1.1. Let E = 〈E,A, C, γ,D〉 be a propositional ez-program. For a consistent
and complete set M of literals over At(E) ∪ C and an evaluation α from the set VPE of
variables to the set D of values, we say that
• M is an answer set of E if M is a weak answer set of PE ;
• a pair 〈M,α〉 is an extended answer set of E if 〈M,α〉 is an extended weak answer
set of PE .

We are now ready to discuss the difference between answer sets and weak answer sets
with respect to CA programs associated to propositional ez-programs.

Let E be a propositional ez-program. Consider the asp-abstraction of the corresponding
CA program PE . Note that because of rules 2.1, if required(β) is in an answer set M , it
has to be β ∈M . However, when required(β) 6∈M , we are requiring neither β ∈M nor
¬β ∈M . Because of choice rule {β}., both choices are acceptable answer sets.

If the satisfaction of constraint β is not required, we disregard the presence of β in
the answer set we are considering. Actually when the EZCSP system computes answer
sets for the ez-program, it omits constraint atoms.

Formally, given an answer set M of the ez-program E , we are concerned only with its
subset M ∩ Lit(E). We can now show that if we consider only this subset of answer sets,
weak answer sets of PE are also answer sets of PE .

Lemma 2.1.2. Let E = 〈E,A, C, γ,D〉 be a propositional ez-program, and let M be a
weak answer set of PE . Then there exists an answer set N of PE such that M ∩Lit(E) =
N ∩ Lit(E).

Proof. Let 〈M,α〉 be an extended weak answer set of PE .
We now define a function f from B := {β ∈ C|¬β ∈M} to Lit(E).

f : B → Lit(E)

β 7→
{
β if α satisfies constraint β,
¬β if α does not satisfy constraint β.

Hence the set

N = (M ∩ Lit(E)) ∪ {β|β ∈ C, β ∈M} ∪ {f(β)|β ∈ C,¬β ∈M}

10

is an answer set of PE . Indeed N+ is an answer set of the asp-abstraction of PE and
α is a solution of KPE ,N . Furthermore M ∩ Lit(E) = N ∩ Lit(E), thus the theorem is
proved.

2.1.3 General EZ programs

In order to allow for more compact specifications, the EZCSP system supports an
extension of the language of propositional ez-programs, which we call EZ. The language
supports an explicit specification of domains and variables, the use of non-ground rules
and compact representation of lists in constraints. We begin defining EZ programs and
then mapping them to propositional ez-programs.

Let ΣEZ = 〈CEZ, VEZ, FEZ, REZ〉 be a signature composed of disjoint set respectively
of constants, variable, function and relation symbols, where

• set CEZ includes symbols for integers and pre-defined constants (fd, q, r) denoting
CSP domains;

• set FEZ includes pre-defined symbols that correspond to arithmetic operators (e.g.
“+”), arithmetic connectives (e.g. “<”), logical connectives, list delimiters and
names of global constraints;

• set REZ contains pre-defined symbols cspdomain, cspvar, required.

The notion of terms over signature ΣEZ is expanded (w.r.t. the traditional definition of
first order logic) adding:

• extensional list: an expression of the form [t1, . . . , tk] where ti are traditional terms;

• intensional list: an expression of the form [g/k] where g ∈ FEZ or g ∈ REZ and k is
an integer;

• global constraint: an expression of the form f(γ1, . . . , γk) where f ∈ FEZ and each
γi is a list.

Definition 2.1.3. An EZ program is a pair 〈ΣEZ,Π〉 where Π is a set of rules over
signature ΣEZ that contains exactly one fact whose head is cspdomain(fd), cspdomain(q),
or cspdomain(r).

Similarly to ASP, we replace every non-ground rule (rule containing variables) with a
set of propositional (ground) rules, obtaining a ground EZ program.

It’s possible to define a mapping from ground EZ programs to a propositional ez-
programs:

µ : {EZ programs} → {propositional ez-programs}
〈ΣEZ,Π〉 7→ 〈µV (Π) ∪ µR(Π), µA(Π), µC(Π), γ, µD(Π)〉

11

where

µD(Π) =


FD (finite domains) if cspdomain(fd). ∈ Π
Q if cspdomain(q). ∈ Π
R if cspdomain(r). ∈ Π

µV (Π) ={required(v ≥ l).|cspvar(v, l, r). ∈ Π}∪
{required(v ≤ r).|cspvar(v, l, r). ∈ Π}

µ̃R(a← B) =
{
required(λ(β))← B if a is of the form required(β)
a← B otherwise

where µ̃ is a function that maps intensional lists to corresponding extensional lists. We
omit details about its definition. Using µ̃ we can now define

µR(Π) =
⋃

r∈Π
µ̃R(r).

Besides using µV and µR we define

µA(Π) = {a ∈ At(µV (Π) ∪ µR(Π))|a 6= required(−)}

µC(Π) = {β|required(β) ∈ µV (Π) ∪ µR(Π)}.

We assume that γ, a function from C to constraint, is given. It represents the canonical
association between arithmetic connectives and constraints.

Henceforth, when we talk about answer sets of a general EZ program 〈ΣEZ,Π〉 we
mean answer sets of the associated propositional ez-program µ(〈ΣEZ,Π〉).

2.2 System Architecture
In this section we give an overview of the architecture of the EZCSP system, depicted in
Figure 2.1, focusing on the functioning while employing the black-box integration schema.

When the EZCSP system takes as input an EZ program, the Pre-processor translates
it into a syntactically legal ASP program. Indeed EZ atoms may contain arithmetic
function or operators that have to be translated into auxiliary function symbols. Then
the Grounder transforms the resulting program into its propositional equivalent. This
regular program is then passed to the EZCSP solver component, that iterates ASP solver
and CP solver computations. Furthermore the EZCSP solver uses the CLP translator
component for mapping the csp-abstraction corresponding to the computed answer set
to a Prolog program. Details about the behaviour of the EZCSP solver will be discussed
in the next section.

EZCSP supports different off-the-shelf grounders, such as GRINGO, CP solvers,
such as SICSTUS, BPROLOG, SWIPROLOG, and ASP solvers, such as CMODELS or
CLASP.

12

Figure 2.1: Architecture of the EZCSP system (Image from [1])

Example 2. In this example we illustrate the functioning of the system using a problem
similar to example 1. In the EZ language, we can encode the problem as follows.

cspdomain(fd).
cspvar(x,0,23).
{switch}.
lightOn :- switch, not am.
:- not lightOn.
{am}.
required(x>=12) :- not am.
required(x<12) :- am.
{night}.
required(x<6) :- night.
required(x>=6) :- not night.

We now analyse the behaviour of the EZCSP system given this program as input. First
the pre-processor replaces arithmetic connectives with special function symbols. Its
output is

cspdomain(fd).
cspvar(x,0,23).
{switch}.
lightOn :- switch, not am.
:- not lightOn.
{am}.
required(ezcsp__geq(x, 12)) :- not am.
required(ezcsp__lt(x, 12)) :- am.

13

{night}.
required(ezcsp__lt(x, 6)) :- night.
required(ezcsp__geq(x, 6)) :- not night.

This program is already grounded since there are no non-constraint variables. Thus it
is a legal propositional ez-program that the EZCSP solver can take as input. The ASP
solver now computes an answer set of this regular program. There are two answer sets
(in the sense of regular programs):

{cspdomain(fd), cspvar(x, 0, 23), lightOn, switch, required(ezcsp__geq(x, 12)),
required(ezcsp__lt(x, 6)), night}

and

{cspdomain(fd), cspvar(x, 0, 23), lightOn, switch, required(ezcsp__geq(x, 12)),
required(ezcsp__geq(x, 6))}.

Then the EZCSP solver sends to the CLP translator the answer set found and after that
the CP solver searches a solution of the constraint satisfaction problem. If the ASP
solver finds the first solution, the CP solver will find no solution of the csp-abstraction
because the constraint variable x cannot be both greater than 12 and less than 6. Hence
in this case the EZCSP solver calls the ASP solver a second time in order to find another
solution. If the ASP solver finds the second solution, the CP solver will output a solution
to the constraint satisfaction problem, for example x = 13. In this case the EZCSP solver
outputs the extended answer set

〈{cspdomain(fd), cspvar(x, 0, 23), lightOn, switch, required(ezcsp__geq(x, 12)),
required(ezcsp__geq(x, 6))}, x = 13〉

and the process stops.
In the next section we will study how exactly the EZCSP solver interacts with the

ASP and the CP solver.

2.3 EZCSP solver
We begin introducing some notions and lemmata about CA programs that will be useful
in order to prove formal properties of the EZCSP solver.

Definition 2.3.1. Let P = 〈Π, C, γ,D〉 be a CA program. We say that P asp-entails a
denial G over At(Π) when for every complete and consistent set M of literals over At(Π)
such that M+ is an answer set of Π[C], M satisfies Gcl.

Definition 2.3.2. Let P = 〈Π, C, γ,D〉 be a CA program. We say that P cp-entails a
denial G over At(Π) when

1. for every answer set M of P, M satisfies Gcl, and

14

2. there is a complete and consistent set N of literals over At(Π) such that N+ is an
answer set of Π[C] and N does not satisfy G.

We say that a CA program P = 〈Π, C, γ,D〉 entails a denial G over At(Π) when P
either asp-entails or cp-entails G. For a consistent set N of literals over At(Π) and a
literal l, we say that P asp-entails l with respect to N , if for every complete and consistent
set M of literals over At(Π) such that M+ is an answer set of Π[C] and N ⊂M , l ∈M .

For a CA program P = 〈Π, C, γ,D〉 and a set Γ of denials over At(Π), by P[Γ] we
denote the CA program 〈Π ∪ Γ, C, γ,D〉.

Lemma 2.3.3. For a CA program P = 〈Π, C, γ,D〉 and a set Γ of denials over At(Π) if
P entails every denial in Γ then
(i) every answer set of (Π ∪ Γ)[C] is also an answer set of Π[C];
(ii) CA programs P and P[Γ] have the same answer sets.

Proof. (i) This part follows from 1.1.6 applied to regular program Π[C] and set (Π ∪
Γ)[C] \Π[C] of denials.

(ii) Set Γ is composed of two disjoint sets Γ1 and Γ2, where Γ1 is the set of all denials
that are asp-entailed by P and Γ2 is the set of all denials cp-entailed by P. From
1.1.6 and definition of asp-entailment, regular programs Π[C] and (Π ∪ Γ1)[C] have
the same answer sets. Furthermore KP,M = KP[Γ1],M for any answer set M of Π[C].
Thus CA programs P and P[Γ1] have the same answer sets.
We now show that also CA programs P[Γ1] and P[Γ1 ∪ Γ2] have the same answer
sets.
Let M be an answer set of P[Γ1]. Since P[Γ1] cp-entails every denial in Γ2, we
conclude that M is a model of Γcl

2 . By theorem 1.1.6, M+ is an answer set of
(Π∪Γ1)[C]∪Γ2. But (Π∪Γ1)[C]∪Γ2 = (Π∪Γ1∪Γ2)[C] and KP[Γ1],M = KP[Γ1∪Γ2],M
thus M is an answer set of Π[Γ1 ∪ Γ2].
TakeM to be an answer set of P [Γ1∪Γ2]. M+ is an answer set of (Π∪Γ1)[C]∪Γ2 =
(Π ∪ Γ1 ∪ Γ2)[C]. By theorem 1.1.6 M+ is an answer set of (Π ∪ Γ1)[C] and since
KP[Γ1],M = KP[Γ1∪Γ2],M we derive that M is an answer set of P[Γ1].
It immediately follows that CA programs P and P[Γ1 ∪ Γ2] have the same answer
sets.

Rather than committing ourselves with a pseudocode description, with introduce
a graph-based representation of the solver, where nodes represent possible “state of
computation” and edge transition from one state to another. This framework allow us
to speak of termination and correctness of procedures supported by the EZCSP system
and to easily capture differences and similarities of the various configuration supported
by EZCSP. This approach allows us to model a complex algorithm by a mathematically
simple and elegant object, a graph, rather than a collection of pseudocode statements.

15

Definition 2.3.4. For an alphabet σ, a record relative to σ is a sequence M composed
of distinct literals over σ or symbol ⊥, with some literals possibly annotated with the
symbol ∆, such that

1. the set of literals in M is consistent or M = M ′l, where the set of literals in M ′ is
consistent and contains l;

2. if M = M ′l∆M ′′, then neither l nor its dual l is in M ′;
3. if ⊥ occurs in M , then M = M ′⊥ and M ′ does not contain M .

Literals annotated with the symbol ∆ are called decision literals. Intuitively, decision
literals in a record mean that we do not now yet if the literal is true or false, we
momentarily assume that they are true, but we are ready to backtrack and negate them
as soon as we find a contradiction.

Definition 2.3.5. Let P = 〈Π, C, γ,D〉 be a CA program. A state relative to P is either
• a distinguished state failstate or
• a triple M ||Γ||Λ where M is a record relative to At(Π) and Γ and Λ are each a set
of denials that are entailed by P.

We now consider the following transition rules from one state to another.

• Decide: M ||Γ||∆⇒Ml∆||Γ||∆, if l is unassigned by M and M is consistent;

• Fail: M ||Γ||∆⇒ Failstate, ifM is inconsistent andM contains no decision literals;

• Backtrack: Pl∆Q||Γ||∆ ⇒ Pl||Γ||∆, if Pl∆Q is inconsistent and Q contains no
decision literals;

• ASP-Propagate: M ||Γ||∆⇒Ml||Γ||∆, if P [Γ ∪∆] asp-entails l with respect to M ;

• CP-Propagate: M ||Γ||∆⇒M⊥||Γ||∆, if KP,M has no solution;

• Learn: M ||Γ||∆⇒M ||Γ ∪ {R}||∆, if P[Γ ∪∆] entails denial R and R 6∈ Γ ∪∆;

• Learnt: M ||Γ||∆⇒M ||Γ||∆ ∪ {R}, if P[Γ ∪∆] entails denial R and R 6∈ Γ ∪∆;

• Restart: M ||Γ||∆⇒ ∅||Γ||∆, if M 6= ∅;

• Restartt: M ||Γ||∆⇒ ∅||Γ||∅, if M 6= ∅.

Definition 2.3.6. For a CA program P = 〈Π, C, γ,D〉, we define the (oriented) graph
EZP , whose nodes are the states relative to P and edges are specified by the nine
transition rule presented above.

The transition rule ASP-Propagate specifies the conditions under which a new literal
l is added to an atomic part. Note that the condition of this rule is semantic, as it
refers to the notion of asp-entailment. Propagators used by software system typically use
syntactic conditions, which are easier to check. Specifically, the EZCSP solver accounts
only for these two special cases of ASP-Propagate:

16

• Unit Propagate: M ||Γ||∆⇒Ml||Γ||∆, if M is consistent, C ∨ l ∈ (Π[C] ∪ Γ ∪∆)cl

and M |= C;

• Unfounded: M ||Γ||∆⇒Ml||Γ||∆, if M is consistent, and there is a literal l so that
l ∈ U for a set U , which is unfounded on M w.r.t. Π[C] ∪ Γ ∪∆.

These two transition rules rely on properties that can be checked by efficient procedures.
Furthermore Unit Propagate or Unfounded are applicable only in states where ASP-
Propagate is applicable. Thus we can define the graph EZSMP , an edge-induced subgraph
of EZP , where we drop the edges that correspond to the application of transition rule
ASP-Propagate not accounted by Unit Propagate or Unfounded.

Graph EZP and EZSMP share important properties that give rise to a class of correct
algorithms for computing answer sets of CA programs. Before stating these properties,
we introduce some terminology.

For a state M ||Γ||∆, we call M ,Γ, and ∆ the atomic, permanent, and temporal parts
of the state. We refer to the transition rules Decide, Fail, Backtrack, ASP-Propagate,
CP-Propagate of graph EZP as basic. Similarly, in graph EZSMP , transition rules Decide,
Fail, Backtrack, Unit Propagate, Unfounded and CP-Propagate are called basic. They
concern only the atomic part of the state. We call the state ∅||∅||∅ initial. We say that a
node in EZP is semi-terminal if no basic rule is applicable to it.

We say that a path in EZP is restart-safe when, prior to any edge e due to an
application of Restart or Restartt on this path, there is an edge e′ due to an application
of Learn such that
• edge e′ precedes e;
• e′ does not precede any other edge e′′ 6= e due to Restart or Restartt.

Lemma 2.3.7. For any CA program P, and a path from an initial state to l1 . . . ln||Γ||∆
in EZP , if X is an answer set for P, i ∈ {1, . . . , n} and X satisfies all decision literals
l∆j with j ≤ i then X satisfies li.

Proof. By induction on the length of a path. The property trivially hold in the initial
state, we only need to prove that all transition rules of EZP preserve it. Consider a
transition M ||Γ||∆⇒ S where S is a state and M = l1 . . . ln is a sequence of literals (or
decision literals). Suppose the statement is true for the state M ||Γ||∆. We want to prove
it for S. We consider different cases depending on the transition rule leading to S.
• Decide: S = Ml∆n+1||Γ||∆. By induction hypothesis, the statement is true for
i ∈ {1, . . . , n}. For i = ln+1, take any answer set X for P that satisfies all decision
literals with i ≤ n+ 1. X trivially satisfies also ln+1.
• Fail: S = Failstate. Nothing to prove.
• CP-Propagate: S = M⊥||Γ||∆. Nothing to prove.
• Learn, Learnt: Nothing to prove since the atomic part is unchanged.
• Restart, Restartt: Obvious since the atomic part of S is ∅.
• ASP-Propagate: S = Mln+1||Γ||∆. Take any answer set X of P such that X
satisfies all decision literals l∆j with j ≤ n+ 1. From the inductive hypothesis it
follows that X satisfies M . Thus M ⊂ X and from the definition of ASP-Propagate,

17

P asp-entails ln+1 with respect to M . We also know that X+ is an answer set of
Π[C]. Thus from the definition of asp-entailment ln+1 ∈ X.
• Backtrack: M = Pl∆i Q where Q contains no decision literals. S = Pli||Γ||∆. Take
any answer set X of P such that X satisfies all decision literals l∆j with j ≤ i.
We need to show that X |= li. Proof by contradiction. Assume that X |= li. By
inductive hypothesis, since Q does not contain decision literals, X satisfies Pl∆i Q.
This is impossible because M is inconsistent since we have applied Backtrack to it.

We are now ready to prove that we can use paths in EZP or in EZSMP to find answer
sets of CA programs. Every restart-safe path leads (in a finite number of transitions) to
an answer set or to Failstate, depending on the existence of answer sets. The remaining
part of this section contains formal proofs of this statement for both EZP and EZSMP .

Theorem 2.3.8. For any CA program P:

(i) every restart-safe path in EZP is finite, and any maximal restart-safe path ends
with a state that is semi-terminal;

(ii) for any semi-terminal state M ||Γ||∆ of EZP reachable from initial state, M is an
answer set of P;

(iii) state Failstate is reachable from initial state in EZP by a restart-safe path if and
only if P has no answer set.

Proof. Let P = 〈Π, C, γ,D〉 be a CA program.

(i) We first show that any path in EZP that does not contain Restart or Restartt edges
is finite.
Consider any path t that does not contain these edges. We want to define an anti-
symmetric and transitive relation ≺ over the set S of states of EZP . We begin defin-
ing a function α : S \ {Failstate} → {Finite sequences of nonnegative integers}.
Any state M ||Γ||∆ can be written uniquely as M0l

∆
1 M1 . . . l

∆
p Mp||Γ||∆, where

M0, . . . ,Mp do not contain decision literals. We define α(M ||Γ||∆) as the sequence
of nonnegative integers |M0|, |M1|, . . . , |Mp|. Over the set of all finite sequences of
nonnegative integers the relation < is interpreted as the lexicographic order.
We now define ≺ as follows.
• ∀S ∈ S \ {Failstate} S ≺ Failstate;
• for every pair of statesM ||Γ||∆ ∈ S andM ′||Γ′||∆′ ∈ S, we say thatM ||Γ||∆ ≺
M ′||Γ′||∆′ if and only if
– Γ ⊂ Γ′, or
– Γ = Γ′ and ∆ ⊂ ∆′, or
– Γ = Γ′, ∆ = ∆′, and α(M ||Γ||∆) < α(M ′||Γ′||∆′).

18

It’s easy to see that ≺ is anti-symmetric and transitive. By the definition of
the transition rules and the transitiveness, if there is any edge from M ||Γ||∆
to M ′||Γ′||∆′ in EZP formed by any basic rule or rules Learn or Learnt, then
M ||Γ||∆ ≺M ′||Γ′||∆′. Observe that there is a finite number of distinct values of α:
the length of the atomic part of a states does not exceed 2∗|At(Π)|+1. Furthermore
there is a finite number of denials entailed by P because the atoms of these denials
have to be a subset of At(Π). Hence there is a finite number of edges in t.
Consider any restart-safe path r in EZP . We call a path from state S to state S′ in
EZP restarting when an edge that follows S is due to the application from the rule
Learn, an edge leading to S′ is due to the application of the rule Restart or Restartt
and on this path there are no other edges due to applications of Learn, Restart
or Restartt. Using the previous part of the proof, it follows that any restarting
path is finite. We now construct a path r′ by replacing each restarting subpath
of r by an edge that we call Artificial. An edge in r′ due to Artificial leads from
a state of the form M ||Γ||∆ to a state ∅||Γ ∪ {C}||∆′, where C is a denial. We
have M ||Γ||∆ ≺ ∅||Γ∪ {C}||∆′. Furthermore r′ contains no edges due to Restart or
Restartt, because we eliminated all restarting subpaths in favor of Artificial edges.
Thus by the same argument as the first part of the proof, r′ contains a finite number
of edges. We can now conclude that r is finite because r′ was built dropping finite
fragments from r.
It’s easy to see that any maximal restart-safe path ends with a state that is semi-
terminal. If it were such a path ending in a non semi-terminal not, we could apply
a basic transition rule to it, contradicting its maximality.

(ii) Let M ||Γ||∆ be a semi-terminal state reachable from initial state. Since Decide is
not applicable, M assigns all literals or M is inconsistent. M is consistent because
if it were inconsistent, Backtrack or Fail would be applicable. So M assigns all
literals.
M+ is an answer set of Π[C]. Proof by contradiction. Assume that M+ is not an
answer set of Π[C]. It follows that M is not an answer set of P . By 2.3.3, M is not
an answer set of P[Γ ∪∆] and M+ is not an answer set of Π[C] ∪ Γ ∪∆. Since M
is a complete and consistent set of literals over At(Π) it follows that there is no
complete and consistent set M ′ of literals over At(Π) such that M ⊂M ′ and M ′+

is an answer set of Π[C] ∪ Γ ∪∆. We trivially conclude that P[Γ ∪∆] asp-entails
any literal l. It follows that ASP-Propagate is applicable to state M ||Γ||∆, that
contradict our assumption that this state is semi-terminal.

(iii) Left-to-right: Since Failstate is reachable from the initial state by a restart-safe
path, there is an inconsistent state M ||Γ||∆ without decision literals such that there
exists a path a path from the initial state to M ||Γ||∆. By 2.3.7, any answer set of
P satisfies M . Since M is inconsistent we conclude that P has no answer sets.
Right-to-left: From (i) any maximal restart-safe path from initial state ends with
some semi-terminal state S. By (ii) S cannot be different from Failstate because

19

P has no answer sets.

Theorem 2.3.9. For any CA program P:

(i) every restart-safe path in EZSMP is finite, and any maximal restart-safe path ends
with a state that is semi-terminal;

(ii) for any semi-terminal state M ||Γ||∆ of EZSMP reachable from initial state, M is
an answer set of P;

(iii) state Failstate is reachable from initial state in EZSMP by a restart-safe path if
and only if P has no answer set.

Proof. Let P = 〈Π, C, γ,D〉 be a CA program.

(i) The finiteness follows from (i) of 2.3.8 since EZSMP is a subgraph of EZP .
By the same argument as in (i) of 2.3.8, any maximal restart-safe path ends with a
state that is semi-terminal.

(ii) Let M ||Γ||∆ be a semi-terminal state reachable from initial state. As in proof of
part (ii) of 2.3.8 we conclude that M assigns all literals and is consistent. Also,
CSP KP,M has a solution.
We now show that M+ is an answer set of Π[C]. Proof by contradiction. Assume
that M+ is not an answer set of Π[C]. It follows that M is not an answer set of
P. By 2.3.3, M is not an answer set of P[Γ ∪ ∆] and M+ is not an answer set
of Π[C] ∪ Γ ∪∆. By 1.1.8 it follows that either M is not a model of Π[C] ∪ Γ ∪∆
or M contains a non-empty subset unfounded on M w.r.t. Π[C] ∪ Γ ∪∆. In case
the former holds we derive that the rule Unit Propagate is applicable in the state
M ||Γ||∆, because there is C ∨ l ∈ (Π[C] ∪ Γ ∪∆)cl such that M |= C ∨ l and in
particular M |= C. In case the latter holds we derive that the rule Unfounded is
applicable in the state M ||Γ||∆, since given the unfounded set U we can choose any
l ∈ U and it satisfies the conditions of the rule. In either cases this contradicts our
assumption that M ||Γ||∆ is semi-terminal.
From the conclusions that M+ is an answers set of Π[C] and KP,M has a solution
we derive that M is an answer set of P.

(iii) Left-to-right: It follows from (iii) of 2.3.8, noting that 2.3.7 holds also for the graph
EZSMP because it is a subgraph of EZP .
Right-to-left: From (i) any maximal restart-safe path from initial state ends with
some semi-terminal state S. By (ii) S cannot be different from Failstate because
P has no answer sets.

20

2.4 Integration schemas
An algorithm that traverses the graph EZP is characterized by a strategy for choosing
a path at each state. EZCSP solver implements three different strategies, black box,
grey-box or clear box integration, depending on how and when the ASP and the CP solver
are invoked and how interact with each other.

We now outline these three strategies, which provide a skeleton of the algorithm
implemented in the EZCSP system. These skeletons are meant to highlight key differences
between the variants of integration schemas, whilst details are omitted.

2.4.1 Black-box integration

In this configuration schema, the ASP solver is called iteratively and then the solution
are checked with the CP solver. In terms of EZP , we can describe this strategy as follows.

1. Restart never applies;

2. Learnt applies only if the denial R learnt by the application of this rule is such that
P asp-entails R;

3. CP-Propagate never applies only if rules Decide, Backtrack, Fail, ASP-Propagate
are not applicable;

4. A single application of Learn follows immediately after an application of the rule
CP-Propagate. Furthermore, the denial R learnt by the application of this rule is
such that P cp-entails R;

5. Restartt follows immediately after an application of the rule Learn. Restartt does
not apply under any other condition.

2.4.2 Grey-box integration

In this approach, rather than calling the ASP solver from scratch at each iteration, the
EZCSP solver implements an incremental interface that saves informations obtained from
the ASP solver at each iteration. Formally, in terms of graph EZP , this configuration is
captured by the following strategy.

1. Restartt never applies;

2. Learnt applies only if the denial R learnt by the application of this rule is such that
P asp-entails R;

3. CP-Propagate never applies only if rules Decide, Backtrack, Fail, ASP-Propagate
are not applicable;

4. A single application of Learn follows immediately after an application of the rule
CP-Propagate. Furthermore, the denial R learnt by the application of this rule is
such that P cp-entails R;

21

5. Restart follows immediately after an application of the rule Learn. Restart does
not apply under any other condition.

This strategy differs from the previous one only in rules 1 and 5. Here rule Restart plays
the role of rule Restartt in black-box configuration, avoiding to delete the temporal part
of the state, i.e. asp-entailed denials, throughout the traversing of the graph.

2.4.3 Clear-box integration

In this approach, satisfiability of the partial constraint satisfaction problem is checked
while the assignment is being built by the ASP solver. This configuration is captured by
the following strategy in navigating the graph EZP .

1. Restartt and Restart never apply.

We omit details about this strategy. Note that permitting frequent dialogue between
ASP and CP solvers as in clear-box integration is not the best choice in all cases. Indeed
it has been shown that there is no single choice that is faster in all problems (see [1]).

22

Chapter 3

Application Domains

3.1 Blending Problem
A classical problem that can be modeled in the EZCSP language concerns blending or
mixing substances, each of them containing different quantities of some components,
to obtain a product whose amount of components lies within specified bounds. Each
substance has a known cost, our goal is to find the cheapest mixture that satisfies the
requests. We refer to the decisional version of this problem: given a maximum cost k, we
want to establish if there exists a solution whose cost is less than or equal to k.

For example consider the problem of determining the optimum amounts of three
ingredients to include in an animal feed mix. The final product must satisfy several
nutrient restrictions. Similar problems arise also in other domains, for example, the oil,
paint, and food-processing industries.

Here we present a true-CASP encoding of the problem in the EZCSP language. We
denote with true-CASP the encodings that exploits both ASP rules and constraint rules,
i.e. that will use both the ASP and the CP solver. The input file is composed of the
following predicates:
• subs(X)., which states that X is a substance;
• cost(S, P)., which states that substance S costs P (in a suitable predetermined

unit of measurement);
• comp(X)., which states that X is a component;
• mi(C,Q)., which states that the final product has to contain at least Q units of
component C;
• tab(S,C,Q)., which states that substance S contains Q units of component C for
each predetermined unit of measurement established before;
• max_money(M)., which gives the maximum cost of an acceptable solution.

In addition to this basic problem there can be additional requests. We consider the
following:
• using_cost(P)., which states that there is a fixed cost P for each substance used

in the final product, which we have to add to the cost per unit;
• not_together(X,Y)., which states that substance X and Y cannot be both used

23

for the final product;
• have_to_use(X,N,D)., where N and D are integers. It states that we have to
use minimum N/D units of substance X.

cspdomain(q).
cspvar(q(X),0,10) :- subs(X). % Quantity of each substance
cspvar(p(X),0,1000) :- subs(X). % Expense for each substance
cspvar(c(Y,X),0,200) :- subs(X), comp(Y). % Amount of component Y in

used quantity of substance X

% Decide whether a substance is used or not.
{used(X)} :- sost(X).
required(q(X)=0) :- not used(X), subs(X).
required(q(X)>0) :- used(X), subs(X).

% Expence for each substance = quantity * cost per unit + fixed cost.
required(p(X)=Y*q(X)+Z) :- subs(X), cost(X,Y), used(X), using_cost(Z).
required(p(X)=0) :- subs(X), cost(X,Y), not used(X).

% Amount of each component in each substance.
required(c(Y,X) == q(X) * Z) :- subs(X), comp(Y), tab(X,Y,Z).

% For each component, the amount in the final product has to be
% greater than the minimum requested.
required(sum([c(Y)/2],>=,Z)) :- comp(Y), mi(Y,Z).

% Sum of expenses cannot exceed the budget.
required(sum([p/1],<=,X)) :- max_money(X).

%%% EXTRA REQUIREMENTS

% Substances X and Y cannot be used together.
:- used(X), used(Y), not_together(X,Y).

% Requirements of minimum amount of some substances in the final product.
required(Z*q(X)>=Y) :- have_to_use(X,Y,Z).

This problem allows us to show one of the greatest advantages of EZCSP system
over ASP. It allows us to postpone the grounding, which is often the bottleneck of ASP
algorithm. In particular, grounding is a problem when we have unknown variables which
ranges over non-discrete domains, , such as q(X) that ranges over Q in this problem. In
order to encode similar problems in ASP, which deals only with integer variables, we
have to set a “precision”, a fraction of the unit of measurement of the problem, and make
q(X) range only over integer multiples of this precision. For example, here we present an

24

ASP encoding of the basic blending problem (without extra requirements).

% In the input file, fact prec(N) states that the precision is set
% to 1/N of the unit of measurement.
units(1..X) :- prec(X).

% Maximum money considered: 2*budget.
money(1..X) :- X=Y*2*Z , max_money(Y), prec(Z).

% Choose a quantity for each substance.
1 {q(X,Y) : units(Y)} 1 :- subs(X).

% Compute total money spent and compare with budget.
tm_dot_prec(Z1) :- Z1=#sum{Y*Z : subs(X), q(X,Z), cost(X,Y)}, money(Z1).
:- X>Z*A , max_money(A), tm_dot_prec(X), prec(Z).

% Compute resulting components and compare with requirements.
qoc_dot_prec(Y,Z) :- Z=#sum{ A*B,X : q(X,A), tab(X,Y,B)} , comp(Y).
:- Z< X*Z1 , comp(Y), qoc_dot_prec(Y,Z), mi(Y,Z1), prec(X).

However, this approach has a problem: even with low precisions processing the grounded
file is infeasible due to its dimensions. With higher precisions the grounding in itself
becomes infeasible. For example consider the following simple input composed of 4
substances and 3 components, and a low, non acceptable precision of 1/10 of the unit of
measurement.

subs(1..4).
cost(1,40). cost(2,30). cost(3,60). cost(4,30).

comp(1..3).
mi(1,100). mi(2,300). mi(3,80).

tab(1,1,20). tab(1,2,510). tab(1,3,50).
tab(2,1,320). tab(2,2,230). tab(2,3,25).
tab(3,1,60). tab(3,2,0). tab(3,3,180).
tab(4,1,160). tab(3,2,435). tab(4,3,90).

max_money(60).
prec(10).

On a computer with an Intel Core i5 processor at 2.5GHz, ASP solver CLINGO takes
about 16s to find the first solution, while if we change the precision to 1/20 of the unit
of measurement, the process takes about 518s. On the contrary, using the true-CASP
encoding of the problem, the EZCSP system finds the first solution in less than 1 second,
and with the variables ranging over rational numbers instead of over integer multiples

25

of a fixed precision. The EZCSP system allows to exploit advantages of ASP solvers in
encoding requirements, while avoiding the problem of grounding by leaving the treatment
of rational quantities to the csp solver.

3.2 Scheduling Tasks
Here we present an approach to solve a modified job shop scheduling problem in constraint
answer set programming using the EZCSP system. This classic problem concerns a set of
jobs an a set of machines, each job comprises some operations, which must each be done
on a different machine for different specified processing time, in a given job-dependent
order. Each job has a release time and a due time to complete. The release time of a job
is the arrival time for that job, while the due time is the time in which the job must be
completed. A legal schedule is a schedule of job sequences on each machine such that
each job’s operation order is preserved, a machine can process at most one operation at
one time, and different operations of the same job are not simultaneously processed on
different machines.

This problem is suitable for encoding in the EZCSP language because it combines
aspects of planning (determine the order of operation given dependencies between some
of them) with aspects of scheduling. EZCSP allows to leverage ASP and CSP solvers
for solving different parts of the problem at hand. Thus we can use ASP to encode the
planning part and CSP to encode the scheduling.

The input file is composed of the following facts.
• job(j, start, end)., which states that j is a job whose release time is start and due
time is end;
• operation(J,O, P,M)., which states that operation O of job J has a process time

of P and requires machine M ;
• depend(J,O1, O2)., which states that operation O1 of job J must occur before

operation O2 of job J .
Here we present the true-CASP encoding of this problem.

cspdomain(fd).

% Set up topological sort.
1{first(J,O,P,M):operation(J,O,P,M)}1 :- job(J,R,D).
1{dep(J,O,O1):operation(J,O1,P1,M1), O!=O1}1 :- job(J,R,D),

operation(J,O,P,M), not first(J,O,P,M).
tdep(J,O,O1) :- tdep(J,O,O2), tdep(J,O2,O1). % Transitive dependence.
tdep(J,O,O1) :- dep(J,O,O1).
:- depend(J,O,O1), not tdep(J,O,O1).
:- not tdep(J,O,O1), not tdep(J,O1,O), operation(J,O,P,M),

operation(J,O1,P1,M1), O!=O1.

% Start time of operation (J,O,P,M).
cspvar(st(J,O,P,M),R,D-P) :- operation(J,O,P,M), job(J,R,D).

26

% Each operation starts after the end time of the previous one
% in the topological sort.
required(st(J,O,P,M) >= P1+st(J,O1,P1,M1)) :- operation(J,O,P,M),

operation(J,O1,P1,M1), dep(J,O,O1).

% Max one job per machine at any given time.
required((st(J,O,P,M) >= st(J1,O1,P1,M) + P1) \/

(st(J1,O1,P1,M) >= st(J,O,P,M) + P)) :- operation(J,O,P,M),
operation(J1,O1,P1,M), J!=J1.

27

Bibliography

[1] Marcello Balduccini and Yuliya Lierler. Constraint answer set solver EZCSP and
why integration schemas matter. Theory and Practice of Logic Programming, 17(4):
462–515, 2017.

[2] Marcello Balduccini, Michael Gelfond, and Monica Nogueira. Answer set based
design of knowledge systems. Annals of Mathematics and Artificial Intelligence, 47:
183–219, 2006.

[3] Gerhard Brewka, Thomas Eiter, and Miros Truszczyński. Answer Set Programming
at a glance. Communications of the ACM, 54(12):92–103, 2011.

[4] Omar EL Khatib. Job shop scheduling under Answer Set Programming environment.
International Journal of Engineering and Innovative Technology, 5:36–41, 2015.

[5] Esra Erdem and Ferhan Türe. Efficient haplotype inference with Answer Set Pro-
gramming. In Proceedings of the 23rd National Conference on Artificial Intelligence,
volume 1, pages 436–441. AAAI Press, 2008.

[6] Martin Gebser, Torsten Schaub, and Sven Thiele. GrinGo: A New Grounder for
Answer Set Programming, pages 266–271. Springer Berlin Heidelberg, 2007.

[7] Martinì Gebser, Max Ostrowski, and Torsten Schaub. Constraint Answer Set Solving,
pages 235–249. Springer Berlin Heidelberg, 2009.

[8] Yuliya Lierler. Relating Constraint Answer Set Programming languages and algo-
rithms. Artificial Intelligence, 207C:1–22, 2014.

[9] Yuliya Lierler and Benjamin Susman. On relation between Constraint Answer Set
Programming and Satisfiability Modulo Theories. CoRR, abs/1702.07461, 2017.

[10] Veena S. Mellarkod, Michael Gelfond, and Yuanlin Zhang. Integrating answer
set programming and constraint logic programming. Annals of Mathematics and
Artificial Intelligence, 53(1):251–287, 2008.

[11] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT and SAT
modulo theories: From an abstract Davis–Putnam–Logemann–Loveland procedure
to DPLL(T). J. ACM, 53(6):937–977, 2006.

28

[12] Benjamin Susman and Yuliya Lierler. SMT-Based Constraint Answer Set Solver
EZSMT (System Description). In Technical Communications of the 32nd Interna-
tional Conference on Logic Programming (ICLP 2016), volume 52 of OpenAccess
Series in Informatics (OASIcs), pages 1:1–1:15. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik, 2016.

29

