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Constraint answer set programming is a promising research direction that integrates answer

set programming with constraint processing. It is often informally related to the field of

Satisfiability Modulo Theories. Yet, the exact formal link is obscured as the terminology and

concepts used in these two research areas differ. In this thesis, by connecting these two areas,

we begin the cross-fertilization of not only of the theoretical foundations of both areas but

also of the existing solving technologies. We present the system EZSMT, one of the first

solvers of this nature, which is able to take a large class of constraint answer set programs

and rewrite them into Satisfiability Modulo Theories programs so that Satisfiability Modulo

Theories technology can be used to process these programs.

1Parts of this thesis were presented at the 3rd Workshop on Grounding, Transforming, and Modularizng
Theories with Variables (GTTV’15) [Lierler and Susman, 2015] and is to be presented at the 25th International
Joint Conference on Artificial Intelligence (IJCAI-16).
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1 Introduction

Constraint answer set programming (CASP) [Mellarkod et al., 2008; Gebser et al., 2009;

Balduccini, 2009; Lierler, 2014] is a promising research direction that integrates answer set

programming, a powerful knowledge representation paradigm, with constraint processing.

Typical answer set programing tools start their computation with grounding, a process that

substitutes variables for passing constants in respective domains. Large domains often form

an obstacle for classical answer set programming. CASP enables a mechanism to model

constraints over large domains so that they are processed in a non-typical way for answer

set programming tools by delegating their solving to constraint solver systems specifically

designed to handle large and sometimes infinite-domains. CASP solvers including CLING-

CON [Gebser et al., 2009] and EZCSP [Balduccini, 2009] already put CASP on the map of

efficient automated reasoning tools.

Motivation Constraint answer set programming often cites itself as a related initiative to

Satisfiability Modulo Theories (SMT) solving [Barrett and Tinelli, 2014]. Yet, the exact

link is obscured as the terminology and concepts used in both fields differ. To add to the

complexity of the picture several answer set programming modulo theories formalisms

have been proposed. For instance, Liu et al. (2012), Janhunen et al. (2011), and Lee and

Meng (2013) introduced logic programs modulo linear constraints, logic programs modulo

difference constraints, and ASPMT programs respectively. Alongside these formalisms,

there have been systems developed for either CASP or SMT solving, but there is no way to

readily compare these systems’ performance on equivalent programs.

Contributions This thesis attempts to unify the terminology used in CASP and SMT so

that the differences and similarities of logic programs with constraints versus logic programs

modulo theories become apparent. At the same time, we introduce the notion of constraint

formulas, which is similar to that of logic programs with constraints. We identify a special

class of SMT theories that we call “uniform”. Commonly used theories in satisfiability
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modulo solving such as integer linear, difference logic, and linear arithmetics belong to

uniform theories. This class of theories helps us to establish precise links (i) between

CASP and SMT, and (ii) between constraint formulas and SMT programs. We are able

to then provide a formal description relating a family of distinct constraint answer set

programming formalisms. From this description, we introduce a state-of-the-art system,

EZSMT, to demonstrate the practical merits of this approach and compare it to existing

CASP solvers.

We show that this unified outlook allows us not only to better understand the landscape of

CASP languages and systems, but also to foster new ideas for CASP solvers design as well

as SMT solvers design. For example, theoretical results of this work establish the method

for using SMT systems for computing answer sets of a broad class of “tight” constraint

answer set programs, which the EZSMT solver is capable of demonstrating via a complete

solving pipeline. Similarly, CASP technology can be used to solve certain classes of SMT

problems.

Related Work To the best of our knowledge this is the first attempt to formally relate the

CASP and SMT formalisms, which is the main theoretical contribution of the thesis. The

CASP solver EZSMT, the main software product of this work, is inspired by earlier solvers of

this kind including systems CLINGCON [Gebser et al., 2009] and EZCSP [Balduccini, 2009],

MINGO [Liu et al., 2012], DINGO [Janhunen et al., 2011], ASPMT2SMT [Bartholomew and

Lee, 2014].

Thesis Outline The outline of the thesis is as follows. We start by reviewing concepts

of logic programs, completion, and (input) answer sets. We then present (i) generalized

constraint satisfaction problems, (ii) constraint answer set programs, and (iii) constraint for-

mulas. Next, we introduce satisfiability modulo theories and respective SMT programs. We

define a class of uniform theories and establish links between CASP and SMT. We continue

by relating a family of distinct constraint answer set programming formalisms. We then

exhibit the architecture of the EZSMT system and its connection to the theoretical grounding.
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Finally, we conclude by presenting experimental results comparing the performance of

EZSMT to the CLINGCON and EZCSP solvers, fine representatives of CASP systems.

2 Preliminaries

This section starts by reviewing logic programs and the concept of answer set. It also

introduces programs’ completion. Next, the generalized constraint satisfaction problems are

introduced and related to the classical constraint satisfaction problems studied in Artificial

Intelligence.

2.1 Logic Programs and Completion

Syntax We begin by introducing logic programs and their syntax. A vocabulary is a set of

propositional symbols also called atoms. As customary, a literal is an atom a or its negation,

denoted ¬a. A (propositional) logic program, denoted by Π, over vocabulary σ is a set of

rules of the form

a← b1, . . . , b`, not b`+1, . . . , not bm, not not bm+1, . . . , not not bn (1)

where a is an atom over σ or ⊥, and each bi, 1 ≤ i ≤ n, is an atom in σ. We will sometime

use the abbreviated form for a rule (1)

a← B (2)

where B stands for b1, . . . , b`, not b`+1, . . . , not bm, not not bm+1, . . . , not not bn and

is also called a body. We identify rule (1) with the propositional formula

b1 ∧ . . . ∧ b` ∧ ¬b`+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn → a (3)
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and B with the propositional formula

b1 ∧ . . . ∧ b` ∧ ¬b`+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn. (4)

Note that (i) the order of terms in (4) is immaterial, (ii) not is replaced with classical negation

(¬), and (iii) comma is replaced by conjunction (∧). Expression b1 ∧ . . . ∧ b` in formula (4)

is referred to as the positive part of the body and the remainder of (4) as the negative part of

the body.

The expression a is the head of the rule. When a is ⊥, we often omit it and say that the

head is empty. We write hd(Π) for the set of nonempty heads of rules in Π.

We call a rule whose body is empty a fact. In such cases, we drop the arrow. We

sometimes may identify a set X of atoms with a set of facts {a. | a ∈ X}.

Semantics Now that we have introduced the syntax of logic programs, we can discuss their

semantics. We say a set X satisfies a rule, if X satisfies the propositional formula (3). We

say X satisfies a program Π, if X satisfies every rule in Π.

The reduct ΠX of a program Π relative to a set X of atoms is obtained by first removing

all rules (1) such that X does not satisfy ¬b`+1 ∧ . . . ∧ ¬bm ∧ ¬¬bm+1 ∧ . . . ∧ ¬¬bn, and

replacing all remaining rules with a← b1, . . . , b`. A set X of atoms is an answer set, if it is

the minimal set that satisfies all rules of ΠX [Lifschitz et al., 1999].

It is customary for a given vocabulary σ, to identify a set X of atoms over σ with (i) a

complete and consistent set of literals over σ constructed as X ∪ {¬a | a ∈ σ \X}, and

respectively with (ii) an assignment function or interpretation that assigns truth value true

to every atom in X and false to every atom in σ \X .

Ferraris and Lifschitz (2005) showed that a choice rule {a} ← B2 can be seen as an

abbreviation for a rule a ← not not a,B. We adopt this abbreviation in the rest of the

thesis.

2Choice rules were introduced in [Niemelä and Simons, 2000] and are commonly used in answer set
programming languages.
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Example 1. Consider the logic program taken verbatim from Balduccini and Lierler (2016):

{switch}.

lightOn← switch, not am.

← not lightOn.

{am}.

(5)

Each rule in the program can be understood as follows:

• The action switch is exogenous.

• The light is on (lightOn) during the night (not am) when the action switch has occurred.

• The light must be on.

• It is night (not am) or morning (am).

This program’s only answer set is {switch, lightOn}. This answer set suggests that the

only situation that satisfies the specifications of the problem is such that (i) it is currently

night, (ii) the light has been switched on, and (iii) the light is on.

Completion For a program Π over vocabulary σ, the completion of Π [Clark, 1978],

denoted by Comp(Π), is the set of classical formulas that consists of the implications

B → a (6)

for all rules (2) in Π and the implications

a→
∨

a←B∈Π

B (7)

for all atoms a in σ.

When set Bodies(Π, a) is empty, the implication (7) has the form a → ⊥. When a

rule (2) is a fact a. , then we identify the implication B → a with the unit clause a.
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Example 2. The completion of logic program (5) consists of formulas

¬¬switch→ switch

switch ∧ ¬am→ lightOn

¬lightOn→ ⊥

¬¬am→ am

and
switch→ ¬¬switch

lightOn→ switch ∧ ¬am

am→ ¬¬am

(8)

It is easy to see that this completion is equivalent to the set of formulas

¬switch ∨ switch

lightOn↔ switch ∧ ¬am

lightOn

¬am ∨ am.

(9)

The set {switch, lightOn} is the only model of (9). Note that this set coincides with the

answer set found for program (5).

Tightness For the large class of logic programs, called tight, their answer sets coincide

with models of their completion [Fages, 1994; Erdem and Lifschitz, 2001]. Tightness is a

syntactic condition on a program that can be verified by means of program’s dependency

graph. The dependency graph of Π is the directed graph G such that (i) the vertices of G

are the atoms occurring in Π, and (ii) for every rule (1) in Π whose head is not ⊥, G has an

edge from atom a to each atom b1, . . . , b`. A program is called tight if its dependency graph

is acyclic.
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2.2 Generalized Constraint Satisfaction Problems

We start this section by presenting primitive constraints as introduced by Marriott and

Stuckey (1998, Section 1.1) using the notation convenient for our purposes. We refer to

this concept as a constraint dropping the word “primitive”. We use constraints to define

a notion of a generalized constraint satisfaction problem that Marriott and Stuckey refer

to as “constraint”. We then review constraint satisfaction problems as commonly defined

in artificial intelligence literature and illustrate that they are special case of generalized

constraint satisfaction problems.

2.2.1 Constraints and Generalized Constraint Satisfaction Problem

Signature, c-vocabulary, constraint atoms We adopt the following convention: for a

function ν and an element x, by xν we denote the value that function ν maps x to (in other

words, xν = ν(x)). A domain is a nonempty set of elements (values). A signature Σ is

a set of variables, predicate symbols, and function symbols (or f-symbols). Predicate and

function symbols are associated with a positive integer called arity. By Σ|v, Σ|r, and Σ|f we

denote the subsets of Σ that contain all variables, all predicate symbols, and all f-symbols

respectively.

For instance, we can define signature Σ1 = {s, r, E,Q} by saying that s and r are

variables, E is a predicate symbol of arity 1, and Q is a predicate symbol of arity 2. Then,

Σ1|v = {s, r}, Σ1|r = {E,Q}, Σ1|f = ∅.

Let D be a domain. For a set V of variables, we call a function ν : V → D a

[V,D] valuation. For a set R of predicate symbols, we call a total function on R an [R,D]

r-denotation, when it maps an n-ary predicate symbol into an n-ary relation on D. For a

set F of f-symbols, we call a function on F an [F,D] f-denotation, when it maps an n-ary

f-symbol into a function Dn → D3.

3When a signature contains no function symbols no reference to f-denotation is necessary.



8

Table 1 presents definitions of sample domain D1, valuations ν1, ν2, and r-denotations ρ1

and ρ2.

Σ1 {s, r, E,Q}
D1 {1, 2, 3}
ν1 [Σ1|v, D1] valuation, where sν1 = rν1 = 1
ν2 [Σ1|v, D1] valuation, where sν2 = 2 and rν2 = 1
ρ1 [Σ1|r, D1] r-denotation, where

Eρ1 = {〈1〉}, Qρ1 = {〈1, 1〉, 〈2, 2〉, 〈3, 3〉}
ρ2 [Σ1|r, D1] r-denotation, where

Eρ2 = {〈2〉, 〈3〉}, Qρ2 = Qρ1 .

Table 1: Example definitions for signature, valuation, and r-denotation

A constraint vocabulary (c-vocabulary) is a pair [Σ, D], where Σ is a signature and D is

a domain. A term over a c-vocabulary [Σ, D] is either

• a variable in Σ|v,

• a domain element in D, or

• an expression f(t1, . . . , tn), where f is an f-symbol of arity n in Σ|f and t1, . . . , tn

are terms over [Σ, D].

A constraint atom over a c-vocabulary [Σ, D] is an expression

P (t1, . . . , tn), (10)

where P is a predicate symbol from Σ|r of arity n and t1, . . . , tn are terms over [Σ, D]. A

constraint literal over a c-vocabulary [Σ, D] is either a constraint atom (10) or an expression

¬P (t1, . . . , tn), (11)

where P (t1, . . . , tn) is a constraint atom over [Σ, D]. For instance, expressions ¬E(s),

¬E(2), and Q(r, s) are constraint literals over [Σ1, D1].

Let [Σ, D] be a c-vocabulary, ν be a [Σ|v, D] valuation, ρ be a [Σ|r, D] r-denotation,

and φ be a [Σ|f , D] f-denotation. First, we define recursively a value that valuation ν assigns
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to a term τ over [Σ, D] w.r.t. φ. We denote this value by τ ν,φ. We define the valuations for

variables, domain elements and f-symbols as follows.

• For a term that is a variable x in Σ|v, xν,φ = xν .

• For a term that is a domain element d in D, dν,φ is d itself.

• For a term τ of the form f(t1, . . . , tn), τ ν,φ is defined recursively by the formula

f(t1, . . . , tn)ν,φ = fφ(tν,φ1 , . . . , tν,φn ).

Second, we define what it means for valuation to be a solution of a constraint literal w.r.t.

given r- and f-denotations. We say that ν satisfies (is a solution to) constraint literal (10)

over [Σ, D] w.r.t. ρ and φ when 〈tν,φ1 , . . . , tν,φn 〉 ∈ P ρ. Let R be an n-ary relation on D.

ByR we denote complement relation ofR constructed as Dn \ R. Valuation ν satisfies (is

a solution to) constraint literal of the form (11) w.r.t. ρ and φ when 〈tν,φ1 , . . . , tν,φn 〉 ∈ P ρ.

For instance, valuation ν1 satisfies constraint literal Q(r, s) w.r.t. ρ1 (defined in Table 1),

while valuation ν2 does not satisfy this constraint literal w.r.t. ρ2.

Lexicon, constraints, generalized constraint satisfaction problem We are now ready to

define constraints, their syntax and semantics. To begin we introduce a lexicon, which is

a tuple ([Σ, D], ρ, φ), where [Σ, D] is a c-vocabulary, ρ is [Σ|r, D] r-denotation, and φ is

[Σ|f , D] f-denotation. For a lexicon L = ([Σ, D], ρ, φ), we call any function that is [Σ|v, D]

valuation, a valuation over L. We omit the last element of the tuple if the signature Σ of

the lexicon contains no f-symbols. A constraint is defined over lexicon L = ([Σ, D], ρ, φ).

Syntactically, it is a constraint literal over [Σ, D] (lexicon L, respectively). Semantically,

we say that valuation ν over L satisfies (is a solution to) the constraint c when ν satisfies

c w.r.t. ρ and φ. For instance, Table 2 presents definitions of sample lexicons L1, L2, and

constraints c1, c2, c3, and c4.

Valuation ν1 from Table 1 is a solution to c1, c2, c3, but not a solution to c4. Valuation ν2

from Table 1 is not a solution to c1, c2, c3, and c4. In fact, constraint c4 has no solutions. We
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L1 ([Σ1, D1], ρ1)
L2 ([Σ1, D1], ρ2)
c1 a literal Q(r, s) over lexicon L1

c2 a literal Q(r, s) over lexicon L2

c3 a literal ¬E(s) over lexicon L2

c4 a literal ¬E(2) over lexicon L2.

Table 2: Sample lexicons and constraints

sometimes omit the explicit mention of the lexicon when talking about constraints: we then

may identify a constraint with its syntactic form of a constraint literal.

Definition 1. A generalized constraint satisfaction problem (GCSP) C is a finite set of

constraints over a lexicon L = ([Σ, D], ρ, φ). We say that a valuation ν over L satisfies (is a

solution to) GCSP C when ν is a solution to every constraint in C.

For example, any subset of set {c2, c3, c4} of constraints forms a GCSP. Sample valua-

tion ν1 over lexicon L2 (where ν1 and L2 stem from Tables 1 and 2, respectively) satisfies

the GCSP {c2, c3}, but does not satisfy the GCSP {c2, c3, c4}.

2.2.2 From GCSP to Constraint Satisfaction Problem

In this section, we define a constraint satisfaction problem as customary in classical literature

on Artificial Intelligence. We then show that it is a special case of generalized constraint

satisfaction problems introduced previously.

We say that a lexicon is finite-domain if it is defined over a c-vocabulary that refers to a

domain whose set of elements is finite. Trivially, lexicons L1 and L2 (defined in Table 2) are

finite-domain. Consider a special case of a constraint of the form (10) over finite-domain

lexicon L = ([Σ, D], ρ), so that each ti is a variable. (For instance, constraints c1, c2, and c3

satisfy the stated requirements, while c4 does not.) In this case, we can syntactically identify

(10) with the pair

〈(t1, . . . , tn), P ρ〉. (12)
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A constraint satisfaction problem (CSP) is a set of pairs (12), where Σ|v and D of the

finite-domain lexicon L are called variables and domain of CSP, respectively. Saying that

valuation ν over L satisfies (10) is the same as saying that 〈tν1, . . . , tνn〉 ∈ P ρ. The latter

is the way in which a solution to expressions (12) in CSP is typically defined. As in the

definition of semantics of GCSP, a valuation is a solution to a CSP problem C when it is a

solution to every pair (12) in C.

In conclusion, GCSP generalizes CSP by

• elevating the restriction of finite-domain, and

• allowing us more elaborate syntactic expressions (e.g., recall f-symbols).

3 Constraint Answer Set Programs and Constraint Formulas

In this section we connect so called constraint answer set programs, rooting from the logic

programs, to “constraint formulas”, which are related to GCSP. First, we introduce input

answer sets, followed by constraint answer set programs and input completion. Second,

we present constraint formulas. Finally, we demonstrate the close connection between the

constraint answer set programs and constraint formulas.

3.1 Input Answer Set

We start by introducing a generalization of the concept of an input answer set by Lierler and

Truszczynski (2011). We consider input answer sets “relative to input vocabularies”. We

then extend the definition of completion and state the result by Erdem and Lifshitz (2001) for

the case of input answer sets. The concept of an input answer set is essential for introducing

constraint answer set programs. Constraint answer set programs (and constraint formulas)

are defined over two disjoint vocabularies so that atoms stemming from those vocabularies

“behave” differently. Input answer set semantics allows us to account for these differences.

Definition 2. For a logic program Π over vocabulary σ, a set X of atoms over σ is an
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input answer set of Π relative to vocabulary ι ⊆ σ when X is an answer set of the

program Π ∪ ((X ∩ ι) \ hd(Π)).

3.2 Constraint Answer Set Program

Let σr and σi be two disjoint vocabularies. We refer to their elements as regular and irregular

atoms respectively. For a program Π, by At(Π) we denote the set of atoms occurring in it.

Definition 3. A constraint answer set program (CAS program) over the vocabulary σ =

σr ∪ σi is a triple 〈Π,B, γ〉, where Π is a logic program over the vocabulary σ such

that hd(Π) ∩ σi = ∅, B is a set of constraints over the same lexicon, and γ is an injective

function from the set σi of irregular atoms to the set B of constraints.

For a CAS program P = 〈Π,B, γ〉 over the vocabulary σ = σr ∪ σi so that L is the

lexicon of the constraints in B, a set X ⊆ σ is an answer set of P if

• X ⊆ At(Π)

• X is an input answer set of Π relative to σi, and

• the following GCSP over L has a solution

{γ(a)|a ∈ X ∩ σi} ∪ {¬γ(a)|a ∈ (At(Π) ∩ σi) \X}.

These definitions are generalizations of CAS programs introduced by Gebser et al. (2009)

as they (i) refer to the concept of GCSP in place of CSP in the original definition, and (ii)

allow for more general syntax of logic rules (e.g. choice rules are covered by the presented

definition).

Example 3. We now consider the constraint answer set program adapted from Balduccini

and Lierler (2016), defined under the CAS program syntax.
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We first define Lexicon L3:

Σ2 {x}

D2 {0, . . . , 23}

ρ3 [{<,≥}, D2]

L3 ([Σ2, D2], ρ3)

(13)

where the r-denotation ρ3 is defined with predicates symbols which take on their usual

arithmetic meaning.

Second, we define a CAS program

P1 = 〈Π1,B1, γ1〉 (14)

over the lexicon L3, where

• Π1 is the program

{switch}.

lightOn← switch, not am.

← not lightOn.

{am}.

← not am, |x < 12|.

← am, |x ≥ 12|.

(15)

The set of irregular atoms of Π1 is {|x < 12|, |x ≥ 12|}. The remaining atoms form

the regular set.

• B1 = {x < 12, x ≥ 12}, and

• γ1(a) =


Inequality constraint x < 12 if a = |x < 12|

Inequality constraint x ≥ 12 if a = |x ≥ 12|
and
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¬γ1(a) =


Inequality constraint x ≥ 12 if a = |x < 12|

Inequality constraint x < 12 if a = |x ≥ 12|.
The first 4 lines of program Π1 are identical to logic program (5). The last two lines of

the program state:

• It must be am when x < 12, where x is understood as the hours of the day.

• It is impossible for it to be am when x ≥ 12.

Consider the set

{switch, lightOn, |x ≥ 12|}. (16)

over At(Π1). This set is the only input answer set of Π1 relative to irregular atoms of Π1.

Also, the GCSP with constraints {γ1(|x ≥ 12|) ∪ ¬γ1(|x < 12|)} = {x ≥ 12} has

a solution. There are 12 valuations relative to L3 for x which satisfy this constraint:

xv = 12, . . . , xv = 23. It follows that set (16) is an answer set of P1.

3.3 Input Completion

Similar to how completion was defined in Section 2, we now define an input completion

which is relative to an (input) vocabulary.

Definition 4. For a program Π over vocabulary σ, the input-completion of Π relative to

vocabulary ι ⊆ σ, denoted by IComp(Π, ι), is defined as the set of propositional formulas

(formulas in propositional logic) that consists of the implications (6) for all rules (2) in Π

and the implications (7) for all atoms a occurring in (σ \ ι) ∪ hd(Π).

Example 4. The input completion of program Π1 from Example 3 relative to a vocabulary
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which consists of Π1 irregular atoms {|x < 12|, |x ≥ 12|} consists of formulas:

¬¬switch→ switch

switch ∧ ¬am→ lightOn

¬lightOn→

¬¬am→ am

¬am, |x < 12| → ⊥

am, |x ≥ 12| → ⊥

(17)

and formulas (8).

It is easy to see that IComp(Π1, {|x < 12|, |x ≥ 12||}) is equivalent to the formula

¬switch ∨ switch

lightOn↔ switch ∧ ¬am

lightOn

¬am ∨ am.

¬am ∧ |x < 12| → ⊥

am ∧ |x ≥ 12| → ⊥

(18)

The set {switch, lightOn, |x ≥ 12|} is the only model of (18). Note that this model

coincides with the input answer set of Π1 relative to the set of its irregular atoms.

The observation that we made last in the preceding example is an instance of the general

fact captured by the following theorem.

Theorem 1. For a tight program Π over vocabulary σ and vocabulary ι ⊆ σ, a set X of

atoms from σ is an input answer set of Π relative to ι if and only if X satisfies program’s

input-completion IComp(Π, ι).
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3.4 Constraint Formula

Just as we defined constraint answer set programs, we can define constraint formulas. For

a propositional formula F , by At(F ) we denote the set of atoms (propositional symbols)

occurring in it.

Definition 5. A constraint formula over the vocabulary σ = σr ∪ σi is a triple 〈F,B, γ〉,

where F is a propositional formula over the vocabulary σ, B is a set of constraints over the

same lexicon, and γ is an injective function from the set σi of irregular atoms to the set B of

constraints.

For a constraint formula F = 〈F,B, γ〉 over the vocabulary σ = σr ∪ σi such that L is

the lexicon of the constraints in B, a set X ⊆ σ is a model of F if

• X ⊆ At(F )

• X is a model of F , and

• the following GCSP over L has a solution

{γ(a)|a ∈ X ∩ σi} ∪ {¬γ(a)|a ∈ (At(F ) ∩ σi) \X}.

Example 5. Similar to the CAS program P1 from Example 3, we can define a constraint

formula

F1 = 〈IComp(Π1, {|x < 12|, |x ≥ 12||}),B1, γ1〉

relative to the lexicon L3. The set

{switch, lightOn, |x ≥ 12|}

is the only model of F1.

Following theorem captures a relation between CAS programs and constraint formulas.

Theorem 2. For a CAS program P = 〈Π,B, γ〉 over the vocabulary σ = σr ∪ σi and a
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set X of atoms over σ, when Π is tight, X is an answer set of P if and only if X is a model

of constraint formula 〈IComp(Π, σi),B, γ〉 over σ = σr ∪ σi.

We note that Example 3 and Example 5 demonstrate this property. In the future we will

abuse the term "tight". We will refer to CAS program P = 〈Π,B, γ〉 as tight when the first

member Π has this property.

3.5 Proofs for Theorem 1 and Theorem 2

Below we present the proofs for the theorems presented in this section. By Bodies(Π, a)

we denote the set of the bodies of all rules of Π with head a.

Proof of Theorem 1. In this proof we sometimes identify rules (2) in Π with respective

implications B → a so that we may write symbol Π to denote not only a set of logic rules

but also a set of respective implications.

Assume X is an input answer set of a program Π relative to ι. By Definition 2, X is an

answer set of Π ∪ ((X ∩ ι) \ hd(Π)). Since Π is tight and (X ∩ ι)\hd(Π) only adds facts,

it follows that Π ∪ ((X ∩ ι)\hd(Π)) is tight. Due to results by Fages (1994) and Erdem and

Lifshitz (2001), X is a model of Comp(Π ∪ ((X ∩ ι)\hd(Π))).

We can write Comp(Π ∪ ((X ∩ ι)\hd(Π))) as a union of the sets:

Π (19)

(X ∩ ι)\hd(Π) (20)

{a→
∨

B∈Bodies(Π∪((X∩ι)\hd(Π)),a)

B | a ∈ hd(Π)} (21)

{a→ ⊥ | a 6∈ hd(Π) and a 6∈ (X ∩ ι) and a ∈ σ} (22)
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Set X satisfies (19), (20), (21), and (22).

Similarly, we can write IComp(Π, ι) as the union of (19), and implications

{a→
∨

B∈Bodies(Π,a)

B | a ∈ hd(Π)} (23)

and

{a→ ⊥ | a 6∈ hd(Π) and a ∈ σ \ ι}. (24)

Expression (24) can be written as

{a→ ⊥ | a 6∈ hd(Π) and a 6∈ ι and a ∈ σ}. (25)

Note that (21) and (23) coincide since Bodies(Π, a) = Bodies(Π ∪ ((X ∩ ι)\hd(Π)), a)

for all atoms a ∈ hd(Π). Since X satisfies (21), it trivially satisfies (23). Set (22) can be

written as the union of set (25) and set

{a→ ⊥ | a 6∈ hd(Π) and a ∈ (ι \X) and a ∈ σ}. (26)

Trivially since X satisfies (22), X also satisfies (25). Consequently, X |= IComp(Π, ι).

Assume X |= IComp(Π, ι). Trivially, X satisfies (20). Also, IComp(Π, ι) consists

of (19), (23), and (25) by construction. Recall that (21) and (23) coincide. Thus, X satisfies

(19) and (21). Trivially, X satisfies (26) as any atom that satisfies condition a ∈ (ι \ X)

is such that a 6∈ X . It also satisfies (25). Consequently, X satisfies (22). We derive that

X |= Comp(Π ∪ ((X ∩ ι)\hd(Π))) that consists of (19), (20), (21), and (22). By results

by Fages (1994) and Erdem and Lifshitz (2001), X coincides with the answer set of the

program Π ∪ ((X ∩ ι)\hd(Π)). By Definition 2, X is an input answer set of Π.

Proof of Theorem 2. Follows directly from Theorem 1.
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4 Satisfiability Modulo Theories versus Constraint Formulas

First, in this section we introduce the notion of a “theory” in Satisfiability Modulo Theo-

ries (SMT) as described by Barrett and Tinelli (2014). Second, we present the definition of

a “restriction formula” and state the conditions under which such formulas are satisfied by a

given interpretation. These formulas are syntactically restricted classical ground predicate

logic formulas. The presented notions of interpretation and satisfaction are usual, but are

stated in terms convenient for our purposes. In the literature on SMT, a more sophisticated

syntax than restriction formulas provide is typically discussed. Yet, SMT solvers often rely

on the so called propositional abstractions of predicate logic formulas [Nieuwenhuis et al.,

2006, Section 3.1], which, in their most commonly used case, coincide with restriction

formulas discussed here.

Interpretations and Restriction formulas An interpretation I for a signature Σ, also

referred to as Σ-interpretation, is a tuple (D, ν, ρ, φ), where

• D is a domain,

• ν is a [Σ|v, D] valuation,

• ρ is a [Σ|r, D] r-denotation, and

• φ is a [Σ|f , D] f-denotation.

For signatures that contain no f-symbols, we omit the reference to the last element of the

interpretation tuple.

For a signature Σ, a Σ-theory is a set of interpretations over Σ. For instance, for

signature Σ1 from Table 1, we denote the following sample interpretations:

I1 (D1, ν1, ρ1)

I2 (D1, ν2, ρ1)
(27)

Any subset of interpretations {I1, I2} exemplifies a unique Σ1-theory.

In literature on predicate logic and SMT, the term “object constant” or “function symbol
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of arity 0” is commonly used to refer to elements in the signature that we call variables.

Here we use the terms that stem from definitions related to constraint satisfaction processing

to facilitate uncovering the precise link between CASP-like formalisms and SMT-like

formalisms. It is typical for predicate logic signatures to contain propositional symbols

(predicate symbols of arity 0). It is easy to extend the notion of signature introduced here to

allow propositional symbols. Yet it will complicate the presentation, which is the reason we

avoid this extension.

A restriction formula over signature Σ is a finite set of constraint literals over c-

vocabulary [Σ, ∅]. A sample restriction formula over Σ1 follows

{¬E(s),¬Q(r, s)}. (28)

We now state the semantics of restriction formulas. We begin by considering a Σ-

interpretation I = (D, ν, ρ, φ). To each term τ over a c-vocabulary [Σ, ∅], I assigns a

value τ ν,φ that we denote by τ I . We say that interpretation I satisfies restriction formula Φ

over Σ, when ν satisfies every constraint literal in Φ w.r.t. ρ and φ. For instance, interpreta-

tion I2 satisfies restriction formula (28), while I1 does not satisfy (28).

We say that a restriction formula Φ over signature Σ is satisfiable in a Σ-theory T , or is

T -satisfiable, when there is an element of the set T that satisfies Φ. For example, restriction

formula (28) is satisfiable in any Σ1-theory that contains interpretation I2. On the other

hand, restriction formula (28) is not satisfiable in Σ1-theory {I1}.

SMT often considers theories of a special kind. For instance, the presented definition of

a theory places no restrictions on the domains, r-denotations, or f-denotations being identical

across the interpretations defining the theory. In practice, such restrictions are very common.

Later in the presentation we will define so called “uniform” theories that follow typical

restrictions. We will then show how such restriction formulas interpreted over uniform

theories can practically be seen as syntactic variants of GCSPs.
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4.1 SMT and ASPT Programs

For signature Σ, domain D, and a vocabulary σ′, a [σ′,Σ, D]-mapping is an injective

mapping µ from atoms over σ′ to constraint atoms over c-vocabulary [Σ, D]. For a [σ′,Σ, D]-

mapping µ, a consistent set M of propositional literals over vocabulary σ ⊇ σ′ is a T -model

of µ (or, T, µ-model) if a restriction formula

{µ(a)| a ∈M ∩ σ′} ∪ {¬µ(a) | ¬a ∈M and a ∈ σ′}

is satisfiable in Σ-theory T .

Definition 6. An SMT program P over vocabulary σ = σr∪σi is a triple 〈F, T, µ〉, where F

is a propositional formula over σ, µ is a [σi,Σ, ∅]-mapping, and T is a Σ-theory.

For an SMT program 〈F, T, µ〉 over σ, a set X ⊆ σ is its model if

1. X ⊆ At(F ),

2. X is a model of F , and

3. X ∪ {¬a | a ∈ At(F ) \X} is a T, µ-model.

We now define the concept of logic programs modulo theories.

Definition 7. A logic program modulo theories (or ASPT program) P over vocabulary

σ = σr ∪ σi is a triple 〈Π, T, µ〉, where Π is a logic program over σ, µ is a [σi,Σ, ∅]-

mapping, and T is a Σ-theory.

For an ASPT program 〈Π, T, µ〉 over σ, a set X ⊆ σ is its model if

1. X ⊆ At(Π),

2. X is an input answer set of Π relative to σi, and

3. X ∪ {¬a | a ∈ At(Π) \X} is a T, µ-model.
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4.2 Uniform Theories

We now identify a special class of theories that we call “uniform”. We then relate the question

of verifying satisfiability of formulas in such theories to the question of solving relevant

generalized constraint satisfaction problems. This connection brings us to a straightforward

relation between SMT program formalism over uniform theories and constraint formula

formalism as well as between CAS programs and ASPT programs. In the following section,

we list several common SMT formalisms such as satisfiability modulo difference logic and

satisfiability modulo linear arithmetic whose theories are, in fact, uniform theories. We

then use these findings to relate several ASP modulo theories approaches such as ASP(DL)

introduced in [Liu et al., 2012] and ASP(LC) introduced in [Liu et al., 2012] to CASP

approaches.

Definition 8. For a signature Σ, we call a Σ-theory T uniform over a lexicon L =

([Σ, D], ρ, φ) when

(i) all interpretations in T are of the form (D, ν, ρ, φ) (note how valuation ν is the only

not fixed element in the interpretations), and

(ii) for every possible [Σ|v, D] valuation ν, there is an interpretation (D, ν, ρ, φ) in T .

To illustrate a concept of a uniform theory, a table below defines sample domain D3,

valuations ν3 and ν4, and r-denotation ρ4.

D3 {1, 2}

ν3 [Σ1|v, D3] valuation, where sν3 = 1 and rν3 = 2

ν4 [Σ1|v, D3] valuation, where sν4 = rν4 = 2

ρ4 [Σ1|r, D3] r-denotation, where

Eρ4 = {〈2〉}, Qρ4 = {〈1, 1〉, 〈2, 2〉}

Valuations ν1 and ν2 from Table 1 can be seen not only as [Σ1|v, D1] valuations, but also



23

as [Σ1|v, D3] valuations. The set

{(D3, ν1, ρ4), (D3, ν2, ρ4), (D3, ν3, ρ4), (D3, ν4, ρ4)}

of Σ1 interpretations is an example of a uniform theory over lexicon ([Σ1, D3], ρ4). We

denote this theory by T1. On the other hand, the set

{(D3, ν1, ρ4), (D3, ν2, ρ4), (D3, ν3, ρ4), (D1, ν4, ρ4)}

of Σ1 interpretations is an example of a non-uniform theory. Indeed, the condition (i) of

Definition 8 does not hold for this theory: the last interpretation refers to a different domain

than the others. Recall interpretations I1 and I2 given in (27). Neither Σ1-theory {I1} nor

{I1, I2} is uniform over lexicon ([Σ1, D1], ρ1). In this case, the condition (ii) of Definition 8

does not hold.

It is easy to see that for uniform theories we can identify their interpretations of the

form (D, ν, ρ, φ) with their second element valuation ν. Indeed, the other three elements

are fixed by the lexicon over which the uniform theory is defined. In the following, we will

sometimes use this convention. For example, we may refer to interpretation (D3, ν1, ρ4) of

uniform theory T1 as ν1.

For uniform Σ-theory T over lexicon ([Σ, D], ρ, φ), we can extend the syntax of re-

striction formulas by saying that a restriction formula is defined over c-vocabulary [Σ, D]

as a finite set of constraint literals over [Σ, D] (earlier we considered constraint literals

over [Σ, ∅]). The earlier definition of semantics is still applicable. In the following, for the

uniform theories we assume this more general syntax. Also we can extend the definition of

SMT program given a constraint Σ-theory T over lexicon ([Σ, D], ρ, φ) as follows: an SMT

program P over vocabulary σ = σr ∪ σi is a triple 〈F, T, µ〉, where F is a propositional

formula over σ, µ is a [σi,Σ, D]-mapping, and T is a Σ-theory. Note how µ-mapping refers

do the domain of lexicon now in place of an empty set in the earlier definition. The definition
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of ASPT program can be extended in the same style. For the case of uniform theories we

will assume the definition of SMT programs as stated in this paragraph. The same applies to

the case of ASPT programs modulo uniform theories.

We now present a theorem that makes the connection between GCSPs over some

lexicon L and restriction formulas interpreted using the uniform theory T over the same

lexicon L apparent: the question whether a given GCSP over L has a solution translates into

the question whether the set of constraint literals of a GCSP forming a restriction formula is

T -satisfiable. Furthermore, any solution to such GCSP is also an interpretation in T that

satisfies the respective restriction formula, and the other way around. We then relate SMT

programs “modulo uniform theories” and constraint formulas, as well as ASPT programs

and CAS programs.

Theorem 3. For a lexicon L = ([Σ, D], ρ, φ), a set Φ of constraint literals defined over the

c-vocabulary [Σ, D], a uniform Σ-theory T over lexicon L, the following holds

1. for any [Σ|v, D] valuation ν, there is an interpretation ν in T ,

2. [Σ|v, D] valuation ν is a solution to GCSP Φ over lexiconL if and only if interpretation

ν in T satisfies Φ.

3. GCSP Φ over lexicon L has a solution if and only if Φ is T -satisfiable.

Let L denote a lexicon ([Σ, D], ρ, φ). By BL we denote the set of all constraints over L

of the form (10). By TL we denote the uniform Σ-theory over L.

Theorem 4. For a signature Σ, a lexicon L = ([Σ, D], ρ, φ), vocabularies σ = σi ∪ σr,

a [σi,Σ, D]-mapping µ, and a set X ⊆ σ, X is a model of an SMT program 〈F, TL, µ〉

over σ if and only if X is a model of a constraint formula 〈F,BL, µ〉 over σ, where µ is

identified with the function from irregular atoms to constraints over L in a trivial way.

This theorem illustrates that for uniform theories the language of SMT programs and

constraint formulas coincide. Or, in other words, that the language of constraint formulas
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is a special case of SMT programs that are defined over uniform theories. We now show

similar relation between CAS and ASPT programs.

Theorem 5. For a signature Σ, a lexicon L = ([Σ, D], ρ, φ), vocabularies σ = σi ∪ σr,

a [σi,Σ, D]-mapping µ, and a set X ⊆ σ, X is a model of an ASPT program 〈Π, TL, µ〉

over σ if and only if X is a model of a CAS program 〈Π,BL, µ〉 over σ, where µ is identified

with the function from irregular atoms to constraints over L in a trivial way.

4.3 Proofs for Theorem 3, Theorem 4, and Theorem 5

Below we present the proofs for the theorems presented in this section.

Proof of Theorem 3. Statement 1 trivially follows from the condition 2 of the uniform theory

definition.

Proof of Statement 2. By Statement 1, interpretation ν is in T . By definition of a solution

to GCSP, [Σ|v, D] valuation ν is a solution to GCSP Φ over lexicon L if and only if ν is a

solution to every constraint in Φ. In other words, ν satisfies every constraint literal in Φ

w.r.t. ρ and φ. By definition of interpretations satisfying formulas, the previous statement

holds if and only if interpretation ν in T satisfies Φ.

Proof of Statement 3. GCSP Φ over lexicon L has a solution if and only if there is

a [Σ|v, D] valuation ν that is a solution to GCSP Φ over lexicon L. By statements 1 and 2,

the previous statement holds if and only if there is interpretation ν in T that satisfies Φ and

consequently Φ is T -satisfiable.

Proof of Theorem 4. Set X ⊆ σ is a model of an SMT program 〈F, TL, µ〉 over σ if and

only if

1. X ⊆ At(F ),

2. X is a model of F , and

3. X ∪ {¬a | a ∈ At(F ) \X} is a TL, µ-model.
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By the definition of a TL, µ-model, condition 3 holds if and only if restriction formula

{µ(a)| a ∈ X ∩ σi} ∪ {¬µ(a) | a ∈ At(F ) \X and a ∈ σi} (29)

is satisfiable in Σ-theory TL over lexicon L. By the definition of a model of a constraint

formula, to conclude the proof, we only have to illustrate that condition 3 holds if and only

if the GCSP over L

{µ(a) | a ∈ X ∩ σi} ∪ {¬µ(a) | a ∈ (At(F ) ∩ σi) \X} (30)

has a solution. It is obvious that (29) and (30) are identical. By Statement 3 of Theorem 3

we conclude that (30) has a solution if and only if (29) is satisfiable in Σ-theory TL (which

is the case if and only if condition 3 holds).

Proof of Theorem 5. Follows the lines of proof of Theorem 4.

5 SMT and CASP Connection

This section starts by introducing “numeric” signatures, lexicons, and uniform theories.

These definitions allow us to precisely define the languages used by various constraint

answer set solvers. We conclude with the discussion of the variety of solving techniques

used in logic programming community.

Let Z and R denote the sets of integers and real numbers respectively. A numeric

signature is a signature that satisfies the following requirements

• its only predicate symbols are <, >, ≤, ≥, =, 6= of arity 2, and

• its only f-symbols are +, × of arity 2.

We use the symbol A to denote a numeric signature.

Let ρZ and φZ be [{<,>,≤,≥,=, 6=},Z] r-denotation and [{+,×},Z] f-denotation

respectively, where they map their predicate and function symbols into usual arithmetic
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relations and operations over integers. Similarly, ρR and φR denote [{<,>,≤,≥,=, 6=},R]

r-denotation and [{+,×},R] f-denotation respectively, defined over the reals. We can now

define the following lexicons

• an integer lexicon of the form ([A,Z], ρZ, φZ) and

• a numeric lexicon of the form ([A,R], ρR, φR).

A (numeric) linear expression has the form

a1x1 + · · ·+ anxn, (31)

where a1, . . . , an are real numbers and x1, . . . , xn are variables over real numbers. When

ai = 1 (1 ≤ i ≤ n) we may omit it from the expression. We view expression (31) as an

abbreviation for the following term

+(×(a1, x1),+(×(a2, x2), · · ·+ (×(an−1, xn−1),×(an, xn)) . . . ),

over some c-vocabulary [A,R], where A contains x1, . . . , xn as its variables. For instance,

2x2 + 3x3 is an abbreviation for the expression +(×(2, x2),×(3, x3)).

An integer linear expression has the form (31), where a1, . . . , an are integers, and

x1, . . . , xn are variables over integers.

We call a constraint linear (integer linear) when it is defined over some numeric (integer)

lexicon and has the form

./ (e, k) (32)

where e is a linear (integer linear) expression, k is a real number (an integer), and ./ belongs

to {<,>,≤,≥,=, 6=}. We can write (32) as an expression in usual infix notation e ./ k.

We call a GCSP a (integer) linear constraint satisfaction problem when it is composed

of (integer) linear constraints. For instance, consider integer linear constraint satisfaction

problem composed of two constraints x > 4 and x < 5 (here signature A is implicitly
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defined by restricting its variable to contain x). It is easy to see that this problem has no

solutions. On the other hand, linear constraint satisfaction problem composed of the same

two constraints x > 4 and x < 5 has infinite number of solutions, including valuation that

assigns x to 4.1.

By TAZ and TAR we denote uniform A-theories over integer and numeric lexicons respec-

tively. We call a theory TAZ integer. Similarly, we call a theory TAR numeric.

Two examples of integer theories commonly implemented in SMT solvers are linear

integer arithmetic and difference logic arithmetic. Linear real arithmetic is an example of

numeric theory commonly supported by SMT solver.

We note that difference logic is a special case of integer linear arithmetic that introduces

syntactic requirements on considered expressions [Nieuwenhuis and Oliveras, 2005]. SMT

solver CVC44 [Barrett et al., 2011] supports all three mentioned arithmetics.

We are now ready to define SMT(DL), SMT(IL), and SMT(L) programs that capture

common SMT formalisms used in practice. For a vocabulary σ, we say that [σ,A,Z]-

mapping µ is integer linear (difference-logic) friendly if every element in σ is mapped to

an integer linear formula (difference logic formula) over integer lexicon whose signature is

A. Similarly, for vocabulary σ, we say that [σ,A,R]-mapping µ is linear friendly if every

element in σ is mapped to a linear formula over numeric lexicon whose signature is A.

We call an SMT program 〈F, TAZ , µ〉 an SMT(DL) or SMT(IL) program when µ is

difference-logic friendly or integer linear friendly respectively. We call a SMT program

〈F, TAR , µ〉 a SMT(L) program when µ is linear friendly. In the same style, we can define the

notions of ASPT(DL), ASPT(IL), ASPT(L) programs.

We say that a CAS program 〈Π,B, γ〉 is integer when B is the set of all integer linear

constraints of the form (10) over some integer lexicon. Similarly, we say that a CAS program

〈Π,B, γ〉 is numeric when B is the set of all linear constraints of the form (10) over some

numeric lexicon. From Theorem 5, it follows that integer CAS programs and numeric CAS

4http://cvc4.cs.nyu.edu/web/



29

Solver Language
CLINGCON [Gebser et al., 2009] ASPT(IL)∗

EZCSP [Balduccini, 2009] ASPT(IL)∗

ASPT(IL)
ASPT(L)

MINGO [Liu et al., 2012] ASPT(L)
DINGO [Janhunen et al., 2011] ASPT(DL)

Table 3: Solvers Categorization

programs are in fact the same objects as ASPT(IL) and ASPT(L) programs respectively.

Obviously, Theorems 2 and 4 pave the way for using SMT systems that solve SMT(IL),

SMT(L) problems as is for solving ASPT(IL), ASPT(L) programs whose first member of

a triple is a tight logic program. It is sufficient to compute the input completion of the

program relative to irregular atoms. This observation has been utilized in work by Lee and

Meng (2013) and Janhunen et al. (2011).

Outlook on Constraint Answer Set Solvers Table 3 presents the landscape of current

constraint answer set solvers using the unified terminology of this section. The star ∗

annotating language ASPT(IL) denotes that the solver supporting this language requires the

specification of finite ranges for its variables (since finite-domain constraint solvers are used

as underlying solving technology). This notation will be used for the rest of the paper.

At a high-level abstraction, one may summarize the architectures of the CLINGCON and

EZCSP solvers as ASP-based solvers plus theory solver. Given a CAS program 〈Π,B, γ〉,

both CLINGCON and EZCSP first use an answer set solver to compute an input answer set of

Π. Second, they contact a theory solver to verify whether respective constraint satisfaction

problem has a solution. In case of CLINGCON, finite-domain constraint solver GECODE is

used as a theory solver. System EZCSP uses constraint logic programming tools such as

BPROLOG [Zhou, 2012], SICSTUS PROLOG [Carlsson and Fruehwirth, 2014], and SWI

PROLOG [Wielemaker et al., 2012]. These tools provide EZCSP with the ability to work

with three different kinds of constraints: finite-domain integer, integer-linear, and linear
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constraints. To process ASPT(L) programs, the solver MINGO translates the formalism into

mixed integer programming formula and then uses the solver CPLEX [IBM, 2009] to solve

these formulas. To process ASPT(DL) programs DINGO translates the formalism into an

SMT(DL) program and applies the SMT solver Z3 [De Moura and Bjørner, 2008].

The diversity of solving approaches used in CASP paradigms suggests that solutions of

the kind are available for SMT technology. Typical SMT architecture is in a style somewhat

different than the systems CLINGON and EZCSP. One difference is that a satisfiability solver

is used as a base solver. Another difference is that theory solvers are typically implemented

within an SMT solver and are as such custom solutions. The fact that CLINGON and EZCSP

use tools available from the constraint programming community suggests that these tools

could be of use in SMT community also. The solution exhibited by system MINGO, where

mixed integer programming is used for solving ASPT(L) programs, hints that a similar

strategy can be implemented for solving SMT(L) programs. These ideas have recently been

explored in [King et al., 2014].

6 The EZSMT Solver

By Theorem 2, we know that answer sets of a tight CAS program coincide with models of a

constraint formula that corresponds to the input completion of the CAS program relative to

its irregular atoms. Theorem 4 further demonstrates that models of such a constraint formula

coincide with models of a respective SMT program. Finally, an SMT solver can be used

to find models of this SMT program, which correspond to answer sets of the original CAS

program. The EZSMT solver is a software system that was developed in the scope of this

thesis that relies on these results.

The EZSMT system takes a tight program written in the EZCSP language (an input lan-

guage accepted by the CASP solver EZCSP [Balduccini, 2009]) and produces an "equivalent"

program written in SMT-LIB (a common input language for SMT solvers [Barrett et al.,

2015]). Subsequently, EZSMT runs a compatible SMT solver, such as CVC4 or Z3, to
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compute models of the program.

In this section, we introduce the EZCSP and SMT-LIB languages. Then, we discuss

the EZSMT architecture. We use the CAS program from Example 3 to illustrate a sample

workflow of the EZSMT solver.

6.1 The EZCSP and SMT-LIB Languages

The EZCSP language is a fine representative of CASP language used in practice. Balduc-

cini (2009) describes the syntax of the EZCSP language.

We illustrate the constructs of this language using our running sample CAS program P1

from Example 3. In EZCSP syntax P1 has the form

cspdomain ( fd ) .
c s p v a r ( x , 0 , 2 3 ) .
{ s w i t c h } .
l i g h t O n ← s w i t c h n o t am .
← n o t l i g h t O n .
{am } .
r e q u i r e d (x ≥ 12 ) ← n o t am .
r e q u i r e d (x < 12 ) ← am .

Listing 1: EZCSP Program

The first line of the program states that the CAS program is a ASPT(IL)∗ program. The

second line of the program specifies that the domain of the constraint variable x ∈ Σ2|v is

the range [0..23]. In the EZCSP language, all irregular atoms are enclosed in a “required”

statement. For instance, see the last two rules in Listing 1. Appendix A introduces details

on the fragment of the EZCSP language constructs that are supported by the EZSMT system.

SMT-LIB acts as a standard language for a majority of SMT solvers [Barrett et al., 2015].

SMT-LIB allows the SMT community to develop benchmarks and run solving competitions

in a standard language. Barret et al. (2015) and Cok (2011) define the syntax and usage of

SMT-LIB.

As opposed to CASP languages, which are regarded as declarative programming lan-

guages, SMT-LIB is a low-level specification language. SMT-LIB is not intended to be a
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modeling language, but geared in large part to be easily interpretable by SMT solvers.

6.2 EZSMT Architecture

The EZSMT system takes a program given in the EZCSP language and outputs a program in

the SMT-LIB version 2 language. This SMT-LIB program can be run by such SMT solvers

as CVC4 and Z3. The program transformation process has been fairly modularized from the

actual solving process, which can be conducted by any existing SMT solver that supports

SMT-LIB as an input format. The current system runs in a pipeline presented in Figure 1.

Subsequent sections are devoted to the steps of the pipeline.

1 - Preprocessing via EZCSP

2 - Grounding via GRINGO

3 - Input Completion via CMODELS

4 - Transformer

5 - SMT Solver

EZCSP Program

EZCSP’ Program - Syntactic transformation for grounding

Ground Logic Program

Clausified Input Completion, i.e. constraint formula

SMT-LIB Program

Models

Figure 1: EZSMT Pipeline
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6.2.1 Preprocessing and Grounding

In this thesis, we formally introduced CAS programs over a signature that allows proposi-

tional atoms or irregular atoms. In practice, CAS languages, just as traditional answer set

programming languages, allow non-irregular atoms with schematic-variables. The process

of eliminating these variables is referred to as grounding [Gebser et al., 2007]. It is a well

understood process in answer set programming and off the shelf grounders exist, e.g., the

GRINGO system5 [Gebser et al., 2011]. The EZSMT system also allows schematic-variables

(as they are part of the EZCSP language) and relies on GRINGO to eliminate these variables.

Prior to applying GRINGO, all irregular atoms in the input program must be identified

in order to be preserved through the grounding process. The “required” keyword in the

EZCSP language allows us to achieve this so that the rules with the “required” expression in

the head are converted into an intermediate language. The invocation of the EZCSP system

with the --preparse-only flag performs the conversion. Later in the pipeline, this

intermediate language will undergo a semantics preserving transformation into SMT-LIB

syntax. The preprocessing performed by EZCSP results in a valid input program for the

grounder GRINGO, while preserving the constraint relations.

For instance, the application of EZCSP with --preparse-only flag on the program

in Listing 1 results in the following:

cspdomain ( fd ) .
c s p v a r ( x , 0 , 2 3 ) .
{ s w i t c h } .
l i g h t O n ← s w i t c h n o t am .
← n o t l i g h t O n .
{am } .
r e q u i r e d ( ezcsp__geq ( x , 12) ) ← n o t am .
r e q u i r e d ( e z c s p _ _ l t ( x , 12) ) ← am .

Listing 2: Preprocessed EZCSP Program

5http://potassco.sourceforge.net

http://potassco.sourceforge.net
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6.2.2 Program’s Completion

The third block in the pipeline in Figure 1 is responsible for three tasks. First, it determines

whether the program is tight or not. Given a non tight programs the system will exit

with the respective message. (Recall that EZSMT only accepts tight programs.) Second,

it computes the input completion of a given program (recall, that this input completion

can be seen as an SMT program). Third, the input completion is clausified using Tseitin

transformations [Tseitin, 1968] so that the resulting formula is in conjunctive normal form.

This transformation preserves the models of the completion modulo original vocabulary.

The output from this step is a file in a DIMACS6-inspired format. System CMODELS7 [Lierler,

2005] is used to perform the described steps. This system is invoked with the --cdimacs

flag.

For example, given the grounding produced by GRINGO for the program in Listing 2,

CMODELS will produce the output presented in Listing 3. This output encodes the clausified

input completion of the CAS program in Example 3 and can be viewed as an SMT program.

smt c n f 7 10
−s w i t c h s w i t c h 0
−s w i t c h l i g h t O n 0
− l i g h t O n s w i t c h 0
cspdomain ( fd ) 0
c s p v a r ( x , 0 , 2 3 ) 0
s w i t c h 0
l i g h t O n 0
−5 0
r e q u i r e d ( ezcsp__geq ( x , 1 2 ) ) 0
7 0

Listing 3: Completion of EZCSP Program

The first line in Listing 3 states that there are 7 atoms and 10 clauses in the computed

formula. Each other line stands for a clause, for instance, line

-switch switch 0

6http://www.satcompetition.org/2009/format-benchmarks2009.html
7http://www.cs.utexas.edu/users/tag/cmodels/

http://www.satcompetition.org/2009/format-benchmarks2009.html
http://www.cs.utexas.edu/users/tag/cmodels/
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stands for a clause

¬switch ∨ switch.

Note that there are atoms named 5 and 7 that appear in Listing 2. These are auxiliary atoms

introduced during the clausification process.

6.2.3 Transformation

The output program from CMODELS serves as input to the Transformer block in the EZSMT

pipeline. Transformer converts the given SMT program into the SMT-LIB syntax. Mappings

for irregular atoms in the EZCSP language format to SMT-LIB format are outlined in

Appendix A.

For instance, given the SMT program presented in Listing 2, the Transformer produces

the following SMT-LIB code.

1 ( s e t−o p t i o n : i n t e r a c t i v e −mode t r u e )
2 ( s e t−o p t i o n : produce−models t r u e )
3 ( s e t−o p t i o n : produce−a s s i g n m e n t s t r u e )
4 ( s e t−o p t i o n : p r i n t−s u c c e s s f a l s e )
5 ; −−− END HEADER −−−
6
7 ; Q u a n t i f i e r F ree L i n e a r A r i t h m e t i c
8 ( s e t−l o g i c QF_LIA )
9

10 ( d e c l a r e−fun | l i g h t O n | ( ) Bool )
11 ( d e c l a r e−fun | r e q u i r e d ( ezcsp__geq ( x , 1 2 ) ) | ( ) Bool )
12 ( d e c l a r e−fun | s w i t c h | ( ) Bool )
13 ( d e c l a r e−fun | 5 | ( ) Bool )
14 ( d e c l a r e−fun | c s p v a r ( x , 0 , 2 3 ) | ( ) Bool )
15 ( d e c l a r e−fun | 7 | ( ) Bool )
16 ( d e c l a r e−fun | cspdomain ( fd ) | ( ) Bool )
17 ( a s s e r t ( o r ( n o t | s w i t c h | ) | s w i t c h | ) )
18 ( a s s e r t ( o r ( n o t | s w i t c h | ) | l i g h t O n | ) )
19 ( a s s e r t ( o r ( n o t | l i g h t O n | ) | s w i t c h | ) )
20 ( a s s e r t | cspdomain ( fd ) | )
21 ( a s s e r t | c s p v a r ( x , 0 , 2 3 ) | )
22 ( a s s e r t | s w i t c h | )
23 ( a s s e r t | l i g h t O n | )
24 ( a s s e r t ( n o t | 5 | ) )
25 ( a s s e r t | r e q u i r e d ( ezcsp__geq ( x , 1 2 ) ) | )
26 ( a s s e r t | 7 | )
27 ( d e c l a r e−fun | x | ( ) I n t )
28 ( a s s e r t ( <= 0 | x | ) )
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29 ( a s s e r t ( >= 23 | x | ) )
30
31 ( a s s e r t (= > | r e q u i r e d ( ezcsp__geq ( x , 1 2 ) ) | ( >= | x | 12) ) )
32
33 ; Check s a t i s f i a b i l i t y
34 ( check−s a t )
35 ; Comment i f u n s a t o c c u r s .
36 ( ge t−model )

The resultant program can be described as follows:

(i) Lines 1-5 and 33-36 represent the program header and footer respectively. They are

responsible for setting directives necessary to indicate to a solver that it should find a

model of the program after satisfiability is determined [Barrett et al., 2015]. Note that

if input is unsatisfiable, that implies no such model exists.

(ii) Given our sample ASPT(IL) program, the Transformer instructs an SMT solver to use

quantifier-free linear integer arithmetic (QF_LIA) [Barrett et al., 2015] using the code

in Lines 7-8. More information about arithmetics/logics in SMT-LIB is available in

Appendix A.

(iii) Lines 10-16 are declarations of all atoms in our sample program as boolean variables

(called functions in the SMT-LIB parlance). There are 7 declared variables in total.

(iv) Lines 17-26 assert all ten clauses from Listing 3 to be true.

(v) Line 27 declares variable x to be an integer.

(vi) Lines 28-29 declares the domain of variable x to be in range from 0 to 23 (recall how

cspvar(x,0,23) from Listing 1 encodes this information).

(vii) Line 31 expresses that if the irregular atom required(ezcsp__geq(x,12))

holds then the constraint x ≥ 12 must also hold. In other words, it plays a role of a

mapping γ1 from Example 3.
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6.2.4 SMT Solver

The final step is to use an SMT solver that accepts SMT-LIB compliant programs for findings

its models.

The output produced by CVC4 with the SMT program listed in Section 6.2.3 is presented

in Listing 4.

s a t
( model
( d e f i n e−fun l i g h t O n ( ) Bool t r u e )
( d e f i n e−fun | r e q u i r e d ( ezcsp__geq ( x , 1 2 ) ) | ( ) Bool t r u e )
( d e f i n e−fun s w i t c h ( ) Bool t r u e )
( d e f i n e−fun 5 ( ) Bool f a l s e )
( d e f i n e−fun | c s p v a r ( x , 0 , 2 3 ) | ( ) Bool t r u e )
( d e f i n e−fun 7 ( ) Bool t r u e )
( d e f i n e−fun | cspdomain ( fd ) | ( ) Bool t r u e )
( d e f i n e−fun x ( ) I n t 12)
)

Listing 4: Output of CVC4

The first line of the output indicates that a satisfying assignment exists. The subsequent

lines indicate a model that satisfies the SMT-LIB program.

Recall that the answer set for the Example 3 program was {switch, lightOn, |x ≥ 12|}

with twelve valuations relative to the lexicon that satisfy the constraint. It is clear that this

answer set corresponds to the model of Listing 4. Note that the solver correctly identified

one of the possible valuations for x that maps x to 12.

We note that the output format of the SMT solver Z3 is of the same style as that of CVC4.

6.2.5 Limitations

Due to the fact that the EZSMT solver accepts programs in the EZCSP language, it is natural

to compare the system to the EZCSP solver. The EZSMT system faces some limitations

relative to EZCSP. Some of these exist due to implementation challenges and others are

inherit to its architecture.

The EZSMT solver accepts only a subset of the EZCSP language. In particular, it supports
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a limited set of its global constraints [Balduccini and Lierler, 2016]. Only, the global

constraints all_different and sum are fully supported by EZSMT. Also, EZSMT can only be

used on tight EZCSP programs. Yet, this is a large class of programs.

It is important to notice that, currently, we do not have a way to compute all possible

models as this is not a typical objective of most current SMT solvers. For instance, the

SMT-LIB language does not provide a directive to instruct an SMT solver to find all models

for a problem.

EZSMT assumes the logic of input programs to be quantifier-free linear integer arithmetic.

It could be worthwhile to extend EZSMT to support quantifier-free linear real arithmetic

(QF_LRA), thereby allowing the solving of SMT(L) programs.

7 Experimental Results

In order to demonstrate the efficacy of the system and to provide a comparison to other

existing CASP solvers, three CAS programs have been used to benchmark EZSMT. These

benchmarks stem from the Third Answer Set Programming Competition, 2011 (ASPCOMP)

[Calimeri et al., 2011]. These CASP formalizations have been used to benchmark other

CASP solvers and have been shown to not scale when using traditional ASP solvers [Balduc-

cini and Lierler, 2016]. The selected encodings are: Reverse-Folding [Balduccini and Lierler,

2012], Weighted Sequence [Lierler et al., 2012], and Incremental Scheduling [Balduccini,

2011].

7.1 Benchmark Descriptions

Since these same encodings have already been demonstrated to not scale with current ASP

solving technology [Balduccini and Lierler, 2016], no ASP solver performance is presented

in this work as we expect each instance would timeout.

All experiments were conducted on a computer with an Intel Core i7-940 processor

running Ubuntu 14.04 LTS (64-bit) operating system. Each benchmark was allocated 4
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GB RAM, a single processor core, and given an 1,800 second timeout (30 minutes). No

benchmarks were run simultaneously.

Originally, 1 GB RAM was allocated for each benchmark, but this appeared to be

somewhat prohibitive for running the CVC4 and Z3 solvers on some of the benchmarks. As

such the memory-allocation was increased to 4GB.

Four CASP solvers were benchmarked for each instance/encoding pair:

• EZSMT with CVC4 version 1.4 as the SMT solver (EZSMT- CVC4)

• EZSMT with Z3 version 4.4.2 - 64 bit as the SMT solver (EZSMT- Z3)

• CLINGCON version 2.0.3, and

• EZCSP version 1.6.20b49-r3345 with B-Prolog version 7.4 #3.

The best performing EZCSP configuration, as demonstrated Balduccini and Lierler (2016),

was used for each run of EZCSP.

We define a uniform encoding as an encoding where the problem specification and the

problem instance data are separated [Lierler, 2015]. For the rest of the thesis, we will

refer to the problem specification as an encoding and the problem instance as an instance.

The encodings and instances used for benchmarking are available at: http://unomaha.

edu/nlpkr/software/ezsmt/experiments/bsusman-thesis/experiments.zip. Each set

of encodings and instances are separated by benchmark. Unless otherwise mentioned, the

encoding for the CLINGCON system is CLINGCON.CL and the encoding used for EZCSP and

EZSMT is TRUE-CASP.EZ.

Both CVC4 and Z3 were ran under their default configurations. The only parameter used

to run the SMT encodings specified that the encodings were written in SMT-LIB version 2

format.

Presented in this section is only the abbreviated results of the benchmarking. Appendix B

contains more instance-level information and may be used for a more complete picture of

each systems’ performance.

http://unomaha.edu/nlpkr/software/ezsmt/experiments/bsusman-thesis/experiments.zip
http://unomaha.edu/nlpkr/software/ezsmt/experiments/bsusman-thesis/experiments.zip
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7.2 Results Analysis

A potential limitation to the following results rests on issues involved with system con-

figurations. The only solver which was run with optimized configurations for the given

benchmarks was the EZCSP system. It is entirely possible that different configurations

of CLINGCON, CVC4, or Z3 could lead to further optimized results, although the generic

configurations of each system is demonstrated to be sufficient for the scope of this work.

The format of Table 4, Table 5, and Table 6 are identical. The first column of each

table indicates the solver being benchmarked. The second column indicates the combined

total runtime of all instances. It is important to note that any instance which timed-out is

represented in this column by adding the maximum allowed time for an instance (1,800

seconds) to the total runtime. If an instance timed-out, the Total Runtime is not equivalent to

the time to run all instances to completion. The final column of each table lists the number

of timeouts which occurred during benchmarking.

7.2.1 Reverse Folding

The reverse folding benchmark consists of 50 instances in total. Abbreviated results of

benchmarking are presented in Table 4.

In this first benchmark set, the difference between SMT solvers used for EZSMT becomes

very apparent. In this case, the Z3 solver performed better by an order of magnitude than

that of CVC4 on identical SMT encodings. This underlines both the importance of solver

selection and difference between SMT solvers. The flexibility about EZSMT is that users are

free to select different SMT solvers as appropriate to the instances and encodings. Overall,

we can see that EZCSP is the only system which did not timeout while running any instance.

Both CVC4 and Z3 timed-out on some instances due to memory limitations. It is possible

if the memory-size allowed during benchmarking were increased that these solvers could

have run to completion on more instances.
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Solver Total Runtime (secs) Total Timeouts
EZSMT- CVC4 47948.41 22

EZSMT- Z3 4872.87 2
CLINGCON 2014.10 1

EZCSP 559.42 0

Table 4: Reverse Folding Results

Solver Total Runtime (secs) Total Timeouts
EZSMT- CVC4 24.18 0

EZSMT- Z3 23.28 0
CLINGCON 187.46 0

EZCSP 13878.58 0

Table 5: Weighted Sequence Results

7.2.2 Weighted Sequence

The abbreviated results of the weighted sequence benchmarks can be found in Table 5. The

weighted sequence benchmark consists of 30 instances in total.

In the weighted sequence benchmark, we first note that no instance timed out. This

helps in giving a clearer picture of the time it takes for each solver to run all instances

to completion. Because no timeouts occurred, we can safely compare the runtimes of

each solver. In this case, we note the considerable speedup featured by EZSMT. EZSMT

noticeably outperformed CLINGCON and outperformed EZCSP by orders of multiple orders

of magnitude.

7.2.3 Incremental Scheduling

The results of the incremental scheduling benchmarks can be found in Table 6. The

incremental scheduling benchmark consists of 30 instances in total. Two instance types were

available to benchmark against: “EASY” and “HARD”. Only the 30 “HARD” instances

were selected for benchmarking. The original EZCSP encoding included a global constraint,

cumulative, which is not currently supported by EZSMT. To resolve this issue, the encoding
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Solver Total Runtime (secs) Total Timeouts
EZSMT- CVC4 10276.90 5

EZSMT- Z3 9135.48 5
CLINGCON 20416.60 11

EZCSP 37332.12 20
EZCSP with Cumulative 26690.77 14

Table 6: Incremental Scheduling Results

was rewritten to mimic methods used in the CLINGCON encoding without the use of the

cumulative global constraint. As such, EZSMT- CVC4, EZSMT- Z3, EZCSP in Table 6

represent instances run on the rewritten encoding. EZCSP with Cumulative represents the

original encoding which includes the global constraint.

Opposite of the weighted sequence results in Table 5, we first note that each solver

timed-out for at least one instance in the incremental scheduling benchmark set. We do not

give particular credence to the total runtimes, but more towards the total timeouts. We note

that EZSMT times out the least, followed by CLINGCON timing out on over one-third the

instances, and finally EZCSP, which timed out on about half the instances. It is worth noting

that the use of the cumulative global constraint allowed EZCSP to run more instances to

completion. All solvers timed out on the same 5 instances which EZSMT- CVC4 and EZSMT-

Z3 timed out on.

7.3 Overall EZSMT Results

Overall, the benchmarks reveal many important aspects of the EZSMT solver. First, as

demonstrated by the reverse folding results in Table 4, the underlying SMT solving technol-

ogy selected for the SMT-LIB program produced by EZSMT is important. Next, we note that

the weighted sequence results in Table 5 and the incremental scheduling results in Table 6

demonstrate the efficacy of this approach. EZSMT has been demonstrated to outperform

both modern CASP solvers CLINGCON and EZCSP in terms of Total Runtime and in terms

of Total Timeouts for these benchmarks.
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We note that non-surprisingly a majority of the solving time for EZSMT in each bench-

mark occurs in the actual SMT solver. The process of EZCSP preparsing, GRINGO grounding,

and CMODELS performing the completion on the program for the given benchmarks often

take less than a second to complete.

8 Conclusions

In this thesis we unified the terminology stemming from the fields of CASP and SMT

solving. This unification helped us identify the special class of so called uniform theories

widely used in SMT practice. Given such theories, CASP and SMT solving share more in

common than meets the eye.

Based on this unification, we also developed the EZSMT system, which is able to take

tight constraint answer set programs and rewrite them into SMT-LIB programs. The EZSMT

solver opens the doors for writing programs in the CASP formalism, while allowing SMT

solving technologies to be utilized. This system is capable of outperforming other cutting-

edge CASP solvers as illustrated by our experimental results.

As future work, we hope to compare Bartholomew and Lee (2014)’s ASPMT2SMT system

to the EZSMT solver, but the semantic link between these two systems is yet to be uncovered.

We also hope that future work can be done to help lift the tightness constraint in a style

demonstrated by Liu et al. (2012) and Janhunen et al. (2011). We would like to further

explore other common theories in SMT such as bit vectors and determine if they are indeed

uniform theories as well. As more uniform theories are identified, it would be worthwhile to

determine under what circumstances these theories can operate together while preserving

the uniformity of theory. This would be directly applicable to the currently identified integer

and numeric uniform theories.

Also, future work directions include the following. Extending EZSMT to completely

support the entire EZCSP language, including global constraints, to allow a seamless trans-

formation for capable CAS programs. Extending EZSMT so that it is able to enumerate
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all models of a given program, as is desired in many CAS program domains. Adding

support for more specific logics in EZSMT such as quantifier-free integer difference logic and

quantifier-free linear real arithmetic, thereby allowing faster solving methods and the ability

to solve different types of problems. Exploring the difference between solving techniques

used by SMT solvers such as CVC4 and Z3 in relation to their effectiveness of solving CAS

programs.

Overall, we expect this work to be a strong building block that will bolster the cross-

fertilization between three different, even if related, automated reasoning communities:

CASP, constraint (satisfaction processing) programming, and SMT.
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A Transformation Language Reference.

The end of this appendix presents the transformations implemented by the EZCSP solver and

the Transformer of the EZSMT system. Each transformation is described as follows:

Description Inputs→ Output

E EZCSP Language

I Intermediate Preprocessed Form

S SMT-LIB

Presented transformations are based on documentation found in [Balduccini and Lierler,

2016], [Barrett et al., 2015], and in EZCSP source code. We note that the constraint domain

and selected logic for the SMT solver restrict where and if variables may occur in particular

operations. Furthermore, the presented list should not be considered complete, but should be

used as a reference for the mapping assumed by EZSMT between EZCSP and SMT-LIB. As

this aspect is theory dependent, we note the operations described below are assumed to be

defined by the integer or numeric theory described in Section 5 and to correspond to Core,

Integer, and Real theories described by Barret et al.(2015) and Cok (2011). Implementation-

wise, EZSMT is currently restricted to the program’s logic to be quantifier-free linear integer

arithmetic, referred to as QF_LIA in SMT, and does not formally support other logics at

this time. The logic of quantifier-free linear integer arithmetic utilizes the Core and Integer

theories and all terms declared with the Int type must be linear. Future implementations of

EZSMT may include support for other logics.

And Bool ×Bool→ Bool

E l /\r, l #/\r

I ezcsp__and(l,r)

S (and l r)

Or Bool ×Bool→ Bool

E l \/ r, l #\/ r

I ezcsp__or(l,r)

S (or l r)

Xor Bool ×Bool→ Bool

E l r, l # r

I ezcsp__xor(l,r)

S (xor l r)

Implication Bool ×Bool→ Bool

E l -> r, l #-> r

I ezcsp__impl_r(l,r)

S (=> l r)
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Equality Bool×Bool→ Bool, Int×Int→ Bool

E l = r, l #= r, l == r, l #== r

I ezcsp__eq(l,r)

S (= l r)

Not Equal Int× Int→ Bool

E l != r, l #!= r, l \= r, l #\= r

I ezcsp__neq(l,r)

S (distinct l r)

Greater Than Int× Int→ Bool

E l > r, l #> r

I ezcsp__gt(l,r)

S (> l r)

Less Than Int× Int→ Bool

E l < r, l #< r

I ezcsp__lt(l,r)

S (< l r)

Greater Than/Equal to Int× Int→ Bool

E l >= r, l #>= r

I ezcsp__geq(l,r)

S (>= l r)

Less Than/Equal to Int× Int→ Bool

C l <= r, l #<= r, l =< r, l #=< r

I ezcsp__leq(l,r)

S (<= l r)

Maximum Int× Int→ Int

C max(l, r)

I ezcsp__max(l,r)

S (ite (< l r) r l))

Minimum Int× Int→ Int

C min(l,r)

I ezcsp__min(l,r)

S (ite (< l r) l r))

Addition Int× Int→ Int

C l + r

I ezcsp__pl(l,r)

S (+ l r)

Subtraction Int× Int→ Int

C l - r

I ezcsp__mn(l,r)

S (- l r)

Multiply Int× Int→ Int

C l * r

I ezcsp__tm(l,r)

S (* l r)

Divide Int× Int→ Int

C l / r

I ezcsp__dv(l,r)

S (/ l r)

If an operator is not mentioned here, then it is currently not supported or experimentally
supported. The only supported global constraints from EZCSP are all_different and sum.
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B Complete Benchmark Results

B.1 Reverse Folding
Instance Name EZSMT- CVC4 EZSMT- Z3 CLINGCON EZCSP

SAT Instances
01-reverse_folding-0-0 0.27 0.15 0.04 0.06
02-reverse_folding-0-0 27.40 1.44 0.48 0.29
03-reverse_folding-0-0 Timeout Timeout 7.77 3.09
04-reverse_folding-0-0 Timeout Timeout Timeout 51.68
08-reverse_folding-0-0 34.70 1.64 0.43 1.18
09-reverse_folding-0-0 1582.10 2.67 0.85 1.62
10-reverse_folding-0-0 Timeout 5.39 1.87 3.75
11-reverse_folding-0-0 3.40 0.56 0.14 0.26
12-reverse_folding-0-0 1.72 0.51 0.13 0.33
13-reverse_folding-0-0 3.43 0.75 0.21 0.34
14-reverse_folding-0-0 6.93 0.70 0.19 0.32
15-reverse_folding-0-0 8.45 0.73 0.21 0.37
16-reverse_folding-0-0 12.51 1.09 0.31 0.67
17-reverse_folding-0-0 42.28 2 0.40 0.48
18-reverse_folding-0-0 24.58 0.97 0.30 1.07
19-reverse_folding-0-0 106.29 0.99 0.32 0.51
20-reverse_folding-0-0 402.82 4.55 0.94 1.27
21-reverse_folding-0-0 191.42 3.93 1.05 2.15
22-reverse_folding-0-0 992.65 3.52 1.15 1.45
23-reverse_folding-0-0 714.29 2.67 0.95 1.41
24-reverse_folding-0-0 1545.69 12.82 1.60 5.22
25-reverse_folding-0-0 Timeout 20.92 1.88 1.81
26-reverse_folding-0-0 1555.96 4.63 1.53 6.46
27-reverse_folding-0-0 Timeout 5.66 1.86 5.69
28-reverse_folding-0-0 1437.41 4.66 1.52 1.95
29-reverse_folding-0-0 Timeout 13.48 2.17 2.85
30-reverse_folding-0-0 Timeout 7.60 2.03 2.74
31-reverse_folding-0-0 1196.41 24.65 2.54 15.21
32-reverse_folding-0-0 Timeout 5.04 1.55 2.05
33-reverse_folding-0-0 Timeout 5.8 2.19 3.01
34-reverse_folding-0-0 Timeout 28.52 3.20 14.65
35-reverse_folding-0-0 Timeout 51.94 4.48 9.47
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Instance Name EZSMT- CVC4 EZSMT- Z3 CLINGCON EZCSP

Reverse Folding SAT Instances (continued)
36-reverse_folding-0-0 Timeout 30.13 15.66 8.45
37-reverse_folding-0-0 Timeout 64.89 20.90 10.37
38-reverse_folding-0-0 Timeout 34.18 6.36 78.58
39-reverse_folding-0-0 Timeout 94.24 5.32 15.04
40-reverse_folding-0-0 Timeout 64.88 7.38 9.94
41-reverse_folding-0-0 Timeout 193.24 8.48 11.72
42-reverse_folding-0-0 Timeout 32.65 6.83 10.36
43-reverse_folding-0-0 Timeout 40.59 22.92 89.04
44-reverse_folding-0-0 Timeout 123.66 9.82 14.04
45-reverse_folding-0-0 84.55 141.01 34.55 144.45
46-reverse_folding-0-0 85.97 221.75 27.79 16.50
47-reverse_folding-0-0 462.71 2.98 1.14 2.48
48-reverse_folding-0-0 580.98 3.06 1.08 1.76
49-reverse_folding-0-0 807.70 3.24 1.08 1.92
50-reverse_folding-0-0 33.57 1.60 0.31 0.53
UNSAT Instances
05-reverse_folding-0-0 0.08 0.06 0.01 0.12
06-reverse_folding-0-0 0.51 0.18 0.04 0.09
07-reverse_folding-0-0 1.63 0.55 0.14 0.62
Totals Runtime (secs) 47948.41 4872.87 2014.10 559.42
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B.2 Weighted Sequence
Instance Name EZSMT- CVC4 EZSMT- Z3 CLINGCON EZCSP

SAT Instances
01-treeWeight-495-8leaves 0.59 0.89 6.10 299.45
02-treeWeight-570-8leaves 0.26 1.05 14.12 1246.86
03-treeWeight-679-8leaves 0.32 0.98 7.64 67.47
04-treeWeight-560-8leaves 0.31 0.42 0.15 84.52
05-treeWeight-497-8leaves 1.35 1.12 2.93 87.54
06-treeWeight-739-8leaves 0.8 0.25 2.94 160.35
07-treeWeight-569-8leaves 0.44 0.77 11.19 293.18
08-treeWeight-591-8leaves 0.66 0.34 14.82 1040.67
09-treeWeight-729-8leaves 0.67 0.36 5.89 470.60
10-treeWeight-445-8leaves 1.08 0.14 5.49 629.19
11-treeWeight-302-8leaves 1.23 0.77 8.05 872.98
12-treeWeight-651-8leaves 0.35 1.30 10.24 51.60
13-treeWeight-513-8leaves 1.06 0.39 16.55 516.89
14-treeWeight-537-8leaves 0.81 1.22 3.58 614.21
15-treeWeight-228-8leaves 0.66 0.23 1.66 20.06
16-treeWeight-281-8leaves 0.38 0.73 5.37 497.42
17-treeWeight-351-8leaves 0.27 0.92 12.93 83.29
18-treeWeight-375-8leaves 1.07 0.15 0.78 725.08
19-treeWeight-772-8leaves 0.74 0.42 7.24 273.24
20-treeWeight-544-8leaves 0.31 1.35 3.23 323.91
21-treeWeight-714-8leaves 1.11 1.78 1.19 82.82
22-treeWeight-641-8leaves 0.83 0.54 3.67 227.43
23-treeWeight-542-8leaves 1.12 0.76 7.96 1193.92
24-treeWeight-533-8leaves 0.64 1.25 0.26 20.25
25-treeWeight-539-8leaves 1.88 1.66 2.17 356.31
26-treeWeight-528-8leaves 0.67 0.66 0.59 1216.85
27-treeWeight-542-8leaves 0.92 0.47 9.45 163.24
28-treeWeight-411-8leaves 0.62 0.29 2.33 873.62
29-treeWeight-431-8leaves 1.48 0.90 2.52 273.14
30-treeWeight-486-8leaves 1.55 1.17 16.42 1112.49
Totals Runtime (secs) 24.18 23.28 187.46 13878.58
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B.3 Incremental Scheduling
Note that the instance name has been abbreviated from the original, but is still identifiable
by the numbers at the beginning and end of the instance name.

Instance Name EZSMT- CVC4 EZSMT- Z3 CLINGCON EZCSP EZCSP- Cumulative
SAT Instances
105-is-17280-0.dimacs 5.11 0.58 22.93 Timeout 480.34
115-is-17280-0.dimacs 5.51 0.34 Timeout Timeout Timeout
135-is-17280-0.dimacs 1.12 1.61 Timeout Timeout 60.59
138-is-17280-0.dimacs 18.97 1.06 412.25 Timeout 28.12
140-is-18576-0.dimacs 99.73 1.45 12.88 Timeout Timeout
141-is-17280-0.dimacs 22.12 0.46 Timeout Timeout Timeout
153-is-17280-0.dimacs 0.35 0.53 8.25 Timeout 21.13
182-is-17280-0.dimacs 67.60 7.53 Timeout Timeout Timeout
214-is-27000-0.dimacs 957.90 17.79 Timeout Timeout Timeout
219-is-28080-0.dimacs 3.00 0.68 Timeout Timeout 56.32
UNSAT Instances
064-is-15092-0.dimacs 20.46 20.18 41.36 Timeout Timeout
090-is-15444-0.dimacs 0.21 0.09 0.38 27.42 35.45
099-is-15631-0.dimacs 0.51 0.12 0.35 707.85 28
102-is-18468-0.dimacs 0.71 0.23 0.86 Timeout 193.29
165-is-18180-0.dimacs 1.97 0.27 1.17 Timeout Timeout
170-is-18108-0.dimacs 0.38 0.12 0.87 Timeout Timeout
241-is-28320-0.dimacs 0.39 0.15 0.14 256.63 22.54
251-is-40518-0.dimacs 0.38 0.18 0.04 62.88 86.32
258-is-40698-0.dimacs 67.63 80.84 114.80 Timeout Timeout
264-is-40968-0.dimacs 0.39 0.18 0.04 125.56 176.31
298-is-40824-0.dimacs 0.40 0.18 0.04 8.06 16.72
305-is-50100-0.dimacs 0.47 0.21 0.06 9.89 19.68
329-is-50260-0.dimacs 0.45 0.20 0.05 73.04 130.58
332-is-50480-0.dimacs 0.44 0.20 0.05 32.43 63.69
379-is-78325-0.dimacs 0.70 0.30 0.08 28.36 71.69
All Timeout Instances
289-is-38880-0 Timeout Timeout Timeout Timeout Timeout
295-is-40626-0 Timeout Timeout Timeout Timeout Timeout
359-is-75000-0 Timeout Timeout Timeout Timeout Timeout
360-is-75000-0 Timeout Timeout Timeout Timeout Timeout
383-is-75000-0 Timeout Timeout Timeout Timeout Timeout
Totals Runtime (secs) 10276.90 9135.48 20416.60 37332.12 26690.77
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