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Abstract. Constraint answer set programming is a promising research direction
that integrates answer set programming with constraint processing. It is often in-
formally related to the field of Satisfiability Modulo Theories. Yet the exact for-
mal link is obscured as the terminology and concepts used in these two research
areas differ. In this paper, we make the link between these two areas precise.

1 Introduction

Constraint answer set programming (CASP) [12] is a promising research direction
that integrates answer set programming (ASP), a powerful knowledge representation
paradigm, with constraint processing. Typical answer set programing tools start their
computation with grounding, a process that substitutes variables for passing constants
in respective domains. Thus large domains often form an obstacle for classical ASP.
CASP enables a mechanism to model constraints over large domains so that they are
processed in a non-typical way for ASP tools by delegating the solving of constraints to
constraint solver systems specifically designed to handle large and sometimes infinite
domains. CASP solvers including CLINGCON [7] and EZCSP [1] already put the CASP
on the map of efficient automated reasoning tools.

CASP often cites itself as a related initiative to Satisfiability Modulo Theories (SMT)
solving [3]. Yet, the exact link is obscured as the terminology and concepts used in both
fields differ. To add to the complexity of the picture several answer set programming
modulo theories formalisms have been proposed. Liu et.al. [14], Janhunen et.al [10],
and Lee and Meng [11] introduced logic programs modulo linear constraints, logic pro-
grams modulo difference constraints, and ASPMT programs respectively.

In this work we attempt to unify the terminology used in CASP and SMT so that
the differences and similarities of logic programs with constraints versus logic pro-
grams modulo theories becomes apparent. At the same time, we introduce the notion
of constraint formulas which is similar to that of logic programs with constraints. We
characterize a special class of SMT theories that we call “uniform theories” so that
when uniform theories are used the two formalisms, logic programs with constraints
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and logic programs modulo theories, become the same. This unified outlook allows us
not only to better understand the landscape of CASP languages and systems, but also to
foster new ideas for CASP solvers design as well as SMT solvers design.

Section 2 reviews concepts of logic programs, completion, and (input) answer sets.
In Section 3, we introduce (i) generalized constraint satisfaction problems, (ii) con-
straint answer set programs, and (iii) constraint formulas. Section 4 starts by introducing
satisfiability modulo theories and respective SMT programs. We also identify a special
class of uniform theories that are commonly used in satisfiability modulo solving. This
class of theories helps us to establish precise links (i) between constraint formulas and
SMT programs, and (ii) between CASP and SMT. In Section 5, we conclude by relating
a family of distinct constraint answer set programming formalisms.

2 Logic Programs, Completion, and Input Answer Sets

A vocabulary is a set of propositional symbols also called atoms. A (propositional)
logic program, denoted by II, over vocabulary ¢ is a set of rules of the form

a < by,...,bg, not byy1,..., not by, (1)

where a is an atom over o or L, and each b;, 1 < 7 < m, is an atom in o. We will
sometime use the abbreviated form for a rule (1)

a< B )

where B stands for by, ..., by, not byyq, ..., not b, and is also called a body.

The expression a is the head of the rule. When a is L, we often omit it and say that
the head is empty. We write hd(IT) for the set of nonempty heads of rules in II. The
reduct ITX of a program IT relative to a set X of atoms is the set of rules

a%bl,...7bg (3)

for all rules (1) in I7 such that by, 1, ..., b, € X. A set X of atoms satisfies a (positive)
rule (3) if a € X whenever {b1,...,b;} C X.We say thata set X of atoms is an answer
set when X is the smallest set of atoms that satisfies all rules in 17X [8].

We call a rule whose body is empty a fact. In such cases, we drop the arrow. We
sometimes may identify a set X of atoms with a set of facts {a. | a € X}. Also, it
is customary for a given vocabulary o, to identify a set X of atoms over o with (i) a
complete and consistent set of literals over o constructed as X U{—a | a € o\ X}, and
respectively with (ii) an assignment function or interpretation that assigns truth value
true to every atom in X and false to every atomin o \ X.

For a program IT over vocabulary o, the completion of IT [4], denoted by Comp(IT),
is the set of classical formulas that consists of the implications B — a for all rules (2)
in IT and the implications

a— \/ B “4)

for all atoms ¢ in o.



It is well known that for the large class of logic programs, referred to as tight pro-
grams, its answer sets coincide with models of its completion, as shown by Fages [6].
Tightness is a syntactic condition on a program that can be verified by means of pro-
gram’s dependency graph. The dependency graph of II is the directed graph G such
that (i) the vertices of G are the atoms occurring in I7, and (ii) for every rule (1) in I7
whose head is not L, G has an edge from atom a to each atom b ...by. A program is
called tight if its dependency graph is acyclic.

We now introduce a generalization of a concept of an input answer set by Lierler
and Truszczynski [13]. In this work, we consider input answer sets relative to input
vocabularies. We then extend the definition of completion so that we can state the result
by Fages for the case of input answer sets. These concepts are essential for introducing
constraint answer set programs as well as constraint formulas and establishing a formal
relation between them.

Definition 1. For a logic program II over vocabulary o, a set X of atoms over o is
an input answer set of II relative to vocabulary . C o when X is an answer set of the
program IT U ((X N ) \ hd(ID)).

Definition 2. For a program II over vocabulary o, the input-completion of I relative
to vocabulary v C o, denoted by IComp(I1, 1), is defined as the set of propositional
formulas (formulas in propositional logic) that consists of the implications B — a for
all rules (2) in II and the implications (4) for all atoms a occurring in (o \ ¢) U hd(II).

Theorem 1. For a tight program 11 over vocabulary o and vocabulary v C o, a set X
of atoms from o is an input answer set of Il relative to v if and only if X satisfies
program’s input-completion IComp(I1, v).

3 Generalized Constraint Answer Set Programs

We start this section by presenting primitive constraints as defined by Marriott and
Stuckey [15, Section 1.1] using the notation convenient for our purposes. We refer to
this concept as a constraint dropping the word “primitive”. We use constraints to de-
fine a notion of a generalized constraint satisfaction problem that Marriott and Stuckey
refer to as “constraint”. We then review constraint satisfaction problems as commonly
defined in artificial intelligence literature and illustrate that they are special case of gen-
eralized constraint satisfaction problems.

Constraints and Generalized Constraint Satisfaction Problem We adopt the follow-
ing convention: for a function v and an element x, by ¥ we denote the value assigned
by v to x. A domain is a nonempty set of elements (values). A signature ' is a set of
variables, function symbols (or f-symbols), and predicate symbols. Function and pred-
icate symbols are associated with a positive integer called arify. By X, 2,, and X,
we denote the subsets of X' that contain all variables, all predicate symbols, and all
f-symbols respectively.

For instance, we can define signature Xy = {s,r, E, Q} by saying that s and r are
variables, F is a predicate symbol of arity 1, and @ is a predicate symbol of arity 2.
Then, 21‘1, = {S,’/‘}, 21‘7“ = {E, Q}a El\f = @



Let D be a domain. For a set V' of variables, we call a function v : V — D a
[V, D] valuation. For a set F' of f-symbols, we call a total function on F' an [F, D] f-
denotation, when it maps an n-ary f-symbol into a function D™ — D. For a set R of
predicate symbols, we call a total function on R an [R, D] r-denotation, when it maps
an n-ary predicate symbol into an n-ary relation on D.

A table below presents definitions of sample domain Dy, valuations v1, vo, and
r-denotations p; and po.

D, {1,2,3}
n [El\le valuation, where s** = r"* =1
V2 El\v, 1| valuation, where s*2 = 2 and "2 = 1

|
[ ]
p1 [X1}, D1] r-denotation, where E7* = {(1)}, Q" = {(1,1),(2,2),(3,3)}
P2 [X1},, D1] r-denotation, where Q72 = @t and E** = {(2), (3 >}

A constraint vocabulary (c-vocabulary) is a pair [X, D], where X is a signature and
D is a domain. A zerm over a c-vocabulary [ X, D] is either
— avariable in X)), or
— a domain element in D, or
— anexpression f(ty,...,t,), where f is an f-symbol of arity nin Xy and ty,...,t,
are terms over [ X, D]
A constraint atom over a c-vocabulary [ X, D] is an expression

P(ty,...,tn), 5)

where P is a predicate symbol from X, of arity n and ¢y, . . ., t,, are terms over [X, D].
A constraint literal over a c-vocabulary [X, D] is either a constraint atom (5) or an
expression

SP(t1, ..., tn), (6)

where P(ty,...,t,) is a constraint atom over [, D]. For instance, expressions = E(s),
—FE(2), and Q(r, s) are constraint literals over [ X, D1].

Let [, D] be a c-vocabulary, v be a [¥),,, D] valuation, ¢ be a [ ¥ s, D] f-denotation,
and p be a [X),., D] r-denotation. First, we define recursively a value that valuation v
assigns to a term 7 over [X, D] w.r.t. ¢. We denote this value by 7/*?. For a term that
is a variable z in Z‘U, x¥® = z¥. For a term that is a domain element d in D, d*%
is d itself. For a term 7 of the form f(¢i,...,t,), 7% is defined recursively by the
formula f(t1,...,tn)"% = fo(t9%,...,t%%). Second, we define what it means for
valuation to be a solution of a constraint literal w.r.t. given f-and-r-denotations. We say
that v satisfies (is a solution to) constraint literal (5) over [X, D] w.r.t. ¢ and p when
<t11/,¢7 ..., %) € PP. Let R be an n-ary relation on D. By R we denote complement
relation of R constructed as D™\ R. Valuation v satisfies (is a solution to) constraint lit-
eral of the form (6) w.r.t. ¢ and p when (2, ... t:*) € Pr. For instance, valuation v
satisfies constraint literal Q(r, s) w.r.t. p;, while valuation v does not satisfy this con-
straint literal w.r.t. po (when a signature contains no function symbols no reference to
f-denotation is necessary in the definitions above).

We are now ready to define constraints, their syntax and semantics. To begin we
introduce a lexicon, which is a tuple ([X, D], p, ¢), where [ X, D] is a c-vocabulary, p is



[¥), D] r-denotation, and ¢ is [ ¥, D] f-denotation. For a lexicon £ = ([X, D], p, ¢),
we call any function that is [X),, D] valuation, a valuation over L. We will omit the
last element of the tuple if the signature ' of the lexicon contains no f-symbols. A con-
straint is defined over lexicon £ = ([X, D], p, ¢). Syntactically, it is a constraint literal
over [X, D] (lexicon L, respectively). Semantically, we say that valuation v over L sat-
isfies (is a solution to) the constraint ¢ when v satisfies ¢ w.r.t. ¢» and p. For instance, the
table below presents definitions of sample lexicons £, Lo, and constraints ¢y, co, 3,
and cy4.

Ly ([Z1, Dal, p1)
Lo ([Z1, D1], p2)
¢ a literal Q(r, s) over lexicon £
c1 a literal Q(r, s) over lexicon Lo
c3 a literal ~F(s) over lexicon Lo
cy a literal ~E'(2) over lexicon L.

Valuation v is a solution to ¢, ¢, ¢3, but not a solution to ¢4. Valuation v is a solution
to c3, but not a solution to ¢, co, and c4. In fact, constraint ¢4 has no solutions. We
sometimes omit the explicit mention of the lexicon when talking about constraints: we
then may identify a constraint with its syntactic form of a constraint literal.

Definition 3. A generalized constraint satisfaction problem (GCSP) C is a finite set of
constraints over a lexicon L = ([X, D}, p, ¢). We say that a valuation v over L satisfies
(is a solution to) GCSP C when v is a solution to every constraint in C.

For example, any subset of set {ca, ¢3, ¢4 } of constraints forms a GCSP.

From GCSP to Constraint Satisfaction Problem We say that a lexicon is finite-
domain if it is defined over a c-vocabulary that refers to a domain whose set of elements
is finite. Trivially, lexicons £ and L9 are finite-domain. Consider a special case of a
constraint of the form (5) over finite-domain lexicon £ = ([X, D], p) so that each ¢; is a
variable. (For instance, constraints ¢, co, and c3 satisfy the stated requirements, while
c4 does not.) In this case, we can syntactically identify (5) with the pair

((t1,...,tn), PP). @)

A constraint satisfaction problem (CSP) is a set of pairs (7), where X, and D of the
finite-domain lexicon £ are called variables and domain of CSP, respectively. Saying
that valuation v over L satisfies (5) is the same as saying that (t/,...,t%) € P?. The
latter is the way in which a solution to expressions (7) in CSP is typically defined. As
in the definition of semantics of GCSP, a valuation is a solution to a CSP problem C'
when it is a solution to every pair (7) in C'. In conclusion, GCSP generalizes CSP by (i)
elevating the restriction of finite domain, and (ii) allowing us more elaborate syntactic
expressions (e.g., recall f-symbols).

Constraint Answer Set Programs and Constraint Formulas Let o, and o; be two
disjoint vocabularies. We refer to their elements as regular atoms and irregular atoms.
For the rest of this paper we will assume the convention that o,. and o; represent disjoint
vocabularies of so called regular and irregular atoms. For a program I7, by At(IT) we
denote the set of atoms occurring in it.



Definition 4. A constraint answer set program (CAS program) over the vocabulary o =
o,Ucy is atriple (II, B,~), where II is a logic program over the vocabulary o such that
hd(II) No; = 0, B is a set of constraints over the same lexicon, and y is an injective
Sfunction from the set o; of irregular atoms to the set B of constraints.
For a CAS program P = (II,B,~) over the vocabulary c = o, U o; so that L is

the lexicon of the constraints in B, a set X C o is an answer set of P if

- X C At(I)

— X is an input answer set of II relative to o;, and

— the following GCSP over L has a solution

{y(a)|la € X No;} U{(a)la € (At(II)No;) \ X}.

These definitions are generalizations of CAS programs introduced by Gebser et
al. [7] as they refer to the concept of GCSP in place of CSP in the original definition.

Just as we defined constraint answer set programs, we can define constraint formu-
las. For a propositional formula F, by At(F') we denote the set of atoms (propositional
symbols) occurring in it.

Definition 5. A constraint formula over the vocabulary o = 0,.Uo; is a triple (F, B, ),
where F' is a propositional formula over the vocabulary o, B is a set of constraints over
the same lexicon, and vy is an injective function from the set o; of irregular atoms to the
set B of constraints.
For a constraint formula F = (F, B,~) over the vocabulary o = o, U 0; so that L

is the lexicon of the constraints in BB, a set X C o is a model of F if

- X C AL(F)

— X is amodel of F, and

— the following GCSP over L has a solution

{v(a)la e X Noi} U{=(a)la € (AL(F)Noi) \ X}.

Theorem 2. For a CAS program P = (II, B,~) over the vocabulary o = o, U o; and
a set X of atoms over o, when II is tight, X is an answer set of P if and only if X is a
model of constraint formula (IComp(Il, 0;), B,~) over o = o, U 0;.

4 Satisfiability Modulo Theories versus Constraint Formulas

First, in this section we introduce the notion of a “theory” in Satisfiability Modulo The-
ories (SMT) [3]. Second, we present the definition of a “restriction formula” and state
the conditions under which such formulas are satisfied by a given interpretation. The
introduced restriction formulas are syntactically restricted classical ground predicate
logic formulas. The presented notions of interpretation and satisfaction are usual but
are stated in terms convenient for our purposes. In the literature on SMT, a more so-
phisticated syntax, than restriction formulas provide, is typically discussed. Yet, SMT
solvers often rely on the so called propositional abstractions of predicate logic formulas
which, in their most commonly used case, coincide with restriction formulas discussed
here.

An interpretation I for a signature X, or X-interpretation, is a tuple (D, v, p, ¢),
where



— D is a domain,

- visa[X),, D] valuation,

- pisa[X),, D] r-denotation, and

- ¢isa[X|s, D] f-denotation.
For signatures that contains no f-symbols, we omit the reference to the last element of
the interpretation tuple.

For a signature X/, a X'-theory is a set of interpretations over Y. For instance, for sig-
nature X1, by Z; and Z, we denote the following sample interpretations (D1, v1, p1) and
(D1, va, p1) respectively. Any subset of interpretations {Z;,Z,} exemplifies a unique
X1-theory.

In literature on predicate logic and SMT, the term “object constant” or “function
symbol of arity 0” is commonly used to refer to elements in the signature that we call
variables. Using the terms that stem from definitions related to constraint satisfaction
processing will facilitate uncovering the precise link between CASP-like formalisms
and SMT-like formalisms. Also it is typical for predicate logic signatures to contain
propositional symbols (predicate symbols of arity 0). It is easy to extend the notion
of signature introduced here to allow propositional symbols. Yet it will complicate the
presentation, which is the reason we avoid this extension.

A restriction formula over signature X' is a finite set of constraint literals over c-
vocabulary [ X, §)]. A sample restriction formula over X; follows

{_\E(S),_\Q(T, S)} ¥

We now state the semantics of restriction formulas. Consider a X-interpretation I =
(D, v, p,$). To each term 7 over c-vocabulary [¥, ()], I assigns a value 7% that we
denote by . We say that I satisfies restriction formula & over X when v satisfies every
constraint literal in @ w.r.t. ¢ and p. Interpretation Z, satisfies restriction formula (8),
while Z; does not satisfy (8).

We say that a restriction formula @ over signature X' is satisfiable in a X-theory T',
or is T-satisfiable, when there is an element of the set T" that satisfies ¢. For example,
restriction formula (8) is satisfiable in any X'; -theory that contains interpretation Z,. On
the other hand, restriction formula (8) is not satisfiable in X'; -theory {Z; }.

SMT often considers theories of a special kind. For instance, the presented definition
of a theory places no restrictions on the domains, r-denotations, or f-denotations being
identical across the interpretations defining the theory. In practice, such restrictions are
very common. Later in the presentation we will define so called “uniform” theories that
follow typical restrictions. We will then show how such uniform theories and restriction
formulas can practically be seen as syntactic variants of GCSPs.

SMT and ASPT Programs For signature 3, domain D, and a vocabulary o', a
[¢’, X, D]-mapping is an injective mapping p from atoms over ¢’ to constraint atoms
over c-vocabulary [X, D). For a [0/, X, D]-mapping u, a consistent set M of proposi-
tional literals over vocabulary o D o’ is a T-model of i1 (or, T, p-model) if a restriction
formula

{u(a)|ae Mno'} U{-u(a)|—a€ Manda € o'}

is satisfiable in X-theory 7.



Definition 6. An SMT program P over vocabulary o = o, U o; is a triple (F, T, p),
where F' is a propositional formula over o, p is a [0;, X, 0]-mapping, and T is a X-
theory.
For an SMT program (F, T, i) over o, a set X C o is its model if
1. X C At(F),
2. X is amodel of F, and
3. XU{-a|a€ At(F)\ X}isaT, p-model.

We now define the concept of logic programs modulo theories.

Definition 7. A logic program modulo theories (or ASPT program) P over vocabulary
o =o,Uo;isatriple (I, T, ), where I1 is a logic program over o, i is a [o;, X, 0]-
mapping, and T' is a X -theory.
For an ASPT program (I, T, u) over o, a set X C o is its model if
1. X C At(Il),
2. X is an input answer set of 11 relative to o;, and
3. XU{~a|a€ At(IT)\ X} isa T, p-model.

Uniform Theories We now identify a special class of theories that we call “uniform”.
We then relate the question of verifying satisfiability of formulas in such theories to
the question of solving relevant generalized constraint satisfaction problem. This con-
nection brings us to a straightforward relation between SMT program formalism over
uniform theories and constraint formula formalism as well as between CAS programs
and ASPT programs. In the following section we list several common SMT fragments
such as satisfiability modulo difference logic and satisfiability modulo linear arithmetic
whose theories are, in fact, uniform theories. We then use these findings to relate several
ASP modulo theories approaches such as ASP(DL) introduced in [14] and ASP(LC) in-
troduced in [14] to CASP approaches.

For a signature X, we call a X-theory T" uniform over lexicon £ = ([X, D], p, ¢)
when (i) all interpretations in T are of the form (D, v, p, ¢) (note how valuation v is
the only not fixed element in the interpretations), and (ii) for every possible [E‘v, D]
valuation v, there is an interpretation (D, v, p, ¢) in T

To illustrate a concept of a uniform theory, a table below defines sample domain Do,
valuations v3 and v4, and r-denotation ps.

D2 {13 2}

V3 [X1}0, D2] valuation, where s** = 1 and % = 2

V4 [X1}y, D2] valuation, where s"* = r* = 2

03 [Y1]r, Do] r-denotation, where £7* = {(2)}, @” = {(1,1),(2,2)}

Valuations v; and v, can be seen not only as [Zl‘v,Dl] valuations but also as
[X1}y, D2] valuations. The set

{(Da,v1, p3), (D2,v2, p3), (D2,v3, p3), (D2, V4, p3) }

of X; interpretations is an example of a uniform theory over lexicon ([X1, Ds], p3).
We denote this theory by T3. Neither of Xy-theories {Z1}, {Z1,Z>} is uniform over
lexicon ([ X1, D1], p1)-



It is easy to see that for uniform theories we can identify their interpretations of the
form (D, v, p, ¢) with their second element valuation v. Indeed, the other three elements
are fixed by the lexicon over which the uniform theory is defined. In the following
we will sometimes use this convention. For example, we may refer to interpretation
(D2, v, p3) of uniform theory T} as v4.

For uniform X-theory T over lexicon ([X, D], p, ¢) we can extend the syntax of
restriction formulas by saying that a restriction formula is defined over c-vocabulary
[X, D] as a finite set of constraint literals over [X, D] (earlier we considered con-
straint literals over [X, ()]). The earlier definition of semantics is still applicable. In
the following for the uniform theories we assume such a more general syntax. Also we
can extend the definition of SMT program given a constraint X'-theory 1" over lexicon
([, D], p, ) as follows: an SMT program P over vocabulary o = o, U 0; is a triple
(F,T, ), where F is a propositional formula over o, y is a [0;, X, D]-mapping, and T
is a X'-theory. Note how p-mapping refers do the domain of lexicon now in place of an
empty set in the earlier definition. The definition of ASPT program can be extended in
the same style. For the case of uniform theories we will assume the definition of SMT
programs as stated in this paragraph. The same applies to the case of ASPT programs
module uniform theories.

We now present a theorem that makes the connection between GCSPs over some
lexicon £ and restriction formulas interpreted using the uniform theory 7" over the same
lexicon L apparent: the question whether a given GSCP over £ has a solution translates
into the question whether the set of constraint literals of GSCP forming a restriction
formula is T-satisfiable. Furthermore, any solution to such GSPC is also an interpreta-
tion in 7’ that satisfies the respective restriction formula, and the other way around. We
then relate SMT programs “modulo uniform theories” and constraint formulas, as well
as ASPT programs and CAS programs.

Theorem 3. For a lexicon L = ([X, D], p, ®), a set Y of constraint literals over c-
vocabulary [X, D), a uniform X-theory T over lexicon L, the following holds
1. for any [X,, D] valuation v, there is an interpretation v in T,
2. [%, D] valuation v is a solution to GCSP @ over lexicon L if and only if interpre-
tation v in T satisfies P.
3. GCSP P over lexicon L has a solution if and only if @ is T-satisfiable.

Let £ denote a lexicon ([X, D], p, ¢). By B, we denote the set of all constraints
over L of the form (5) (in other words all constraints that syntactically are represented
by constraint atoms rather than constraint literals). By 7z we denote the uniform -
theory over L.

Theorem 4. For a signature X, alexicon L = ([X, D], p, ¢), vocabularies 0 = o;Uo,
alo;, X, D)-mapping 11, and a set X C o, X is a model of an SMT program (F, Ty, 1)
over o if and only if X is a model of a constraint formula (F, B, 1) over o, where p is
identified with the function from irregular atoms to constraints over L in a trivial way.

This theorem illustrates that for uniform theories the language of SMT programs and
constraint formulas coincide. Or, that the language of constraint formulas is a special
case of SMT programs that are defined over uniform theories. We now show similar
relation between CAS and ASPT programs.



Theorem 5. Fora signature X, alexicon L = ([X, D], p, ¢), vocabularies o = o;Uo,
alo;, X, D]-mapping p, and a set X C o, X is a model of an ASPT program (I, T, 1)
over o if and only if X is a model of a CAS program (II, B, u) over o, where i is
identified with the function from irregular atoms to constraints over L in a trivial way.

5 CAS over Numeric Constraints or ASPT over Numeric Theories

In this section we first illustrate how GCSP model constraint problems over so called
numeric constraints. Next we proceed at defining “numeric” uniform theories. These
definitions will allow us to precisely define the languages used by various constraint
answer set solvers. We conclude with the discussion of the variety of solving techniques
used in logic programming community.

Linear, Integer Linear, and Finite-Domain Constraints Let Z and R denote the
sets of integers and real numbers respectively. We say that a signature is numeric when
it satisfies the following requirements (i) its only f-symbols are +, x of arity 2, and
(ii) its only predicate symbols are <, >, <, >, =, # also of arity 2. In the following
we use the symbol A to denote a numeric signature. Let ¢z and pz be [{+, x},Z] f-
denotation and [{<, >, <, >, =, #}, Z] r-denotation respectively where they map their
function and predicate symbols into usual arithmetic operations and relations over in-
tegers. We call any lexicon of the form ([A, Z], pz, ¢z) integer. Similarly, fg and rg
denote [{+, x }, R] f-denotation and [{<, >, <, >, =, #}, R] r-denotation respectively
where they map their function an predicate symbols into usual arithmetic operations
and relations over reals. We call any lexicon of the form ([.A, R], rg, fr) numeric.
A linear expression has the form

a1T1 + -+ apTy 9

where aq,...,a, are real numbers and x1,...,x, are variables over real numbers.
When a; = 1 (1 <4 < n)we may omit it from the expression. We view this expression
as an abbreviation for the following term

+(x(a1,x1),+(x(a2,:172), et (X(an—hxn—l)v X(aﬂul‘n)) s )7

over some c-vocabulary [A4, R], where A contains z1,. .. ,x, as its variables. For in-
stance, 25 + 3x3 is an abbreviation for the expression +(x (2, x2), X(3, z3)). We say
that a linear expression is integer if it has the form (9), a4,...,a, are integers, and
x1,...,%y are variables over integers.
We call a constraint linear (integer linear) when it is defined over some numeric
(integer) lexicon and has the form
(e, k) 10)

where e is a linear (integer linear) expression, k is a real number (an integer), and
1 belongs to {<, >, <, >, =,#}. We can write (10) as an expression in usual infix
notation e > k. We call GCSP a linear constraint satisfaction problem when it is
composed of linear constraints. Similarly we call GCSP an integer linear constraint
satisfaction problem when it is composed of integer linear constraints.



By Z we denote any finite subset of Z. Any lexicon of the form ([A, Z], pz, ¢z) is
called finite-domain integer. We can specialize definitions of linear expressions, linear
constraints to the case of finite-domain integer lexicons in an obvious way. We will refer
to these concepts as finite-domain linear-expressions, finite-domain linear constraints.

Linear (Integer Linear) Arithmetic and Difference Logic as Uniform Theories Re-
call that by A we denote a numeric signature. By 7' we denote the uniform .A-theory
over integer lexicon ([A, Z], pz, ¢z). We call theories of this kind integer. By Tj' we
denote the constraint .A-theory over numeric lexicon ([A, R], pr, ¢r). We call theories
of this kind numeric.

Two examples of integer theories commonly implemented in SMT solvers are called
integer linear arithmetic and difference logic arithmetic. Linear arithmetic is an exam-
ple of numeric theory commonly supported by SMT solver. We note that difference
logic is a special case of integer linear arithmetic that introduces syntactic requirements
on considered expressions [16]. SMT solver cvc4? [2] supports all three mentioned
arithmetics.

We are now ready to define SMT(DL), SMT(IL), and SMT(L) programs that capture
common SMT formalisms used in practice. For a vocabulary o, we say that [0, A, Z]-
mapping p is integer linear (difference-logic) friendly if any element in ¢ is mapped to
an integer linear formula (difference logic formula) over integer lexicon whose sig-
nature is A (i.e., lexicon ([A,Z], pz, ¢z)). Similarly, for vocabulary o, we say that
[0, A, R]-mapping u is linear friendly if any element in o is mapped to a linear for-
mula over numeric lexicon whose signature is .A.

We call an SMT program (F, T, ) an SMT(DL) or SMT(IL) program when i is
difference-logic friendly or integer linear friendly respectively. We call an SMT pro-
gram (F, T, i) an SMT(L) program when g is linear friendly. In the same style we
can define the notions of ASPT(DL), ASPT(IL), ASPT(L) programs.

Outlook on Constraint Answer Set Solvers and ASPT Solvers We say that a CAS
program (II, B,~) is (finite-domain) integer when B is the set of all (finite-domain)
integer linear constraints of the form (5) over some (finite-domain) integer lexicon.
Similarly, we say that a CAS program (1, B, 7y) is numeric when B is the set of all linear
constraints of the form (5) over some numeric lexicon. From Theorem 5, it immediately
follows that integer CAS programs and numeric CAS programs are in fact the same
objects as ASPT(IL) and ASPT(L) programs respectively.

Constraint answer set solver CLINGCON [7] is a system that specializes on finite-
domain integer CAS programs. Constraint answer set solver EZCSP [1] is a system that
can function in three modes as (i) a solver for finite-domain integer CAS programs, (ii)
a solver for integer CAS programs (or, ASPT(IL) programs), (iii) a solver for numeric
CAS programs (or, ASPT(L) programs).

At ahigh-level abstraction one may summarize the architectures of these two solvers
as ASP-base solver plus theory solver. Given a CAS program (II, 3, ~), both CLING-
CON and EZCSP first use an answer set solver to compute an input answer set of 1.
Second, they contact a theory solver to verify whether respective constraint satisfaction
problem has a solution. In case of CLINGCON, finite domain constraint solver GECODE

3 http://cved.cs.nyu.edu/web/



is used as a theory solver. System EZCSP, on the other hand, uses constraint logic pro-
gramming tools such as SICSTUS PROLOG and SWI PROLOG.

Liu et.al. [14] introduced logic programs with linear constraints that they call ASP(LC),
while Janhunen et.al [10] introduced logic programs with difference constraints that
they call ASP(DL). It turns out that ASP(LC) programs coincide with ASPT(L) pro-
grams (or numeric CAS programs). On the other hand, ASP(DL) programs are captured
by ASPT(DL) and obviously can be seen as a special case of ASPT(IL) programs (or
integer CAS programs).

To process ASP(LC) programs, Liu et.al. [14] introduce the solver called MINGO,
which translates the formalism into mixed integer programming formula and then uses
the solver CPLEX [9] to solve these formulas. To process ASP(DL) programs, Jan-
hunen et.al [10] implement a system that is called DINGO, which translates the for-
malism into an SMT(DL) program and applies SMT solver z3 [5]. Note how EZCSP is
an alternative system for computing solutions to the ASP(LC) and ASP(DL) programs.

The diversity of solutions used in constraint answer set programming paradigms
also suggests that solutions of the kind are available for SMT technology. Typical SMT
architecture is in style of that of the systems CLINGON or EZCSP. One difference is that
a satisfiability solver is used as a base solver. Another difference is that theory solvers
are typically implemented within an SMT solver and are as such custom solutions. The
fact that CLINGON and EZCSP use tools available in constraint programming community
suggests that these tools could be of use in SMT community also. The solution exhib-
ited by system MINGO, where mixed integer programming is used for solving ASPT(L)
programs, hints that a similar strategy can be implemented for solving SMT(L) pro-
grams.

Obviously, Theorems 2 and 3 pave the way for using SMT systems that solve
SMT(IL), SMT(L) problems as is for solving ASPT(IL), ASPT(L) programs whose
first member of a triple is a tight logic program. It is sufficient to compute input com-
pletion of the program relative to irregular atoms.

6 Conclusions

In this paper we unified the terminology stemming from the fields of constraint answer
set programming and satisfiability modulo theories solving. This unification helped us
identify the special class of so called uniform theories widely used in SMT practice.
Given such theories, CASP and SMT solving share more in common than meets the eye.
We expect this work to be a strong building block that will bolster the cross-fertilization
between three different, even if related, automated reasoning communities: constraint
answer set programming, constraint (satisfaction processing) programming, and SMT.
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