
Constraint Answer Set Programming versus Satisfiability Modulo Theories ∗

Yuliya Lierler and Benjamin Susman
University of Nebraska at Omaha

ylierler@unomaha.edu and bsusman@unomaha.edu

Abstract
Constraint answer set programming is a promising
research direction that integrates answer set pro-
gramming with constraint processing. It is often in-
formally related to the field of Satisfiability Modulo
Theories. Yet, the exact formal link is obscured as
the terminology and concepts used in these two re-
search areas differ. In this paper, we make the link
between these two areas precise.

Introduction
Constraint answer set programming (CASP) [Mellarkod et
al., 2008; Gebser et al., 2009; Balduccini, 2009; Lierler,
2014] is a promising research direction that integrates answer
set programming (ASP), a powerful knowledge representa-
tion paradigm, with constraint processing. Typical answer set
programing tools start their computation with grounding, a
process that substitutes variables for passing constants in re-
spective domains. Thus large domains often form an obsta-
cle for classical ASP. CASP enables a mechanism to model
constraints over large domains so that they are processed in
a non-typical way for ASP tools by delegating their solving
to constraint solver systems specifically designed to handle
large and sometimes infinite-domains. CASP solvers includ-
ing CLINGCON [Gebser et al., 2009] and EZCSP [Balduccini,
2009] already put CASP on the map of efficient automated
reasoning tools.

Constraint answer set programming often cites itself as
a related initiative to Satisfiability Modulo Theories (SMT)
solving [Barrett and Tinelli, 2014]. Yet, the exact link is ob-
scured as the terminology and concepts used in both fields
differ. To add to the complexity of the picture several answer
set programming modulo theories formalisms have been pro-
posed. For instance, Liu et.al. [2012], Janhunen et.al [2011],
and Lee and Meng [2013] introduced logic programs mod-
ulo linear constraints, logic programs modulo difference con-
straints, and ASPMT programs respectively.

In this work we attempt to unify the terminology used in
CASP and SMT so that the differences and similarities of

∗We would like to thank Martin Brain for the discussions that
lead us to undertake this research. We are also grateful to Vladimir
Lifschitz, Cesare Tinelli, and Mirek Truszczynski for the conversa-
tions related to the topic of this paper.

logic programs with constraints versus logic programs mod-
ulo theories become apparent. At the same time, we intro-
duce the notion of constraint formulas, which are similar to
that of logic programs with constraints. We identify a spe-
cial class of SMT theories that we call “uniform”. Commonly
used theories in satisfiability modulo solving such as integer
linear, difference logic, and linear arithmetics belong to uni-
form theories. This class of theories helps us to establish pre-
cise links (i) between constraint formulas and SMT formulas,
and (ii) between CASP and SMT. We are able to then provide
a formal description relating a family of distinct constraint
answer set programming formalisms.

We believe that this unified outlook allows us not only to
better understand the landscape of CASP languages and sys-
tems, but also to foster new ideas for CASP solvers design
as well as SMT solvers design. For example, theoretical re-
sults of this work establish the method for using SMT sys-
tems for computing answer sets of a broad class of “tight”
constraint answer set programs. Similarly, CASP technology
can be used to solve certain classes of SMT problems.

The outline of the paper is as follows. We start by review-
ing concepts of logic programs, completion, and (input) an-
swer sets. We then present (i) generalized constraint satisfac-
tion problems, (ii) constraint answer set programs, and (iii)
constraint formulas. Next we introduce satisfiability modulo
theories and respective SMT formulas. We define a class of
uniform theories and establish links between CASP and SMT.
The paper concludes by relating a family of distinct constraint
answer set programming formalisms.

Logic Programs, Completion, and Input
Answer Sets
A vocabulary is a set of propositional symbols also called
atoms. As customary, a literal is an atom a or its negation,
denoted ¬a. A (propositional) logic program, denoted by Π,
over vocabulary σ is a set of rules of the form

a← b1, . . . , b`, not b`+1, . . . , not bm, (1)

where a is an atom over σ or ⊥, and each bi, 1 ≤ i ≤ m, is
an atom in σ. We will sometime use the abbreviated form for
a rule (1)

a← B (2)

where B stands for b1, . . . , b`, not b`+1, . . . , not bm, and is
also called a body. We sometimes identify B with the propo-
sitional formula b1∧ . . .∧b`∧¬b`+1∧ . . .∧¬bm and note that
the order of its terms is immaterial. The expression a is the
head of the rule. When a is ⊥, we often omit it and say that
the head is empty. We write hd(Π) for the set of nonempty
heads of rules in Π. We refer the reader to the paper by Gel-
fond and Lifschitz [1988] for details on the definition of an
answer set.

We call a rule whose body is empty a fact. In such cases,
we drop the arrow. We sometimes may identify a set X of
atoms with a set of facts {a. | a ∈ X}. Also, it is customary
for a given vocabulary σ, to identify a set X of atoms over σ
with (i) a complete and consistent set of literals over σ con-
structed asX∪{¬a | a ∈ σ\X}, and respectively with (ii) an
assignment function or interpretation that assigns truth value
true to every atom in X and false to every atom in σ \X .

For a program Π over vocabulary σ, the completion
of Π [Clark, 1978], denoted by Comp(Π), is the set of clas-
sical formulas that consists of the implications B → a for all
rules (2) in Π and the implications

a→
∨

a←B∈Π

B (3)

for all atoms a in σ.
It is well known that for the large class of logic programs,

referred to as “tight” programs, its answer sets coincide with
models of its completion, as shown by Fages [1994]. Tight-
ness is a syntactic condition on a program that can be verified
by means of program’s dependency graph. The dependency
graph of Π is the directed graph G such that (i) the vertices
of G are the atoms occurring in Π, and (ii) for every rule (1)
in Π whose head is not⊥, G has an edge from atom a to each
atom b1, . . . , b`. A program is called tight if its dependency
graph is acyclic.

We now introduce a generalization of a concept of an in-
put answer set by Lierler and Truszczynski [2011]. In this
work, we consider input answer sets relative to input vocab-
ularies. We then extend the definition of completion so that
we can state the result by Fages for the case of input answer
sets. These concepts are essential for introducing constraint
answer set programs and constraint formulas as they are de-
fined over two disjoint vocabularies so that atoms stemming
from those vocabularies “behave” differently. Input answer
set semantics allows us to account for these differences.

Definition 1 For a logic program Π over vocabulary σ, a
set X of atoms over σ is an input answer set of Π relative
to vocabulary ι ⊆ σ when X is an answer set of the program
Π ∪ ((X ∩ ι) \ hd(Π)).

Definition 2 For a program Π over vocabulary σ, the input-
completion of Π relative to vocabulary ι ⊆ σ, denoted by
IComp(Π, ι), is defined as the set of propositional formulas
(formulas in propositional logic) that consists of the implica-
tions B → a for all rules (2) in Π and the implications (3)
for all atoms a occurring in (σ \ ι) ∪ hd(Π).

Theorem 1 For a tight program Π over vocabulary σ and
vocabulary ι ⊆ σ, a setX of atoms from σ is an input answer

set of Π relative to ι if and only ifX satisfies program’s input-
completion IComp(Π, ι).

Constraint Answer Set Programs
We start this section by presenting primitive constraints as de-
fined by Marriott and Stuckey [1998, Section 1.1] using the
notation convenient for our purposes. We refer to this con-
cept as a constraint dropping the word “primitive”. We use
constraints to define a notion of a generalized constraint sat-
isfaction problem that Marriott and Stuckey refer to as “con-
straint”. We then review constraint satisfaction problems as
commonly defined in artificial intelligence literature and il-
lustrate that they are special case of generalized constraint
satisfaction problems.

Constraints and Generalized Constraint Satisfaction
Problem We adopt the following convention: for a func-
tion ν and an element x, by xν we denote the value that func-
tion ν maps x to (in other words, xν = ν(x)). A domain is
a nonempty set of elements (values). A signature Σ is a set
of variables, function symbols (or f-symbols), and predicate
symbols. Function and predicate symbols are associated with
a positive integer called arity. By Σ|v , Σ|r, and Σ|f we de-
note the subsets of Σ that contain all variables, all predicate
symbols, and all f-symbols respectively.

For instance, we can define signature Σ1 = {s, r, E,Q} by
saying that s and r are variables, E is a predicate symbol of
arity 1, and Q is a predicate symbol of arity 2. Then, Σ1|v =
{s, r}, Σ1|r = {E,Q}, Σ1|f = ∅.

Let D be a domain. For a set V of variables, we call a
function ν : V → D a [V,D] valuation. For a set F of f-
symbols, we call a total function on F an [F,D] f-denotation,
when it maps an n-ary f-symbol into a functionDn → D. For
a set R of predicate symbols, we call a total function on R an
[R,D] r-denotation, when it maps an n-ary predicate symbol
into an n-ary relation on D.

A table below presents definitions of sample domain D1,
valuations ν1, ν2, and r-denotations ρ1 and ρ2.
D1 {1, 2, 3}
ν1 [Σ1|v, D1] valuation, where sν1 = rν1 = 1
ν2 [Σ1|v, D1] valuation, where sν2 = 2 and rν2 = 1
ρ1 [Σ1|r, D1] r-denotation, where

Eρ1 = {〈1〉}, Qρ1 = {〈1, 1〉, 〈2, 2〉, 〈3, 3〉}
ρ2 [Σ1|r, D1] r-denotation, where

Eρ2 = {〈2〉, 〈3〉}, Qρ2 = Qρ1 .

A constraint vocabulary (c-vocabulary) is a pair [Σ, D],
where Σ is a signature and D is a domain. A term over a
c-vocabulary [Σ, D] is either a variable in Σ|v , a domain el-
ement in D, or an expression f(t1, . . . , tn), where f is an f-
symbol of arity n in Σ|f and t1, . . . , tn are terms over [Σ, D]

A constraint atom over a c-vocabulary [Σ, D] is an expres-
sion

P (t1, . . . , tn), (4)
where P is a predicate symbol from Σ|r of arity n and
t1, . . . , tn are terms over [Σ, D]. A constraint literal over a
c-vocabulary [Σ, D] is either a constraint atom (4) or an ex-
pression

¬P (t1, . . . , tn), (5)

where P (t1, . . . , tn) is a constraint atom over [Σ, D]. For in-
stance, expressions ¬E(s), ¬E(2), andQ(r, s) are constraint
literals over [Σ1, D1].

Let [Σ, D] be a c-vocabulary, ν be a [Σ|v, D] valuation, φ
be a [Σ|f , D] f-denotation, and ρ be a [Σ|r, D] r-denotation.
First, we define recursively a value that valuation ν assigns to
a term τ over [Σ, D] w.r.t. φ. We denote this value by τν,φ. For
a term that is a variable x in Σ|v , xν,φ = xν . For a term that
is a domain element d in D, dν,φ is d itself. For a term τ of
the form f(t1, . . . , tn), τν,φ is defined recursively by the for-
mula f(t1, . . . , tn)ν,φ = fφ(tν,φ1 , . . . , tν,φn). Second, we de-
fine what it means for valuation to be a solution of a constraint
literal w.r.t. given f- and r-denotations. We say that ν satis-
fies (is a solution to) constraint literal (4) over [Σ, D] w.r.t. φ
and ρ when 〈tν,φ1 , . . . , tν,φn 〉 ∈ P ρ. LetR be an n-ary relation
onD. ByR we denote complement relation ofR constructed
asDn\R. Valuation ν satisfies (is a solution to) constraint lit-
eral of the form (5) w.r.t. φ and ρ when 〈tν,φ1 , . . . , tν,φn 〉 ∈ P ρ.
For instance, valuation ν1 satisfies constraint literal Q(r, s)
w.r.t. ρ1, while valuation ν2 does not satisfy this constraint
literal w.r.t. ρ2 (when a signature contains no function sym-
bols no reference to f-denotation is necessary in the defini-
tions above).

We are now ready to define constraints, their syntax and
semantics. To begin we introduce a lexicon, which is a tuple
([Σ, D], ρ, φ), where [Σ, D] is a c-vocabulary, ρ is [Σ|r, D]
r-denotation, and φ is [Σ|f , D] f-denotation. For a lexicon
L = ([Σ, D], ρ, φ), we call any function that is [Σ|v, D] valu-
ation, a valuation over L. We will omit the last element of the
tuple if the signature Σ of the lexicon contains no f-symbols.
A constraint is defined over lexicon L = ([Σ, D], ρ, φ). Syn-
tactically, it is a constraint literal over [Σ, D] (lexicon L, re-
spectively). Semantically, we say that valuation ν over L sat-
isfies (is a solution to) the constraint c when ν satisfies c w.r.t.
φ and ρ. For instance, the table below presents definitions of
sample lexicons L1, L2, and constraints c1, c2, c3, and c4.

L1 ([Σ1, D1], ρ1)
L2 ([Σ1, D1], ρ2)
c1 a literal Q(r, s) over lexicon L1

c2 a literal Q(r, s) over lexicon L2

c3 a literal ¬E(s) over lexicon L2

c4 a literal ¬E(2) over lexicon L2.

Valuation ν1 is a solution to c1, c2, c3, but not a solution to c4.
Valuation ν2 is not a solution to c1, c2, c3, and c4. In fact,
constraint c4 has no solutions. We sometimes omit the explicit
mention of the lexicon when talking about constraints: we
then may identify a constraint with its syntactic form of a
constraint literal.

Definition 3 A generalized constraint satisfaction prob-
lem (GCSP) C is a finite set of constraints over a lexicon
L = ([Σ, D], ρ, φ). We say that a valuation ν over L satis-
fies (is a solution to) GCSP C when ν is a solution to every
constraint in C.

For example, any subset of set {c2, c3, c4} of constraints
forms a GCSP.

From GCSP to Constraint Satisfaction Problem We say
that a lexicon is finite-domain if it is defined over a c-
vocabulary that refers to a domain whose set of elements is
finite. Trivially, lexicons L1 and L2 are finite-domain. Con-
sider a special case of a constraint of the form (4) over finite-
domain lexicon L = ([Σ, D], ρ) so that each ti is a variable.
(For instance, constraints c1, c2, and c3 satisfy the stated re-
quirements, while c4 does not.) In this case, we can syntacti-
cally identify (4) with the pair

〈(t1, . . . , tn), P ρ〉. (6)

A constraint satisfaction problem (CSP) is a set of pairs (6),
where Σ|v and D of the finite-domain lexicon L are called
variables and domain of CSP, respectively. Saying that val-
uation ν over L satisfies (4) is the same as saying that
〈tν1 , . . . , tνn〉 ∈ P ρ. The latter is the way in which a solu-
tion to expressions (6) in CSP is typically defined. As in the
definition of semantics of GCSP, a valuation is a solution to a
CSP problem C when it is a solution to every pair (6) in C.
In conclusion, GCSP generalizes CSP by (i) elevating the re-
striction of finite-domain, and (ii) allowing us more elaborate
syntactic expressions (e.g., recall f-symbols).

Constraint Answer Set Programs and Constraint Formu-
las Let σr and σi be two disjoint vocabularies. We refer to
their elements as regular and irregular atoms respectively.
For a program Π, by At(Π) we denote the set of atoms occur-
ring in it. Similarly, for a propositional formula F , by At(F)
we denote the set of its atoms.
Definition 4 A constraint answer set program (CAS program)
over the vocabulary σ = σr ∪ σi is a triple 〈Π,B, γ〉,
where Π is a logic program over the vocabulary σ such that
hd(Π) ∩ σi = ∅, B is a set of constraints over the same lexi-
con, and γ is an injective function from the set σi of irregular
atoms to the set B of constraints.

For a CAS program P = 〈Π,B, γ〉 over the vocabulary
σ = σr ∪ σi so that L is the lexicon of the constraints in B, a
set X ⊆ σ is an answer set of P if
• X ⊆ At(Π)
• X is an input answer set of Π relative to σi, and
• the following GCSP over L has a solution

{γ(a)|a ∈ X ∩ σi} ∪ {¬γ(a)|a ∈ (At(Π) ∩ σi) \X}.
Note that ¬γ(a) may result in expression of the form
¬¬P (t1, . . . , tn) that we identify with P (t1, . . . , tn). (We use
this convention across the paper.)

These definitions are generalizations of CAS programs in-
troduced by Gebser et al. [2009] as they refer to the concept
of GCSP in place of CSP in the original definition.

Just as we defined constraint answer set programs, we can
define constraint formulas.
Definition 5 A constraint formula over the vocabulary σ =
σr ∪ σi is a triple 〈F,B, γ〉, where F is a propositional for-
mula over the vocabulary σ, B is a set of constraints over the
same lexicon, and γ is an injective function from the set σi of
irregular atoms to the set B of constraints.

For a constraint formula F = 〈F,B, γ〉 over the vocabu-
lary σ = σr ∪ σi so that L is the lexicon of the constraints in
B, a set X ⊆ σ is a model of F if

• X ⊆ At(F)
• X is a model of F , and
• the following GCSP over L has a solution

{γ(a)|a ∈ X ∩ σi} ∪ {¬γ(a)|a ∈ (At(F) ∩ σi) \X}.

Following theorem captures a relation between CAS pro-
grams and constraint formulas.

Theorem 2 For a CAS program P = 〈Π,B, γ〉 over the vo-
cabulary σ = σr ∪ σi and a set X of atoms over σ, when Π
is tight, X is an answer set of P if and only if X is a model of
constraint formula 〈IComp(Π, σi),B, γ〉 over σ = σr ∪ σi.

Satisfiability Modulo Theories versus
Constraint Formulas
First, in this section we introduce the notion of a “theory”
in Satisfiability Modulo Theories (SMT) [Barrett and Tinelli,
2014]. Second, we present the definition of a “restriction for-
mula” and state the conditions under which such formulas are
satisfied by a given interpretation. These formulas are syn-
tactically restricted classical ground predicate logic formu-
las. The presented notions of interpretation and satisfaction
are usual, but are stated in terms convenient for our purposes.
This facilitates uncovering the precise link between CASP-
like formalisms and SMT-like formalisms. We note that in
literature on SMT, the term “object constant” or “function
symbol of arity 0” is commonly used to refer to elements in
the signature that we call variables.

An interpretation I for a signature Σ, or Σ-interpretation,
is a tuple (D, ν, ρ, φ) where

• D is a domain,
• ν is a [Σ|v, D] valuation,
• ρ is a [Σ|r, D] r-denotation, and
• φ is a [Σ|f , D] f-denotation.

For signatures that contains no f-symbols, we omit the refer-
ence to the last element of the interpretation tuple.

For a signature Σ, a Σ-theory is a set of interpreta-
tions over Σ. For instance, for signature Σ1, by I1 and I2

we denote the following sample interpretations (D1, ν1, ρ1)
and (D1, ν2, ρ1) respectively. Any subset of interpretations
{I1, I2} exemplifies a unique Σ1-theory.

A restriction formula over signature Σ is a finite set of
constraint literals over c-vocabulary [Σ, ∅]. Consider a Σ-
interpretation I = (D, ν, ρ, φ). To each term τ over a c-
vocabulary [Σ, ∅], I assigns a value τν,φ that we denote by τ I .
We say that I satisfies restriction formula Φ over Σ when ν
satisfies every constraint literal in Φ w.r.t. φ and ρ. For in-
stance, a sample restriction formula over Σ1 follows

{¬E(s),¬Q(r, s)}. (7)

Interpretation I2 satisfies this formula, while I1 does not.
We say that a restriction formula Φ over signature Σ is sat-

isfiable in a Σ-theory T , or is T -satisfiable, when there is an
element of the set T that satisfies Φ. For example, restriction
formula (7) is satisfiable in any Σ1-theory that contains inter-
pretation I2. On the other hand, restriction formula (7) is not
satisfiable in Σ1-theory {I1}.

SMT and ASPT Programs We now introduce SMT for-
mulas that merge the concepts of propositional formulas and
Σ-theories. Then, we present ASPT programs that merge the
concepts of logic programs and Σ-theories.

Definition 6 An SMT formula P over vocabulary
σ = σr ∪ σi is a triple 〈F, T, µ〉, where F is a proposi-
tional formula over σ, T is a Σ-theory, and µ is an injective
function from irregular atoms σi to constraint literals over
c-vocabulary [Σ, ∅].

For an SMT formula 〈F, T, µ〉 over σ, a set X ⊆ σ is its
model if

• X ⊆ At(F),
• X is a model of F , and
• the following restriction formula

{µ(a)|a ∈ X ∩ σi} ∪ {¬µ(a)|a ∈ (At(F) ∩ σi) \X}.

is satisfiable in Σ-theory T .

In the literature on SMT, a more sophisticated syntax than
SMT formulas provide is typically discussed. Yet, SMT
solvers often rely on the so called propositional abstractions
of predicate logic formulas [Barrett and Tinelli, 2014, Section
1.1], which, in their most commonly used case, coincide with
SMT formulas discussed here.

Definition 7 A logic program modulo theories or ASPT pro-
gram P over vocabulary σ = σr ∪ σi is a triple 〈Π, T, µ〉,
where Π is a logic program over σ, T is a Σ-theory. and µ
is an injective function from irregular atoms σi to constraint
literals over c-vocabulary [Σ, ∅].

For an ASPT program 〈Π, T, µ〉 over σ, a set X ⊆ σ is its
model if

• X ⊆ At(Π),
• X is an input answer set of Π relative to σi, and
• the following restriction formula

{µ(a)|a ∈ X ∩ σi} ∪ {¬µ(a)|a ∈ (At(Π) ∩ σi) \X}.

is satisfiable in Σ-theory T .

Uniform Theories The presented definition of a Σ-theory
places no restrictions on the domains, r-denotations, or f-
denotations being identical across the interpretations defining
a theory. In practice, such restrictions are very common in
SMT. We now define so called “uniform” theories that follow
these typical restrictions. We will then show how restriction
formulas interpreted over uniform theories can practically be
seen as syntactic variants of GCSPs. This connection brings
us to a straightforward relation between SMT formulas over
uniform theories and constraint formulas as well as between
CAS programs and ASPT programs. In the following section,
we list several common SMT fragments such as satisfiability
modulo difference logic and satisfiability modulo linear arith-
metic whose theories are, in fact, uniform theories. We then
use these findings to relate several ASP modulo theories ap-
proaches such as ASP(DL) introduced in [Liu et al., 2012]
and ASP(LC) introduced in [Liu et al., 2012] to CASP ap-
proaches.

Definition 8 For a signature Σ, we call a Σ-theory T uni-
form over lexicon L = ([Σ, D], ρ, φ) when (i) all interpreta-
tions in T are of the form (D, ν, ρ, φ) (note how valuation ν is
the only not fixed element in the interpretations), and (ii) for
every possible [Σ|v, D] valuation ν, there is an interpretation
(D, ν, ρ, φ) in T .

To illustrate a concept of a uniform theory, a table be-
low defines sample domain D2, valuations ν3 and ν4, and
r-denotation ρ3.

D2 {1, 2}
ν3 [Σ1|v, D2] valuation, where sν3 = 1 and rν3 = 2
ν4 [Σ1|v, D2] valuation, where sν4 = rν4 = 2
ρ3 [Σ1|r, D2] r-denotation, where

Eρ3 = {〈2〉}, Qρ3 = {〈1, 1〉, 〈2, 2〉}
Valuations ν1 and ν2 can be seen not only as [Σ1|v, D1] valu-
ations but also as [Σ1|v, D2] valuations. The set

{(D2, ν1, ρ3), (D2, ν2, ρ3), (D2, ν3, ρ3), (D2, ν4, ρ3)}

of Σ1 interpretations is an example of a uniform theory over
lexicon ([Σ1, D2], ρ3). We denote this theory by T1. On the
other hand, the set

{(D2, ν1, ρ3), (D2, ν2, ρ3), (D2, ν3, ρ3), (D1, ν4, ρ3)}

of Σ1 interpretations is an example of a non-uniform theory.
Indeed, the condition (i) of Definition 8 does not hold for
this theory: the last interpretation refers to a different domain
than the others. Also, neither of Σ1-theories {I1}, {I1, I2} is
uniform over lexicon ([Σ1, D1], ρ1). In this case, the condi-
tion (ii) of Definition 8 does not hold.

It is easy to see that for uniform theories we can identify
their interpretations of the form (D, ν, ρ, φ) with their sec-
ond element valuation ν. The other three elements are fixed
by the lexicon over which the uniform theory is defined. In
the following we will sometimes use this convention. For ex-
ample, we may refer to interpretation (D2, ν1, ρ3) of uniform
theory T1 as ν1.

For uniform Σ-theory T over lexicon ([Σ, D], ρ, φ) we can
extend the syntax of restriction formulas by saying that a re-
striction formula is defined over c-vocabulary [Σ, D] as a fi-
nite set of constraint literals over [Σ, D] (earlier we consid-
ered constraint literals over [Σ, ∅]). The earlier definition of
semantics is still applicable. In the following for the uniform
theories we assume such a more general syntax. Similarly, we
can extend the definition of SMT formula given a constraint
Σ-theory T over lexicon ([Σ, D], ρ, φ) as follows: an SMT
formula P over vocabulary σ = σr ∪ σi is a triple 〈F, T, µ〉,
where F is a propositional formula over σ, T is a Σ-theory,
and µ is an injective function from irregular atoms σi to con-
straint literals over c-vocabulary [Σ, D]. Note how µ-mapping
refers do the domain of lexicon now in place of an empty set
in the earlier definition. The definition of ASPT program can
be extended in the same style. For the case of uniform theo-
ries we will assume the definition of SMT formulas as stated
in this paragraph. The same applies to the case of ASPT pro-
grams modulo uniform theories.

We now present a theorem that makes the connection be-
tween GCSPs over some lexicon L and restriction formulas

interpreted using the uniform theory T over the same lexi-
con L apparent: the question whether a given GCSP over L
has a solution translates into the question whether the set of
constraint literals of GCSP forming a restriction formula is
T -satisfiable. Furthermore, any solution to such GCSP is also
an interpretation in T that satisfies the respective restriction
formula, and the other way around. We then relate SMT for-
mulas “modulo uniform theories” and constraint formulas, as
well as ASPT programs and CAS programs.

Theorem 3 For a lexicon L = ([Σ, D], ρ, φ), a set Φ of
constraint literals over c-vocabulary [Σ, D], a uniform Σ-
theory T over lexicon L, the following holds

1. for any [Σ|v, D] valuation ν, there is an interpretation ν
in T ,

2. [Σ|v, D] valuation ν is a solution to GCSP Φ over lex-
icon L if and only if interpretation ν in T satisfies re-
striction formula Φ.

3. GCSP Φ over lexicon L has a solution if and only if
restriction formula Φ is T -satisfiable.

Let L denote a lexicon ([Σ, D], ρ, φ). By BL we denote the
set of all constraints over L. By TL we denote the uniform
Σ-theory over L.

Theorem 4 For a lexicon L = ([Σ, D], ρ, φ), a vocabulary
σ = σr∪σi, and a setX of atoms over σ, setX is a model of
SMT formula 〈F, TL, µ〉 over σ if and only if X is a model of
a constraint formula 〈F,BL, µ〉 over σ (where µ is identified
with the function from irregular atoms to constraints over L
in a trivial way.)

This theorem illustrates that for uniform theories the lan-
guage of SMT formulas and constraint formulas coincide. Or,
that the language of constraint formulas is a special case of
SMT formulas that are defined over uniform theories. We now
show similar relation between CAS and ASPT programs.

Theorem 5 For a lexicon L = ([Σ, D], ρ, φ), a vocabulary
σ = σr∪σi, and a setX of atoms over σ, setX is a model of
ASPT program 〈Π, TL, µ〉 over σ if and only if X is a model
of a CAS formula 〈Π,BL, µ〉 over σ.

SMT and CASP Connection
This section starts by introducing numeric signatures and lex-
icons, and particular uniform theories. These definitions al-
low us to precisely define the languages used by various con-
straint answer set solvers. We conclude with the discussion of
the variety of solving techniques used in logic programming
community.

Let Z and R denote the sets of integers and real num-
bers respectively. We say that a signature is numeric when
it satisfies the following requirements (i) its only f-symbols
are +, × of arity 2, and (ii) its only predicate symbols are
<, >, ≤, ≥, =, 6= of arity 2. We use the symbol A to de-
note a numeric signature. Let φZ and ρZ be [{+,×},Z] f-
denotation and [{<,>,≤,≥,=, 6=},Z] r-denotation respec-
tively, where they map their function and predicate sym-
bols into usual arithmetic operations and relations over in-
tegers. We call any lexicon of the form ([A,Z], ρZ, φZ) inte-
ger. Similarly, φR and ρR denote [{+,×},R] f-denotation and

[{<,>,≤,≥,=, 6=},R] r-denotation respectively, where they
map their function and predicate symbols into usual arith-
metic operations and relations over reals. We call any lexicon
of the form ([A,R], ρR, φR) numeric.

Such commonly used theories in SMT as linear real arith-
metic, linear integer arithmetic, and integer difference logic
are uniform. To be more precise, linear real arithmetic is an
example of a uniform theory over a numeric lexicon. This
arithmetic poses syntactic conditions on restriction formulas
that it interprets. Namely, literals in these restriction formulas
must correspond to linear constraints. Similarly, linear inte-
ger arithmetic and integer difference logic are examples of
uniform theories over integer lexicons. Literals in restriction
formulas in these arithmetics must correspond to integer lin-
ear constraints. Furthermore, the difference logic is a special
case of integer linear arithmetic posing yet additional syntac-
tic restrictions [Nieuwenhuis and Oliveras, 2005].

We call any ASPT program 〈Π, T, µ〉 over σr ∪ σi
• an ASPT(L) program if T is the uniform theory over

a numeric lexicon and µ maps irregular atoms σi into
linear constraints.
• an ASPT(IL) program if T is the uniform theory over

an integer lexicon and µ maps irregular atoms σi into
integer linear constraints.
• an ASPT(DL) program if T is the uniform theory over

an integer lexicon and µ maps irregular atoms σi into
difference logic constraints.

In the same style, we can define SMT(L), SMT(IL), and
SMT(DL) formulas.

From Theorem 5, CAS programs of the form 〈Π,B∗L, γ〉,
where L is a numeric lexicon and B∗L is the set of all lin-
ear constraints over L, are essentially the same objects as
ASPT(L) programs. Similarly, it follows that CAS programs
of the form 〈Π,B∗L, γ〉, where L is an integer lexicon and B∗L
is the set of all integer linear constraints over L, are essen-
tially the same objects as ASPT(IL) programs.

Obviously, Theorems 2 and 4 pave the way for using SMT
systems that solve SMT(L) and SMT(IL) problems as is for
solving tight ASPT(L) and ASPT(IL) programs respectively.
It is sufficient to compute the input completion of the pro-
gram relative to irregular atoms. This observation has been
utilized in work by Lee and Meng [2013] and Janhunen et
al. [2011]. Furthermore, Janhunen et al. propose a transla-
tion of ASPT(DL) programs into SMT(DL) formulas. Sys-
tem DINGO utilizes this translation by invoking SMT solver
Z3 for finding models for ASPT(DL) programs. It is a di-
rection of future work to generalize these results to arbitrary
theories.

Outlook on Constraint Answer Set Solvers Table 1
presents the landscape of current constraint answer set solvers
using the unified terminology of this section. The star ∗ anno-
tating language ASPT(IL) denotes that the solver supporting
this language requires the specification of finite ranges for its
variables (since finite-domain constraint solvers are used as
underlying solving technology).

At a high-level abstraction, one may summarize the ar-
chitectures of the CLINGCON and EZCSP solvers as ASP-
based solvers plus theory solver. Given a CAS program

Solver Language
CLINGCON [Gebser et al., 2009] ASPT(IL)∗

EZCSP [Balduccini, 2009] ASPT(IL)∗
ASPT(IL)
ASPT(L)

MINGO [Liu et al., 2012] ASPT(L)
DINGO [Janhunen et al., 2011] ASPT(DL)

Table 1: Solvers Categorization

〈Π,B, γ〉, both CLINGCON and EZCSP first use an answer
set solver to compute an input answer set of Π. Second,
they contact a theory solver to verify whether respective
constraint satisfaction problem has a solution. In case of
CLINGCON, finite domain constraint solver GECODE is used
as a theory solver. System EZCSP uses constraint logic pro-
gramming tools such as BPROLOG [Zhou, 2012], SICSTUS
PROLOG [Carlsson and Fruehwirth, 2014], and SWI PRO-
LOG [Wielemaker et al., 2012]. These tools provide EZCSP
with the ability to work with three different kinds of con-
straints: finite-domain integer, integer-linear, and linear con-
straints. To process ASPT(L) programs, the solver MINGO
translates these programs into mixed integer programming
expressions and then uses the solver CPLEX [IBM, 2009] to
solve these formulas. To process ASPT(DL) programs DINGO
translates these programs into SMT(DL) formulas and applies
the SMT solver Z3 [De Moura and Bjørner, 2008] to find their
models.

The diversity of solving approaches used in CASP
paradigms suggests that solutions of the kind are available
for SMT technology. Typical SMT architecture is in a style
of systems CLINGON and EZCSP. At a high-level abstraction,
one may summarize common architectures of SMT solvers
as satisfiability-based solvers augmented with theory solvers.
Theory solvers are typically implemented within an SMT
solver and are as such custom solutions. The fact that CLIN-
GON and EZCSP use tools available from the constraint pro-
gramming community suggests that these tools could be of
use in SMT community also. The solution exhibited by sys-
tem MINGO, where mixed integer programming is used for
solving ASPT(L) programs, hints that a similar strategy can
be implemented for solving SMT(L) formulas. These ideas
have recently been explored in [King et al., 2014].

Conclusions
In this paper we unified the terminology stemming from the
fields of CASP and SMT solving. This unification helped us
identify the special class of so called uniform theories widely
used in SMT practice. Given such theories, CASP and SMT
solving share more in common than meets the eye. We ex-
pect this work to be a strong building block that will bolster
the cross-fertilization between three different, even if related,
automated reasoning communities: CASP, constraint (satis-
faction processing) programming, and SMT. In the future, we
would like to investigate a similar link to a related formalism
of HEX-programs [Eiter et al., 2012].

References
[Balduccini, 2009] Marcello Balduccini. Representing con-

straint satisfaction problems in answer set programming.
In Proceedings of ICLP Workshop on Answer Set Pro-
gramming and Other Computing Paradigms (ASPOCP),
https://www.mat.unical.it/ASPOCP09/, 2009.

[Barrett and Tinelli, 2014] Clark Barrett and Cesare Tinelli.
Satisfiability modulo theories. In Edmund Clarke, Tom
Henzinger, and Helmut Veith, editors, Handbook of Model
Checking. Springer, 2014.

[Carlsson and Fruehwirth, 2014] Mats Carlsson and Thom
Fruehwirth. Sicstus PROLOG User’s Manual 4.3. Books
On Demand - Proquest, 2014.

[Clark, 1978] Keith Clark. Negation as failure. In Herve
Gallaire and Jack Minker, editors, Logic and Data Bases,
pages 293–322. Plenum Press, New York, 1978.

[De Moura and Bjørner, 2008] Leonardo De Moura and
Nikolaj Bjørner. Z3: An efficient smt solver. In Proceed-
ings of the Theory and Practice of Software, 14th Interna-
tional Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, pages 337–340, 2008.

[Eiter et al., 2012] Thomas Eiter, Michael Fink, Thomas
Krennwallner, and Christoph Redl. Conflict-driven ASP
solving with external sources. TPLP, 12(4-5):659–679,
2012.

[Fages, 1994] François Fages. Consistency of Clark’s com-
pletion and existence of stable models. Journal of Methods
of Logic in Computer Science, 1:51–60, 1994.

[Gebser et al., 2009] Martin Gebser, Max Ostrowski, and
Torsten Schaub. Constraint answer set solving. In Pro-
ceedings of 25th International Conference on Logic Pro-
gramming (ICLP), pages 235–249. Springer, 2009.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert Kowalski and Kenneth
Bowen, editors, Proceedings of International Logic Pro-
gramming Conference and Symposium, pages 1070–1080.
MIT Press, 1988.

[IBM, 2009] IBM. IBM ILOG AMPL Version 12.1
User’s Guide, 2009. http://www.ibm.com/software/
commerce/optimization/cplex-optimizer/.

[Janhunen et al., 2011] Tomi Janhunen, Guohua Liu, and
Ilkka Niemela. Tight integration of non-ground answer set
programming and satisfiability modulo theories. In Pro-
ceedings of the 1st Workshop on Grounding and Transfor-
mations for Theories with Variables, 2011.

[King et al., 2014] Tim King, Clark Barrett, and Cesare
Tinelli. Leveraging linear and mixed integer programming
for smt. In Proceedings of the 14th Conference on Formal
Methods in Computer-Aided Design, FMCAD ’14, pages
24:139–24:146, Austin, TX, 2014. FMCAD Inc.

[Lee and Meng, 2013] Joohyung Lee and Yunsong Meng.
Answer set programming modulo theories and reasoning
about continuous changes. In Proceedings of the 23rd

International Joint Conference on Artificial Intelligence
(IJCAI-13), Beijing, China, August 3-9, 2013, 2013.

[Lierler and Truszczynski, 2011] Yuliya Lierler and
Miroslaw Truszczynski. Transition systems for model
generators — a unifying approach. Theory and Practice
of Logic Programming, 27th International Conference on
Logic Programming (ICLP’11) Special Issue, 11, issue
4-5, 2011.

[Lierler, 2014] Yuliya Lierler. Relating constraint answer set
programming languages and algorithms. Artificial Intelli-
gence, 207C:1–22, 2014.

[Liu et al., 2012] Guohua Liu, Tomi Janhunen, and Ilkka
Niemela. Answer set programming via mixed integer pro-
gramming. In Knowledge Representation and Reasoning
Conference, 2012.

[Marriott and Stuckey, 1998] Kim Marriott and Peter J.
Stuckey. Programming with Constraints: An Introduction.
MIT Press, 1998.

[Mellarkod et al., 2008] Veena S. Mellarkod, Michael Gel-
fond, and Yuanlin Zhang. Integrating answer set program-
ming and constraint logic programming. Annals of Math-
ematics and Artificial Intelligence, 53(1):251–287, 2008.

[Nieuwenhuis and Oliveras, 2005] Robert Nieuwenhuis and
Albert Oliveras. Dpll(t) with exhaustive theory propaga-
tion and its application to difference logic. In Proceedings
of the 17th International Conference on Computer Aided
Verification (CAV’05), volume 3576 of LNCS. Springer,
2005.

[Wielemaker et al., 2012] Jan Wielemaker, Tom Schrijvers,
Markus Triska, and Torbjörn Lager. SWI-Prolog. Theory
and Practice of Logic Programming, 12(1-2):67–96, 2012.

[Zhou, 2012] Neng-fa Zhou. The language features and ar-
chitecture of b-prolog. Theory and Practice of Logic Pro-
gramming, 12(1-2):189–218, January 2012.

