
UNIVERSITY OF NEBRASKA AT OMAHA
COURSE SYLLABUS/DESCRIPTION

Department and Course Number CSCI 4980
Course Title Topics in Computer Science
Course Coordinator Stanley Wileman
Total Credits 1–3 (variable credit)
Date of Last Revision June 13, 2003

1.0 COURSE DESCRIPTION

1.1 Overview of content and purpose of the course
This course is used to provide a mechanism for offering instruction in subject areas that
are not covered in other regularly-scheduled courses. Traditionally, it is used to focus on
areas of faculty research interest, or on evolving subject areas in computer science.

1.2 For whom course is intended
This course is intended primarily for juniors and seniors in computer science.

1.3 Prerequisites of the course (courses)
Junior or senior standing is required. It is also usually the case that permission of the
faculty teaching the course is required. Topics offered under the CSCI 4980 designation
must be approved by the undergraduate curriculum committee. A sample course proposal
is included as an appendix to this syllabus.

1.4 Prerequisites of the course (topics)
The specific topics appropriate as prerequisites for this course depend on the particular
topic to be covered. The prerequisites will be identified in the faculty proposal for the
topics course.

1.5 Unusual circumstances of the course
None

2.0 OBJECTIVES

The objectives for each offering of CSCI 4980 will be different, but will be specified in the faculty
proposal for the course.

3.0 CONTENT AND ORGANIZATION

The topics covered in the course and their organization depend entirely on the subject area. They
will be specified in the faculty proposal for the course.

4.0 TEACHING METHODOLOGY

4.1 Methods to be used
Topics courses may be presented as traditional lecture courses, or may be presented using
faculty-led discussions where each student is expected to actively participate.

4.2 Student role in the course
Student expectations are dependent on the teaching methods used. In all cases, however,
identification of appropriate resources (journal articles, textbooks, web resources, and so
forth) that cover the subject will be provided, and students will be expected to become
familiar with the resources. If discussions are used as a teaching method, students are
expected to actively participate.

5.0 EVALUATION

5.1 Types of student projects used for evaluation
The student work used for evaluation will be dependent on the faculty teaching the
course. Traditional quizzes and examinations, written reports, oral presentations, written
homework problems, and programming assignments may be used, as well as participation
in discussions.

5.2 Basis for determining the final grade

The final grade is determined using the criteria established by the supervising faculty and
documented in the the course proposal.

5.3 Grading scale
The grading scale for each independent study is established by the supervising faculty
and documented in the course proposal.

6.0 RESOURCE MATERIAL

Resource materials are expected to include textbooks and research papers in scholarly journals.
Material from the web and other unpublished works may be used as the basis for the study with
the approval of the supervising faculty.

7.0 Estimate Computer Science Accreditation Board (CSAB) Category Content (class time in hours):

The specific CSAB categories in which the subject matter can be categorized depends on the
specific topic. Since CSCI 4980 is used for junior/senior level topics, it is expected that the
majority of the material will be in the advanced category. An estimate is that the equivalent of 10
hours of lecture on core topics and 35 hours of lecture on advanced topics will be presented. The
specific CSAB categories covered, and the number of hours of instruction in each category, will
be specified in the faculty course proposal.

8.0 Oral and Written Communication

As expected, it is not possible to indicate what oral and written communication will be required in
each offering of this course. Such will, however, be specified in the faculty course proposal.

9.0 Social and Ethical Issues

These issues may be covered in some topics courses.

10.0 Theoretical content

Some topics courses may cover theoretical material.

11.0 Problem analysis

The extent to which a specific topics course includes problem analysis is dependent on the specific
course offering, and will be specified in the faculty course proposal.

12.0 Solution design

The extent to which a specific topics course includes solution design is dependent on the specific
course offering, and will be specified in the faculty course proposal.

CHANGE HISTORY
Date Change By whom Comments
6/12/2003 Added ABET-specific sections and

copy of sample faculty course proposal.
Wileman

CSCI 4980 — Topics in Computer Science
Course Proposal

Subject : Apprenticeship in Software Architecture
Coordinator: Victor Winter
Total Credits: 3

Course Description
Purpose

The Apprenticeship in Software Architecture and Design is meant to give students real,
industry-quality experience on software development projects to provide a frame of reference
students can relate to when taking upper-level Computer Science courses.

Upper-level Computer Science courses are heavily based in theory, not implementation, as
they should be to provide students with a technology-agnostic education. However, students
require experience in the various aspects of implementation to truly appreciate and
understand what the theory behind it teaches them.

Content
Students will work on real-world projects, provided either in-house by the Computer Science
department or, preferably, industry.

The specific content of the course will vary depending on the project being implemented, but
will generally focus on how to recognize, analyze, and implement best-practices such as
design patterns, coding standards, and decoupled architectures.

Target Student Base
Any Computer Science student with a firm understanding of basic programming principles
(syntax and data structures) and wants to build upon this basis in the context of a larger,
realistic development environment will be able to succeed in the class.

Course Prerequisites
• CSCI 1620
• CSCI 3320

Prerequisites can be waived with the instructor’s approval.

Topic Prerequisites
Students will be expected to be proficient in imperative programming languages.

It is expected that if students know C++, they will be able to quickly pick up other
imperative languages such as Java or C# without any class time being spent on syntax. Other
language-specific issues, such as basic compiling and program execution, will be covered
briefly in class.
Students will also be expected to have some minimal experience in relational databases.
They should be able to quickly pick up the syntax of SQL and any various APIs (e.g. JDBC,
ODBC) used to access data from the programming language.

Objectives
Develop instincts for solving problems cleanly and elegantly
Ability to understand and appreciate industry best practices
Work effectively in software development groups, both in-person and electronically

Content
The specific content will depend on the projects chosen for the class. Given a project, the class will
focus around implementing cutting-edge solutions using the best, most effective means.

Each project will have a series of milestones, roughly following this schedule:

Milestone Contact
Hours Weeks Description

1. Prototype 9 3 The first iteration of the system. Mostly exploring of
different architectures to get a feel for what works and
what doesn’t.

2. Alpha 12 4 The beginnings of the real code base. May or may not be
based on a prototype, but does definitely reflect the lessons
learned in prototyping.

3. Beta 15 5 A near working version of the system. All features are
implemented.

4. Release 6 3 Cleaning up, documentation, install techniques, delivery of
the system to the client.

Teaching Methodology
Methods

Class time will be in-formal. Instead of lectures, students will actively participate in
discussions, guiding both the topics and content discussed.

The instructor will focus on issues currently facing the project teams. Help will be given to
pinpoint an issue, offer solutions, and go into discussions concerning the benefits and
implications of each solution.

This process would likely in involve in-class code reviews, architectural discussions,
prototyping, and the like.

Student Role
Students will be expected to work in small groups of three to five working a real-world
project with an expected deliverable of a working system at the end of the semester.

This may require a significant time being spent outside of class. Students will be expected to
work on their own and also meet with their team at least once per week outside of class.

Contact Hours
In-class contact hours are 3 per week.
However, an extra 3-6 hours per week will be expected of students to work on their project
and meet with the project Teaching Assistant to discuss various implementation details that
may not be discussed in class.

Evaluation
Students will be heavily evaluated on the results on their project.

The coordinator and TAs will continually monitor projects and if it is deemed the project was just
not able to be completed within a semester’s timeframe; students will not be harshly graded.
However, projects will be chosen with the semester timeframe in mind, so students will be expected
to have them completed.

Students will also be graded on their class and group participation. The coordinator and TAs will
interact with the project teams and note the participation level of each team member. If concern
arises that a team member is not contributing as well as he or she should, they will be notified and
urged to participate more or risk their grade being affected.

Components
Component Grading

Project 60%
Participation 40%

Grading scale
Points Grade
97-100% A+

93-96% A
90-92% A-
87-89% B+
83-86% B
80-82% B-
77-79% C+
73-76% C
70-72% C-
67-69% D+
63-66% D
60-62% D-

0-59% F

Resource Material
The course has no official text books.

Students will be encouraged to reference material from both online and print sources, but what the
sources actually are depends on the student’s project.

The coordinator and TAs will refer students to various readily-available resources as needed.

Computing Accreditation Commission Categories
CAC Category Core Advanced

Hardware and software
Networking and telecommunications
Modern programming language 9
Analysis and design 21
Data management 3
Role of IS in organizations

Oral and Written Communications
Students will not be required to submit formal reports.

However, they will be graded on keeping the architectural documentation, including informal
requirements and specifications, for their system up to date.

Social and Ethical Issues
Students will potentially be working on product for industry. In this case, it would be desirable for
students to be paid for working on their projects more than the 5-10 hours per week already
expected of them.

This would benefit the students in letting them spend more time working on the project and hence
learning from their increased involvement.

Also, industry would benefit in that the projects would have considerably better implementations
due to the increased time students could spend on them.

However, how this money gets to students is undecided. Potentially, students could be put directly
on the company’s payroll after they have proved they can provide valuable contributions, both
quality-wise and quantity-wise, to the project.

Another possibility would be to have companies contract the Computer Science department for the
work, then after taking some small overhead, the department would pay students whatever hourly
rate had been decided with the company.

Having students work for pay is not essential to the class, but it would greatly increase the amount
of time students could spend on projects and hence benefit all parties involved.

Theoretical Content
This class will not directly teach theoretical content, as it is intended as a preparation course for the
advanced-level Computer Science courses that deal solely with theoretical content.

Problem Analysis
Students learn how to be productive when it comes to solving problems encountered in software
development problems. This will be done by teaching them not to just solve problems, but how to
recognize the best solutions that result in the most productivity saved, most stable system, most
modular system, etc.

Solution Design
Students learn how to approach system design from an implementation perspective.
Although valuable, long requirements documents and the like will not be a major factor in the
class, and they are already covered in Software Engineering. Instead, students will focus on
designing best architectures and systems strictly from the source code point of view.

How these architectures and systems correlate with the project requirements and the like will
naturally be emphasized and care will be taken to implement them. But when putting together the
actual system, students will concentrate on the aspects that distinguish a real, robust, flexible
system from those that students may typically work on in academic environments.

Knowing these distinguishing features is the core experience students in the class should develop
to enable them to go on to more pure theoretical classes later in the Computer Science program
and have a better understanding and appreciation for the material covered.

	UNIVERSITY OF NEBRASKA AT OMAHA
	COURSE SYLLABUS/DESCRIPTION
	CHANGE HISTORY
	Change
	CSCI 4980 — Topics in Computer Science
	Subject : Apprenticeship in Software Architecture
	Coordinator: Victor Winter
	Total Credits: 3
	Course Description
	Purpose
	Content
	Target Student Base
	Course Prerequisites
	Topic Prerequisites

	Objectives
	Develop instincts for solving problems cleanly and elegantly
	Ability to understand and appreciate industry best practices
	Work effectively in software development groups, both in-person and electronically

	Content
	Teaching Methodology
	Methods
	Student Role
	Contact Hours

	Evaluation
	Components
	Grading scale

	Resource Material
	Computing Accreditation Commission Categories
	Oral and Written Communications
	Social and Ethical Issues
	Theoretical Content
	Problem Analysis
	Solution Design

