
UNIVERSITY OF NEBRASKA AT OMAHA
COURSE SYLLABUS/DESCRIPTION

Department and Course Number CSCI 4970
Course Title Computer Science Capstone
Course Coordinator H. Siy
Total Credits 3
Date of Last Revision March 3, 2014

1.0 Course Description

1.1 Overview of content and purpose of the course (Catalog description).
The Capstone Project completes a Computer Science student’s undergraduate experience.
Students will work on a team-based real-world project, practicing software engineering
skills and applying fundamental computer science principles acquired throughout their
undergraduate study.

1.2 Prerequisites of the course.
CSCI 4830. Senior standing in Computer Science.

1.3 Overview of content and purpose of the course.

This course serves to round out a Computer Science student's undergraduate experience
by enabling him or her to apply fundamental computer science principles to the solution
of real-world problems. Furthermore, the student gets to apply software development
skills on a large project, working together in groups. Such an experience is intended to
help prepare the student for the career realities of a software professional.

As this is a project-oriented course, the content will vary from project to project. Some
topics that may be covered include:
Team collaboration strategies
Version control
Requirements modeling
Design modeling
Software analysis and testing

1.4 Unusual circumstances of the course.

None.

1.5 For whom course is intended.

All students majoring in Computer Science.

2.0 Course Justification Information
2.1 Anticipated audience / demand:

This is a required course for all undergraduate students majoring in Computer Science.
2.2 Indicate how often this course will be offered and the anticipated enrollment:

Every semester
2.3 If it is a significant change to an existing course, please explain why it is needed:

n/a

3.0 Objectives

3.1 List of performance objectives stated in terms of the student educational outcomes.

3.1.1 Apply fundamental computer science principles in solving real-world problems.
3.1.2 Develop communication skills through interaction with client.
3.1.3 Gain proficiency in modeling, implementing and testing large software

applications.
3.1.4 Learn to work in teams.

4.0 Content and Organization

List of major topics to be covered in chronological sequence (specify number of contact hours on
each).

As this is a project-oriented course, the content will vary from project to project. Some topics
that may be covered include:

4.1 Team collaboration [3]

4.1.1 Group dynamics
4.1.2 Geographically distributed software development

4.2 Modeling requirements and solutions [3]
4.2.1 Requirements elicitation and analysis
4.2.2 Architecture and design

4.3 Source code analysis [3]
4.3.1 Reasoning about programs
4.3.2 Version control

4.4 Testing [3]
4.4.1 Test case development
4.4.2 Regression testing

Additional project-specific lectures may be provided by the instructor and/or client.

5.0 Teaching Methodology Information

5.1 Methods:
This is mainly a project-oriented course. The instructor will function as a consultant to
the project and will monitor the progress of the project.
Lectures reviewing the software development process will be provided.
Additional lectures specific to a project topic may also be provided.

5.2 Student role:

Students will form software development teams.
Students will work with a client to develop a project proposal.
Once the proposed project has been approved by the instructor and client, students will
consult with the instructor and develop a project plan for delivering a final product
acceptable to the client.
Students will be accountable for meeting the planned milestones and reporting progress
to the instructor and/or the client.
Upon completion of the project, students will publicly present and demonstrate their
work.

6.0 Evaluation Information

6.1 Describe the typical types of student projects that will be the basis for evaluating student
performance:
Projects are expected to have a challenging software component requiring the nontrivial
application of computer science principles. Example application types include
scheduling, simulation, data mining, cyber-physical systems, and scientific computing.
Projects will usually involve sophisticated algorithms manipulating complex structures,
and may involve overlapping areas such as language processing, networks, embedded
systems, real-time systems, parallel computation, databases, artificial intelligence,
computer graphics, etc.

6.2 Describe the typical basis for determining the final grade (e.g. weighting of various
student projects):
The course grade is based on the successful completion of the project, the quality of the
project artifacts, and strength of individual contributions.
Individuals will be evaluated based on each person's performance on the project.
Individual project contribution will be assessed based on weekly log activities, quality of
contributions, and peer evaluations.

6.3 Grading type:

Points Grade
97-100% A+
93-96% A
90-92% A-
87-89% B+
83-86% B
80-82% B-
77-79% C+
73-76% C
70-72% C-
67-69% D+
63-66% D

60-62% D-
0-59% F

7.0 Resource Material
7.1 Textbooks and/or other required readings used in course

7.1.1 F. Brooks, The Mythical Man-Month: Essays on Software Engineering, 2nd
Edition, Addison-Wesley, 1995.

7.1.2 B. Liskov and J. Guttag, Program Development in Java: Abstraction,
Specification, and Object-Oriented Design, Addison-Wesley, 2000.

7.1.3 I. Sommerville, Software Engineering, 9th edition, Addison-Wesley, 2010.
7.2 Other suggested reading materials, if any

7.2.1 F. Brooks, The Design of Design: Essays from a Computer Scientist, Addison-
Wesley, 2010.

7.2.2 B. Bruegge and A. Dutoit. Object-Oriented Software Engineering, 2nd edition,
Prentice Hall, 2004.

7.2.3 B. Chess, Secure Programming with Static Analysis, Addison-Wesley, 2007.

7.2.4 A. Cooper, About Face 3.0, Wiley, 2007.

7.2.5 R. Graham, D. Knuth, O. Patashnik. Concrete Mathematics: A Foundation for
Computer Science, 2nd edition, Addison-Wesley, 1994.

7.2.6 D. Norman, The Design of Everyday Things, Basic Books, 2002.

7.2.7 M. Pezze and M. Young. Software Testing and Analysis: Process, Principles and
Techniques, Wiley, 2008.

7.3 Other sources of information.

Technology- and domain-specific information to be provided by clients.

7.4 Current bibliography of resource for student’s information

7.4.1 F. Brooks. No Silver Bullet – Essence and Accidents of Software Engineering.
IEEE Computer, 20(4): 10-19, April 1987.

7.4.2 Melvin Conway. How do Committees Invent? Datamation 14(4): 28–31, 1968.

7.4.3 M. E. Fagan. Design and code inspections to reduce errors in program
development. IBM Systems Journal, 15(3), 1976.

7.4.4 A. Meneely and L. Williams. On Preparing Students for Distributed Software
Development with a Synchronous, Collaborative Development Platform. ACM
Technical Symposium on Computer Science Education (SIGCSE), 2009.

7.4.5 Eric Raymond. The Cathedral and the Bazaar. Linux Kongress, May 1997,
http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar. (Last
accessed March 18, 2010)

Additional reference material may be required based on actual project.

8.0 Computer Science Accreditation Board (CSAB) Category Content (class time in hours)

CSAB Category Core Advanced
Data structures 10
Computer organization and architecture
Algorithms and software design 10
Concepts of programming languages

9.0 Oral and Written Communications

Students will develop written requirements and analysis and design models to be presented to the
client for validation. They will also be required to make a presentation and demonstration of their
final project.

10.0 Social and Ethical Issues

Covered by prerequisite.

11.0 Theoretical content
Contact hours

Group dynamics 1.0
Version control 1.0
Program analysis 4.0

12.0 Problem analysis
Students learn to elicit requirements from actual clients and formulate them into a software
problem.

13.0 Solution design
Students learn to implement the requirements systematically, through refinement of models.
Students learn about relevant technologies and apply them to the problem. Students learn to
create regression tests to make sure that existing services that should not change are left
unchanged. Students learn to use version control as a way of controlling changes to the system.

http://www.catb.org/%7Eesr/writings/cathedral-bazaar/cathedral-bazaar

CHANGE HISTORY

Date Change By whom Comments
02/19/2009 Initial version Siy
02/19/2009 Modified sections 1, 3, 4 and 6 after

discussion during UPC meeting. Also
fixed the information in sections 8-12.

Siy

02/27/2009 Modified as a special topics proposal for
Fall 2009.

Siy

03/20/2010 Modified description to make it suitable
as a capstone course.

Siy

03/30/2010 Modified the wording to clarify that all
team projects are acceptable as long as
they solve a Computer Science-related
problem.

Siy

04/01/2010 Clarified that the proposed project must
be approved by instructor and client.

Siy

03/03/2014 Alphabetized references. Siy

UNIVERSITY OF NEBRASKA AT OMAHA
Mapping of CS Program Outcomes vs. course objectives

Department and Course Number CSCI 4960
Course Title Capstone Project
Course Coordinator Harvey Siy
Total Credits 3
Date of Last Revision April 1, 2010

Instructions: Paste or type the course objectives in the left-hand column. Indicate the
relationship between course objective and program outcome by placing one of the two following
marks in the appropriate cell:

S – Strong relationship
X – Contributing relationship

Course objective

CS Program Outcomes

(a
) k

no
w

le
dg

e
of

 d
is

ci
pl

in
e

(b
) a

na
ly

ze
 p

ro
bl

em
, d

ef
in

e
re

qu
ir

em
en

ts

(c
) d

es
ig

n
an

d
im

pl
em

en
t s

ol
ut

io
n

(d
) f

un
ct

io
n

on
 a

 te
am

(e
) e

th
ic

al
 is

su
es

(f
) c

om
m

un
ic

at
e

ef
fe

ct
iv

el
y

(g
) a

na
ly

ze
 im

pa
ct

 o
f c

om
pu

tin
g

(h
) c

on
tin

ue
d

pr
of

es
si

on
al

 d
ev

el
op

m
en

t

(i)
 C

ur
re

nt
 te

ch
ni

qu
es

 a
nd

 to
ol

s

(j
) a

pp
ly

 fo
un

da
tio

ns

(k
) a

pp
ly

 d
es

ig
n

an
d

de
ve

lo
pm

en
t

i
i

l

1. Apply fundamental computer science principles in
solving real-world problems.

S S S

2. Develop communication skills through interaction
with client.

 X S S S

3. Gain proficiency in modeling, implementing and
testing large software applications.

 S S X X S S

4. Learn to work in teams. S X S X

CS Program Outcomes (2008)

(a) An ability to apply knowledge of computing and mathematics appropriate to the discipline;
(b) An ability to analyze a problem, and identify and define the computing requirements appropriate to
its solution;
(c) An ability to design, implement and evaluate a computer-based system, process, component, or
program to meet desired needs;
(d) An ability to function effectively on teams to accomplish a common goal;
(e) An understanding of professional, ethical, legal, security, and social issues and responsibilities
(f) An ability to communicate effectively with a range of audiences
(g) An ability to analyze the local and global impact of computing on individuals, organizations and
society
(h) Recognition of the need for, and an ability to engage in, continuing professional development
(i) An ability to use current techniques, skills, and tools necessary for computing practices
(j) An ability to apply mathematical foundations, algorithmic principles, and computer science theory in
the modeling and design of computer-based systems in a way that demonstrates comprehension of the
tradeoffs involved in design choices
(k) An ability to apply design and development principles in the construction of software systems of
varying complexity.

	UNIVERSITY OF NEBRASKA AT OMAHA
	COURSE SYLLABUS/DESCRIPTION
	CHANGE HISTORY

	Date
	UNIVERSITY OF NEBRASKA AT OMAHA
	Mapping of CS Program Outcomes vs. course objectives
	CS Program Outcomes (2008)
	(a) An ability to apply knowledge of computing and mathematics appropriate to the discipline;
	(b) An ability to analyze a problem, and identify and define the computing requirements appropriate to its solution;
	(c) An ability to design, implement and evaluate a computer-based system, process, component, or program to meet desired needs;
	(d) An ability to function effectively on teams to accomplish a common goal;
	(e) An understanding of professional, ethical, legal, security, and social issues and responsibilities
	(f) An ability to communicate effectively with a range of audiences
	(g) An ability to analyze the local and global impact of computing on individuals, organizations and society
	(h) Recognition of the need for, and an ability to engage in, continuing professional development
	(i) An ability to use current techniques, skills, and tools necessary for computing practices
	(j) An ability to apply mathematical foundations, algorithmic principles, and computer science theory in the modeling and design of computer-based systems in a way that demonstrates comprehension of the tradeoffs involved in design choices
	(k) An ability to apply design and development principles in the construction of software systems of varying complexity.

