
UNIVERSITY OF NEBRASKA AT OMAHA
COURSE SYLLABUS

Department and Course Number CSCI 4830
Course Title Introduction to Software Engineering
Course Coordinator Harvey Siy
Total Credits 3
Repeat for Credit? No
Date of Last Revision March 3, 2014

1.0 Course Description Information

1.1 Catalog description:
Basic concepts and major issues of software engineering, current tools and techniques
providing a basis for analyzing, designing, developing, maintaining and evaluating
software systems. Technical, administrative and operating issues. Privacy, security and
legal issues.

1.2 Prerequisites of the course:
1.2.1 CSCI 3320
1.2.2 Familiar with advanced data structures
1.2.3 Familiar with main concepts of analysis of algorithms
1.2.4 Concepts of structured problem solving and programming
1.2.5 Concepts of object-oriented problem solving programming
1.2.6 Proficiency in one of the modern programming languages

1.3 Overview of content and purpose of the course:
This course covers topics on development of software systems. It provides students with
knowledge of performing system and software requirement analysis and specification,
architecture and detailed design, testing, and integration techniques. It also presents the
basics of project management and object oriented methodologies.
1.3.1 Software project management
1.3.2 Software life cycle and process
1.3.3 Requirement analysis
1.3.4 System and information engineering
1.3.5 Analysis and design methods

1.4 Unusual circumstances of the course.
none

2.0 Course Justification Information
2.1 Anticipated audience / demand:

The course is intended for upper division undergraduate CS or MIS majors who wish to
pursue the topic of Engineering and development of software systems.

2.2 Indicate how often this course will be offered and the anticipated enrollment:

Every semester
2.3 If it is a significant change to an existing course, please explain why it is needed:

n/a
3.0 List of performance objectives stated in learning outcomes in a student’s perspective:

3.1 Perform analysis and design of small and medium-sized software project using
structured methods.

3.2 Be able to participate in design of small and medium-sized software project using object-
oriented software development methodologies.

3.3 Prepare software project management documents.
3.4 Be able to participate in a project team.
3.5 Develop parts/whole prototype as well as implementation of small or medium-sized

software projects.
3.6 Introduce socio-technical and ethical issues in the development of real-world software

systems.

4.0 Content and Organization Information
4.1 List the major topics central to this course:

4.1.1 Introduction
4.1.1.1 FAQs about software engineering
4.1.1.2 Professional and ethical responsibility

4.1.2 Computer-based System Engineering*
4.1.2.1 Emergent system properties
4.1.2.2 Systems and their environment
4.1.2.3 System modeling
4.1.2.4 The system engineering process
4.1.2.5 System procurement

4.1.3 Software Processes
4.1.3.1 Software process models
4.1.3.2 Process iteration
4.1.3.3 Software specification
4.1.3.4 Software design and implementation
4.1.3.5 Software validation
4.1.3.6 Software evolution
4.1.3.7 Automated process support

4.1.4 Project Management
4.1.4.1 Management activities
4.1.4.2 Project planning
4.1.4.3 Project scheduling
4.1.4.4 Risk management

4.1.5 Managing People*
4.1.5.1 Limits to thinking
4.1.5.2 Group working
4.1.5.3 Choosing and keeping people
4.1.5.4 The people capability maturity model

4.1.6 Software Cost Estimation*
4.1.6.1 Productivity
4.1.6.2 Estimation techniques
4.1.6.3 Algorithmic cost modeling
4.1.6.4 Project duration and staffing

4.1.7 Quality Management*
4.1.7.1 Quality assurance and standards
4.1.7.2 Quality planning
4.1.7.3 Quality control
4.1.7.4 Software measurement and metrics

4.1.8 Process Improvement*
4.1.8.1 Process and product quality
4.1.8.2 Process analysis and modeling
4.1.8.3 Process measurement
4.1.8.4 The SEI process capability maturity model
4.1.8.5 Process classification

4.1.9 Software Requirements
4.1.9.1 Functional and non-functional requirements
4.1.9.2 User requirements
4.1.9.3 System requirements
4.1.9.4 The software requirements document

4.1.10 Requirements Engineering Processes*
4.1.10.1 Feasibility studies
4.1.10.2 Requirements elicitation and analysis
4.1.10.3 Requirements validation
4.1.10.4 Requirements management

4.1.11 System Models
4.1.11.1 Context models
4.1.11.2 Behavioral models
4.1.11.3 Data models
4.1.11.4 Object models
4.1.11.5 CASE workbenches

4.1.12 Software Prototyping*
4.1.12.1 Prototyping in the software process
4.1.12.2 Rapid prototyping techniques
4.1.12.3 User interface prototyping

4.1.13 Architectural Design*
4.1.13.1 System structuring
4.1.13.2 Control models
4.1.13.3 Modular decomposition
4.1.13.4 Domain-specific architectures

4.1.14 Object-oriented Design*
4.1.14.1 Objects and object classes
4.1.14.2 An object-oriented design process
4.1.14.3 Design evolution

4.1.15 Design with Reuse*

4.1.15.1 Component-based development
4.1.15.2 Application families
4.1.15.3 Design patterns

4.1.16 User Interface Design*
4.1.16.1 User interface design principles
4.1.16.2 User interaction
4.1.16.3 Information presentation
4.1.16.4 User support
4.1.16.5 Interface evaluation

5.0 Teaching Methodology Information

5.1 Methods:
Most of the course materials are presented by lectures. Student’s participation in class
discussions are simulated by asking students opinion on the specific points of the topics.

5.2 Student role:
The student will attend lectures and demonstration, participate in discussion on assigned
readings, and complete required examinations. Students form team of 3-4 members to go
through most of the phases of developing a project. At the end of each phase team is
required to deliver a formal document that presents the product developed in that phase.

6.0 Evaluation Information
6.1 Describe the typical types of student projects that will be the basis for evaluating student

performance:
The student project is evaluated primarily based on the team performance. Each team is
required to submit team and individual log of activities for individual evaluation
consideration. Graduate students are required to write 2 three pages reports on the topic
assigned by the instructor.

6.2 Describe the typical basis for determining the final grade (e.g. weighting of various
student projects):

Component Weight
Quizzes 12%
Assignments and project 30%
Mid-term examination 24%
Class participation 5%
Final examination 29%
Graduate student paper 10%

Basis for determining the final grade (course requirements and grading standards)
specifying distinction between undergraduate and graduate, if applicable.

6.3 Grading type:

Percent Grade Percent Grade
97 – 100 A+ 77 – 79 C+
94 – 96 A 70 – 76 C
90 – 93 A– 70 – 73 C–
87 – 89 B+ 67 – 69 D+
84 – 86 B 64 – 66 D
80 – 83 B– 60 – 63

0—59
D–
F

7.0 Resource Material Information

7.1 Textbooks and/or other required readings used in course:
Ian Sommerville. Software Engineering, 9th Ed., Addison-Wesley, 2009.

7.2 Other student suggested reading materials:
F.P. Brooks. The Mythical Man-Month: Essays on Software Engineering, 2nd Ed.,

Addison-Wesley, 1995.
A. Fox and D. Patterson. Engineering Software as a Service: An Agile Approach Using

Cloud Computing, 2nd Ed., Strawberry Canyon, 2014. http://beta.saasbook.info/
R. Pressman. Software Engineering – A Practitioner’s Approach, 7th Ed., McGraw-Hill,

2009.
S. Pfleeger and J. Atlee. Software Engineering, Theory and Practice, 4th Ed., Prentice

Hall, 2009.
S. Schach. Object-Oriented and Classical Software Engineering, 8th Ed., McGraw-Hill,

2010.

7.3 Current bibliography and other resources:
The textbook has a companion website that provides a large number of examples,
pointers to useful sites etc. Its URL is http://www.software-engin.com/. The text web site
has an excellent collection of current bibliography of resources.
The following gives a representative set of readings covering all main areas of software
engineering:
7.3.1 B. Boehm. “Get Ready for Agile Methods, with Care.” IEEE Computer, 35 (4),

January 2002. A good discussion of the pros and cons of agile methods such as
extreme programming by a leading software engineering practitioner and
researcher.

7.3.2 F. Brooks. “No Silver Bullet – Essence and Accidents of Software Engineering”
IEEE Computer 20.4 (1987): 10-19. Classic discussion on real-world issues
facing software developers.

7.3.3 M. Conway. “How do Committees Invent?” Datamation 14.4 (1968): 28–31.
Discusses the problem of working in teams and the source of ‘Conway’s Law’.

http://beta.saasbook.info/
http://www.software-engin.com/

7.3.4 M. Lindvall and I. Rus (eds) Special Issue on Software Process Diversity. IEEE
Software, 17 (4), July 2000. This special issue includes a number of interesting
and useful articles on different types of process for developing software. It also
includes articles covering process maturity and the CMM.

7.3.5 R. C. Martin. “Extreme programming - Development through Dialog.” IEEE
Software, July 2000. A short introduction that addresses common concerns about
extreme programming.

7.3.6 N. J. Nunes and J. F. Cunha. “Wisdom: A Software Engineering Method for
Small Software Development Companies.” IEEE Software, 17 (4), September
2000. A discussion of a 'lightweight' method that brings some elements of
systematic software engineering to small organizations who cannot afford
complex methods.

7.3.7 B. Nuseibeh. “Weaving Together Requirements and Architectures.” IEEE
Computer, March 2001. A short discussion of how requirements engineering and
architectural design can be integrated in an evolutionary development process.

7.3.8 G. Pour, M. L. Griss and M. Lutz. “The Push to Make Software Engineering
Respectable.” IEEE Computer, 33 (5), May 2000. Describes the essentials of
professionalism for software engineers.

7.3.9 E. Raymond. “The Cathedral and the Bazaar” Linux Kongress (1997) June 16,
2011 <http://www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar>. A
blueprint for today’s open source development processes.

7.3.10 M. L. Russ and J. D. McGregor. “A Software Development Process for Small
Projects.” IEEE Software, 17 (4), September 2000. Suggests a software process
that has been adapted for small companies.

7.3.11 R. H. Thayer. “Software System Engineering: A Tutorial.” IEEE Computer, 35
(4), April 2002. There are few articles published on this important topic. This is a
good overview and introduction.

8.0 Other Information:
8.1 Accommodations statement:
8.2 Other:
8.3 Author(s):

Harvey Siy

9.0 Computer Science Accreditation Board (CSAB) Category Content (class time in hours):

CSAB Category Core Advanced
Data structures
Computer organization and architecture
Algorithms and software design 38
Concepts of programming languages 4

10.0 Oral and Written Communications:
Every student is required to submit at least 2 written reports (not including exams, tests, quizzes,
or commented programs) to typically 6 pages and to make 1 oral presentations of typically 15
minutes duration. Include only material that is graded for grammar, spelling, style, and so forth,
as well as for technical content, completeness, and accuracy.

11.0 Social and Ethical Issues:

30 minutes discussions on professional and ethical responsibility in software engineering.
12.0 Theoretical content:

Please list the types of theoretical material covered, and estimate the time devoted to such
coverage.

Contact Hours
12.1 System and software modeling and engineering process 6.0
12.2 Foundation of system validation and formal methods in software engineering 2.0
12.3 System architecture and design 1.5
12.4 Real-time and critical system concepts in software engineering 3.0
12.5 Pattern and application frameworks 1.5
12.6 Cognitive issues in human computer interaction 1.0
12.7 Cognitive issues of people management and team dynamics 1.5
12.8 Principles of cost estimation, planning and scheduling 4.5

13.0 Problem analysis:
Please describe the analysis experiences common to all course sections.
Students learn how to understand the scope of the problem, the domain that encompases the
problem, analyze the requirements and constraints. The system and engineering analysis mind set
provide necessary skills that enable students to study the subject materials in different sections as
a part of whole “system” with an “engineering” mind-set.

14.0 Solution design:
Please describe the design experiences common to all course sections.
Students learn to make and implement a variety of high and low-level design decisions,
including: system and software architecture, subsystem, component, and interface design.
Following the “engineering” mind set design enables students to develop solutions based on the
analysis of the problem.

CHANGE HISTORY
Date Change By whom Comments
09/25/2002 Initial ABET version Zand
06/13/2003 Cleanup Wileman
11/19/2008 Course textbooks updated Siy
11/20/2008 Update of course objectives Siy

11/20/2008 Insertion of table mapping course
objectives to program outcomes

Siy

6/16/2011 Updated bibliography Siy
7/29/2011 Updated format to standard template Siy
3/3/2014 Updated bibliography Siy

UNIVERSITY OF NEBRASKA AT OMAHA
Mapping of CS Program Outcomes vs. course objectives

Department and Course Number CSCI 4830
Course Title Introduction to Software Engineering
Course Coordinator Harvey Siy
Total Credits 3
Date of Last Revision November 20, 2008

Instructions: Paste or type the course objectives in the left-hand column. Indicate the
relationship between course objective and program outcome by placing one of the two following
marks in the appropriate cell:

S – Strong relationship
X – Contributing relationship

Course objective

CS Program Outcomes

(a
) k

no
w

le
dg

e
of

 d
is

ci
pl

in
e

(b
) a

na
ly

ze
 p

ro
bl

em
, d

ef
in

e
re

qu
ir

em
en

ts

(c
) d

es
ig

n
an

d
im

pl
em

en
t s

ol
ut

io
n

(d
) f

un
ct

io
n

on
 a

 te
am

(e
) e

th
ic

al
 is

su
es

(f
) c

om
m

un
ic

at
e

ef
fe

ct
iv

el
y

(g
) a

na
ly

ze
 im

pa
ct

 o
f c

om
pu

tin
g

(h
) c

on
tin

ue
d

pr
of

es
si

on
al

 d
ev

el
op

m
en

t

(i)
 C

ur
re

nt
 te

ch
ni

qu
es

 a
nd

 to
ol

s

(j
) a

pp
ly

 fo
un

da
tio

ns

(k
) a

pp
ly

 d
es

ig
n

an
d

de
ve

lo
pm

en
t

i
i

l

1. Perform analysis and design of small and medium-
sized software project using structured methods.

S S S S X S S

2. Be able to participate in design of small and medium-
sized software project using object-oriented software
development methodologies.

S S S X S S S

3. Prepare software project management documents. S S S X S
4. Be able to participate in a project team. S X
5. Develop parts/whole prototype as well as

implementation of small or medium-sized software
projects.

 S S S X S S S

6. Introduce socio-technical and ethical issues in the
development of real-world software systems.

 S S X

7.

	UNIVERSITY OF NEBRASKA AT OMAHA
	COURSE SYLLABUS
	Percent
	CHANGE HISTORY
	UNIVERSITY OF NEBRASKA AT OMAHA
	Mapping of CS Program Outcomes vs. course objectives

