1.0 Course Description

1.1 Students are introduced to the technology and architecture of computers. The objectives are to introduce students to a large body of concepts and current trends in computer architecture, so that the design issues and their tradeoffs can be appreciated. Topics covered include top level view of computers, performance metrics; cache memory and cache coherence; internal and external memory (RAM, disk, RAID, magnetic and optical); pipelined computer architecture; RISC versus CISC; and parallel processing.

1.2 For whom course is intended.
This is a core undergraduate computer science course.

1.1 Prerequisites of the course (Courses).
CSCI 3710 - Introduction to Digital Design and Computer Organization
CSCI 3320 - Data Structures

1.2 Prerequisites of the course (Topics).
1.2.1 Logic expressions
1.2.2 Design of Arithmetic units
1.2.3 Combinational and sequential logic design
1.2.4 Design of datapath with proper registers
1.2.5 Computer organization at the register transfer level
1.2.6 Internal memory design
1.2.7 Assembly language
1.2.8 Fundamental topics of Data Structures course.

1.3 Unusual circumstances of the course
None

2.0 Objectives

2.1 Students will learn a large body of concepts and current trends in computer architecture.
2.2 Students will learn about the design issues and their tradeoffs
2.3 Students will learn about performance parameters and related issues such as: speed up, utilization, throughput, bandwidth, response time, CPU & system times
2.4 Students will learn parallel processing, multiprocessor system design & tradeoffs

3.0 Content and Organization
3.1 Introduction
3.1.1 Computer Organization versus Computer Architecture
3.1.2 Computer Evolution and Performance
3.1.3 Pentium Evolution
3.1.4 Performance measures
 3.1.4.1 Response time
 3.1.4.2 Throughput
 3.1.4.3 Comparing design alternatives
 3.1.4.4 Benchmarking programs
 3.1.4.5 Average execution times
 3.1.4.6 Weighted execution times
 3.1.4.7 Speedup
 3.1.4.8 Clock cycles and instruction count
 3.1.4.9 MIPS

3.2 Top Level View of Computers
3.2.1 Computer components
3.2.2 Interconnection structures
3.2.3 Buses
 3.2.3.1 Synchronous versus Asynchronous communication
 3.2.3.2 Bus interconnections
 3.2.3.3 PCI, PCIe, and SCSI bus systems

3.3 Cache Memory
3.3.1 Computer memory system overview
3.3.2 Cache memory principles
3.3.3 Elements of cache design
 3.3.3.1 Direct mapped
 3.3.3.2 Set associative
 3.3.3.3 Fully associative
 3.3.3.4 Miss, hits, and penalties
 3.3.3.5 Cache block replacement strategies
 3.3.3.6 Cache write strategies
 3.3.3.7 TLB, Pre-fetching
3.3.4 Multicore cache architecture
3.3.5 Cache coherence
 3.3.5.1 Centralized versus distributed memory
 3.3.5.2 Multilevel cache
 3.3.5.3 Directory based protocols
 3.3.5.4 Snoopy protocols

3.4 Internal Memory
3.4.1 Memory interleaving
3.4.2 Memory design out of smaller chips
3.4.3 Memory bandwidth
3.4.4 Virtual versus physical addresses
3.4.5 Page tables and address translation
3.5 External Memory
3.5.1 Introduction & performance relation to cache/memory/CPU
3.5.2 Magnetic disk
3.5.3 RAID
3.5.4 Optical memory
3.5.5 Magnetic tape

3.6 Instruction Sets:
3.6.1 MIPS instructions and addressing modes
3.6.2 MIPS instruction set architecture

3.7 Pipelined Processor Structure and Function
3.7.1 Instruction cycle and pipelining
3.7.2 Pentium processor

3.8 RISC vs. CISC
3.8.1 Large register files
3.8.2 Compiler based register optimization
3.8.3 RISC and CISC architecture & controversy
3.8.4 Pipelining
3.8.4.1 Introduction
3.8.4.2 MIPS pipeline cycles and micro-instructions
3.8.4.3 MIPS stage and interstage architectures
3.8.4.4 MIPS 4000
3.8.4.5 Pipeline performance
3.8.4.6 Hazards (data, control, structural)
3.8.4.7 Data hazards
3.8.4.8 Pipeline stalls
3.8.4.9 Forwarding
3.8.4.10 Instruction reordering
3.8.4.11 Delay instructions
3.8.4.12 Detection of stalls & forwarding

3.9 Parallel Processing
3.9.1 Taxonomy of parallel architectures
3.9.2 Symmetric multiprocessors
3.9.3 Cache coherence and MESE protocol
3.9.4 Clusters

4.0 Teaching Methodology
4.1 Methods to be used
Teaching methods will include in-class lectures and problem solving, homework assignments, case studies, and in-class exams.

4.2 Student role in the course
Students are expected to attend all lectures, participate in class discussions, and complete assigned homework and examinations.

4.3 Contact hours
Three hours per week

5.0 Evaluation

5.1 Type of student projects that will be the basis for evaluating student performance, specifying distinction between undergraduate and graduate, if applicable. For laboratory projects, specify the number of weeks spent on each project).

The students will be expected to complete homework assignments, examinations, and participate in class discussions.

5.2 Basis for determining the final grade (Course requirements and grading standards) specifying distinction between undergraduate and graduate, if applicable

<table>
<thead>
<tr>
<th>Written homework</th>
<th>25%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination 1</td>
<td>25%</td>
</tr>
<tr>
<td>Examination 2</td>
<td>25%</td>
</tr>
<tr>
<td>Final examination</td>
<td>25%</td>
</tr>
</tbody>
</table>

5.3 Grading scale and criteria

<table>
<thead>
<tr>
<th>Percent</th>
<th>Grade</th>
<th>Percent</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>97 – 100</td>
<td>A+</td>
<td>77 – 79</td>
<td>C+</td>
</tr>
<tr>
<td>94 – 96</td>
<td>A</td>
<td>70 – 76</td>
<td>C</td>
</tr>
<tr>
<td>90 – 93</td>
<td>A−</td>
<td>70 – 73</td>
<td>C−</td>
</tr>
<tr>
<td>87 – 89</td>
<td>B+</td>
<td>67 – 69</td>
<td>D+</td>
</tr>
<tr>
<td>84 – 86</td>
<td>B</td>
<td>64 – 66</td>
<td>D</td>
</tr>
<tr>
<td>80 – 83</td>
<td>B−</td>
<td>60 – 63</td>
<td>D−</td>
</tr>
</tbody>
</table>

6.0 Resource Material

6.1 Textbooks and/or other required readings used in course

6.2 Other suggested reading materials, if any

6.3 Other sources of information
Relevant Internet websites, which discuss various state-of-the-art topics

6.4 Current bibliography of resource for student’s information
None
7.0 **Computer Science Accreditation Board (CSAB) Category Content (class time in hours)**

<table>
<thead>
<tr>
<th>CSAB Category</th>
<th>Core</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data structures</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer organization and architecture</td>
<td>18</td>
<td>24</td>
</tr>
<tr>
<td>Algorithms and software design</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concepts of programming languages</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.0 **Oral and Written Communications**

Every student is required to submit at least ___0__ written reports (not including exams, tests, quizzes, or commented programs) to typically __0___ pages and to make _0____ oral presentations of typically __0___ minutes duration. Include only material that is graded for grammar, spelling, style, and so forth, as well as for technical content, completeness, and accuracy.

9.0 **Social and Ethical Issues**

No coverage

10.0 **Theoretical content**

Please list the types of theoretical material covered, and estimate the time devoted to such coverage.

<table>
<thead>
<tr>
<th>Contact hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pipelining, Memory, Storage, Multiprocessor, Multicore, Bus</td>
</tr>
<tr>
<td>Computer performance parameters</td>
</tr>
</tbody>
</table>

11.0 **Problem analysis**

The course involves learning different design issues and trade-offs. The students are challenged to apply the design techniques learned through the course to analyze and solve specified problems in computer architecture.

12.0 **Solution design**

Students taking the course are expected to develop and/or analyze the hardware design problems for all the problems given as part of the homework assignments, in class problems, and examinations.
CHANGE HISTORY

<table>
<thead>
<tr>
<th>Date</th>
<th>Change</th>
<th>By whom</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/09/2002</td>
<td>Initial ABET version</td>
<td>Dasgupta</td>
<td></td>
</tr>
<tr>
<td>06/13/2003</td>
<td>Cleanup</td>
<td>Wileman</td>
<td></td>
</tr>
<tr>
<td>06/19/2003</td>
<td>Reorganization</td>
<td>Azadmanesh</td>
<td></td>
</tr>
<tr>
<td>06/22/2003</td>
<td>More cleanup</td>
<td>Wileman</td>
<td></td>
</tr>
<tr>
<td>09/24/2008</td>
<td>Insertion of table mapping of objectives to course/program outcomes</td>
<td>Azadmanesh</td>
<td>Updated textbook, syllabus modified accordingly</td>
</tr>
<tr>
<td>12/03/2008</td>
<td>Modified course description and prerequisites, and small parts of topics coverage</td>
<td>Farhat</td>
<td></td>
</tr>
<tr>
<td>12/04/2008</td>
<td>Merged with outcomes and objectives</td>
<td>Farhat</td>
<td></td>
</tr>
<tr>
<td>04/01/2011</td>
<td>Modified course description & theoretical content, updated topics covered, changed contact hours, updated textbook.</td>
<td>Azadmanesh</td>
<td></td>
</tr>
<tr>
<td>02/18/2014</td>
<td>Updated contact hours, updated textbook</td>
<td>Azadmanesh</td>
<td></td>
</tr>
</tbody>
</table>