
UNIVERSITY OF NEBRASKA AT OMAHA

COURSE SYLLABUS/DESCRIPTION

Department and Course Number CSCI 4220

Course Title Principles of Programming Languages

Course Coordinator Victor Winter

Total Credits 3

Date of Last Revision February, 2014

1.0 Course Description Information:

1.1 Catalog description:

2 This course covers the foundational concepts and principles underlying the design and

implementation of programming languages. Language constructs including assignment, equality,

references, aggregations, scope, encapsulation, and parameter passing are discussed. A central

theme is how a particular language construct relates to the concept of equational reasoning

(referential transparency). Formal notations for describing syntax and semantics are presented.

2.1 Prerequisites of the course:

2.1.1 Data structures and algorithms (CSCI 3320)

2.1.2 Introduction to the Theory of Computation (CSCI 3660)

2.2 Overview of content and purpose of the course: This section provides more detail than

the catalog description.

Programming languages are the mechanism though which computer technology is

leveraged. In order to more effectively manage the scale and complexity of modern

applications, programming languages have become quite sophisticated along the axes of:

syntax, type systems, and semantics. In practice, the features of modern languages can be

more effectively integrated into the developers skill set if the developer has an

understanding of the foundational concepts from which those features evolved. Modern

software development also demands that the automated capabilities of tools be fully

leveraged. In particular, the developer needs to have a clear understanding of how tools

contribute to the development of a software system. The basis of this understanding

comes from the theoretical limits of what can and can not be computed. For example, the

type system of a programming language can (automatically) catch only certain kinds of

errors.

The purpose of this course is to lay a foundation for the knowledge of how to effectively

use programming languages and tools to meet the needs of modern software development.

2.3 Unusual circumstances of the course.

There are no unusual circumstances for this course.

2.0 Course Justification Information

2.1 Anticipated audience / demand:

This course is intended for junior/senior students in computer science and related

disciplines interested in studying the foundational concepts underlying programming

languages.

2.2 Indicate how often this course will be offered and the anticipated enrollment:

This course will be offered every semester. The anticipated enrollment is 25 students per

semester.

2.3 If it is a significant change to an existing course, please explain why it is needed:

NA

3.0 List of performance objectives stated in learning outcomes in a student’s perspective:

By completing this course students will be expected to understand:

 Language Design Principles. To appreciate the intimate relationship between language and

thought and why therefore a well-designed language must conform to certain principles

 Syntax. To be able to read and write formal notations describing the syntax of a

programming language

 Semantics. To develop a more precise understanding of language semantics as well as the

issues and trade-offs underlying various language design decisions (e.g., mutable versus

immutable values).

 Types. To develop a rudimentary appreciation of the contribution of type systems to

language design.

 Language Constructs. To understand how various language constructs relate and differ

from one another both within a single language as well as across languages (e.g., parameter

passing and assignment).

 Language Paradigms. To develop a basic understanding of the similarities and differences

among a variety of common language paradigms (e.g., imperative, object-oriented,

functional, declarative). Students will be expected to write programs in non-imperative

language paradigms.

 Experience and Ethics. To become better prepared culturally to succeed in the workplace.

4.0 Content and Organization Information

4.1 List the major topics central to this course:

 Background and Motivation (3 hours)

o Language and thought

o The limits of computation

o Language Design Principles

o Brief history of programming languages

 Syntax (9 hours)

o Context-free grammars

o Regular expressions

o Analysis

 Semantics (16 hours)

o Equational Reasoning and/or Logic

o Denotational semantics and/or other frameworks

 Language Paradigms (15 hours)

o A subset of the following paradigms will be discussed:

o Functional

o Imperative

o Object-oriented

o Declarative

o Logic programming

o Concurrent

 Experience and Ethics (2 hours)

o Material from this category will be used to motivate and round out the technical

material covered in the course.

5.0 Teaching Methodology Information

5.1 Methods:

The course format is predominantly based on lectures. However, students will be

expected to participate in discussions of the various topics as they are studied.

5.2 Student role in the course.

Students are expected to attend lectures, participate in class discussions, and complete

assignments in a timely fashion.

5.3 Contact hours.

3 hours per week.

6.0 Evaluation Information

6.1 Describe the typical types of student projects that will be the basis for evaluating student

performance:

This course is exclusively an undergraduate course. The following artifacts are produced

by students:

1. Homework and programming assignments

2. Blackboard quizzes

3. In-class exams

4. A group project

5. Extra credit problems and projects

6.2 Describe the typical basis for determining the final grade (e.g. weighting of various

student projects):

The weighting between in-class exams and homework may vary between sections of the

course. Shown below is an example of the general weighting that may be used.

40% In-class exams

40% Homework and programming assignments

20% Project

Tentatively, exams are scheduled every seven weeks.

6.3 Grading type:

Letter grades

The grading scale will be determined by the instructor and communicated to students at the start

of the term. What follows is one possible example.

90 < A < 97 < A+ < 100

80 < B < 87 < B+ < 90

70 < C < 77 < C+ < 80

60 < D < 67 < D+ < 70

 0 < F < 60

7.0 Resource Material Information

Textbooks and/or other required readings used in course:.

[1] A. Tucker and R. Noonan. Programming Languages: Principles and Paradigms

(second edition). McGraw Hill.

[2] J. D. Ullman. Elements of ML Programming. Prentice Hall.

7.1 Other suggested reading materials, if any.

Individual instructors will assign other materials as relevant to each course.

URL’s of various documents and tools will be given to students on an as needed basis.

7.2 Current bibliography of resource for student’s information (At least 10)

[1] T. W. Pratt and M. V. Zelkowitz. Programming Lanugages: Design and

Implementation. Prentice Hall.

[2] R. W. Sebesta. Concepts of Programming Languages. Addison Wesley.

[3] K. C. Louden. Programming Languages: Principles and Practice. Thomson Brooks.

[4] R. Sethi. Programming Languages:Concept and Construct. Addison

Wesley.

[5] C. Ghezzi and M. Jazayeri. Programming Language Concepts. John Wiley & Sons.

[6] M. R. Scott. Programming Language Pragmatics. Morgan Kaufmann Publishers.

[7] A. Fischer F. and Grodzinsky. The Anatomy of Programming Languages. Prentice

Hall.

[8] M. Sipser. Introduction to the Theory of Computation. Course Technology.

[9] C. Meyers, C. Clack, and E. Poon. Programming with Standard ML. Prentice-Hall.

[10] L. C. Paulson. ML for the Working Programmer. Cambridge University Press.

[11] R. J. Schalkoff. Programming Languages and Methodologies. Jones and Bartlett

Publishers International.

[12] P. Linz. An Introduction to Formal Languages and Automata. 5th ed. Jones and

Bartlett Publishers International.

8.0 Estimate Computer Science Accreditation Board (CSAB) Category Content (class time in

hours):

CSAB Category Core Advanced

Data structures 0 0

Computer organization and architecture 0 0

Algorithms and software design 5 0

Concepts of programming languages 40 0

9.0 Oral and Written Communications:

Every student is required to submit at least __0 written reports (not including exams, tests,

quizzes, or commented programs) to typically ____ pages and to make ____ oral presentations of

typically __ minutes duration. Include only material that is graded for grammar, spelling, style,

and so forth, as well as for technical content, completeness, and accuracy.

10.0 Social and Ethical Issues:

Topics relating to social and ethical issues are covered in an ad hoc manner. The purpose of

discussing such issues is to help students succeed in the workplace.

11.0 Theoretical content

Contact hours

Computability and notation 1.0

Context-free grammars 7.0

Regular expressions 5.0

Unification 1.5

Equational reasoning 1.0

Models of computation 2.0

Semantics 6.0

Logic 4.5

12.0 Problem analysis

Students learn the syntactic and semantic principles behind modern programming languages.

They learn to analyze program structure and behavior in a formal setting and acquire sufficient

depth to reason about program fragments.

13.0 Solution design

Students acquire an understanding of the rationale behind the design of a given model of

computation (e.g., an environment function and a store function). Several models (e.g., symbol

table vs environment/ store function) are contrasted and strengths and weaknesses are discussed.

CHANGE HISTORY

Date Change By whom Comments

08/27/2002 Initial ABET version Winter

06/13/2003 Cleanup Wileman

12/11/2008 Update Winter

12/11/2008 Mapping table added Winter

05/24/2011 Revise the format of the syllabus for

CCMS

Winter Added entries to the bibliography.

Revised content of several

sections.

02/17/2014 Reviewed document Winter No changes recommended

UNIVERSITY OF NEBRASKA AT OMAHA

Mapping of CS Program Outcomes vs. course objectives

Department and Course Number CSCI 42200

Course Title Principles of Programming Languages

Course Coordinator Victor Winter

Total Credits 3

Date of Last Revision May 24, 2011

Instructions: Paste or type the course objectives in the left-hand column. Indicate the

relationship between course objective and program outcome by placing one of the two following

marks in the appropriate cell:

S – Strong relationship

X – Contributing relationship

Course objective

CS Program Outcomes

(a
)

k
n

o
w

le
d

g
e

o
f

d
is

ci
p

li
n

e

(b
)

a
n

a
ly

ze
 p

ro
b

le
m

,
d

ef
in

e

re
q

u
ir

em
e
n

ts

(c
)

d
es

ig
n

 a
n

d
 i

m
p

le
m

en
t

so
lu

ti
o

n

(d
)

fu
n

ct
io

n
 o

n
 a

 t
ea

m

(e
)

et
h

ic
a

l
is

su
es

(f
)

co
m

m
u

n
ic

a
te

 e
ff

ec
ti

v
el

y

(g
)

a
n

a
ly

ze
 i

m
p

a
ct

 o
f

co
m

p
u

ti
n

g

(h
)

co
n

ti
n

u
ed

 p
ro

fe
ss

io
n

a
l

d
ev

el
o

p
m

en
t

(i
)

C
u

rr
e
n

t
te

c
h

n
iq

u
e
s

a
n

d
 t

o
o

ls

(j
)

a
p

p
ly

 f
o

u
n

d
a

ti
o

n
s

(k
)

a
p

p
ly

 d
es

ig
n

 a
n

d
 d

ev
el

o
p

m
en

t

p
ri

n
ci

p
le

s
1. Language Design Principles. X X

2. Syntax S X X X X X X

3. Semantics S X X X S S

4. Types X X X X X X

5. Language Constructs X

6. Language Paradigms X

7. Experience and Ethics X

CS Program Outcomes (2008)

(a) An ability to apply knowledge of computing and mathematics appropriate to the discipline;

(b) An ability to analyze a problem, and identify and define the computing requirements appropriate to

its solution;

(c) An ability to design, implement and evaluate a computer-based system, process, component, or

program to meet desired needs;

(d) An ability to function effectively on teams to accomplish a common goal;

(e) An understanding of professional, ethical, legal, security, and social issues and responsibilities

(f) An ability to communicate effectively with a range of audiences

(g) An ability to analyze the local and global impact of computing on individuals, organizations and

society

(h) Recognition of the need for, and an ability to engage in, continuing professional development

(i) An ability to use current techniques, skills, and tools necessary for computing practices

(j) An ability to apply mathematical foundations, algorithmic principles, and computer science theory in

the modeling and design of computer-based systems in a way that demonstrates comprehension of the

tradeoffs involved in design choices

(k) An ability to apply design and development principles in the construction of software systems of

varying complexity.

Student Work

CS Program Outcomes

(a
)

k
n

o
w

le
d

g
e

o
f

d
is

ci
p

li
n

e

(b
)

a
n

a
ly

ze
 p

ro
b

le
m

,

d
ef

in
e

r
eq

u
ir

e
m

en
ts

(c
)

d
es

ig
n

 a
n

d
 i

m
p

le
m

en
t

so
lu

ti
o

n

(d
)

fu
n

ct
io

n
 o

n
 a

 t
ea

m

(e
)

et
h

ic
a

l
is

su
es

(f
)

co
m

m
u

n
ic

a
te

ef
fe

c
ti

v
el

y

(g
)

a
n

a
ly

ze
 i

m
p

a
ct

 o
f

co
m

p
u

ti
n

g

(h
)

co
n

ti
n

u
ed

p
ro

fe
ss

io
n

a
l

d
ev

el
o

p
m

en
t

(i
)

C
u

rr
e
n

t
te

c
h

n
iq

u
e
s

a
n

d
 t

o
o

ls

(j
)

a
p

p
ly

 f
o

u
n

d
a

ti
o

n
s

(k
)

a
p

p
ly

 d
es

ig
n

 a
n

d

d
ev

el
o

p
m

en
t

p
ri

n
c
ip

le
s

Programming Assignments S S S X

Quizzes X X

Exams X X X X

Project S S X S X

