
University of Nebraska at Omaha
Course Syllabus

Department and Course Number CSCI 1280
Course Title Introduction to Computational Science
Course Coordinator Victor Winter
Total Credits 3
Repeat for Credit? No
Date of Last Revision March 27, 2019

1. Course Description Information

1.1 Catalog description:

Introduction to Computational Science explores the role of computer science in scientific inquiry. Through
the construction and analysis of block-based visual artifacts (e.g., pixel art and geometric patterns), this
course aims to help students learn the essential thought processes used by computer scientists to solve
problems, expressing those solutions as computer programs. When executed, these computer programs
produce visual artifacts that can be displayed and interacted with using a variety of tools/software in-
cluding LEGO Digital Designer, Minecraft, LDraw, 3D Builder, and Virtual Reality systems such as the
HTC Vive.

1.2 Prerequisites of the course:

Math 1220 (or equivalent)

1.3 Overview of Content and purpose of the course:

Science, can be broadly defined as the intellectual and practical activity encompassing the systematic study
of the structure and behavior of the physical and natural world through observation and experiment. The
frontiers of modern science encompass phenomena for which computer-based modeling and simulation
are playing an increasingly important role. In its 2005 report, the President’s Information Technology
Advisory Committee (PITAC) designated computational science as the “third pillar” of scientific inquiry.
The PITAC report defines computational science as follows.

Computational science is a rapidly growing multidisciplinary field that uses advanced com-
puting capabilities to understand and solve complex problems. Computational science fuses
three distinct elements:

• Algorithms (numerical and non-numerical) and modeling and simulation software devel-
oped to solve science (e.g., biological, physical, and social), engineering, and humanities
problems

• Computer and information science that develops and optimizes the advanced system hard-
ware, software, networking, and data management components needed to solve computa-
tionally demanding problems

• The computing infrastructure that supports both the science and engineering problem
solving and the developmental computer and information science

CSCI 1280 provides a gentle introduction to computational science in which computational thinking,
principles of computing, and coding skills will be developed in the context of SML, a general-purpose
functional programming language in which all computable functions can be expressed. A collection of
libraries, collectively called Bricklayer, extend SML with a set of functions capable of creating a variety of
geometric shapes including: lines, rings, circles, spheres, cones, cubes, and rectangular prisms. To facilitate
the construction of artifacts composed of such shapes, the Bricklayer libraries provide computational

1



abstractions such as (1) iterators for property-based construction, and (2) a turtle for vector graphic-
based construction. The Bricklayer libraries also provide a set of “show” functions enabling artifact display
and interaction. Broadly speaking, Bricklayer artifacts can be classified as belonging to the domain of
block-based (or cell-based) visual art. This visual domain is well-suited for exploring and developing an
understanding of patterns. Patterns, play an important role in science. So much so, that the National
Science Teachers Association (NSTA) have classified patterns as a crosscutting concept in the sciences.

In addition to the study of visual patterns, CSCI 1280 includes construction and experimentation with cell-
based visual models and simulations suitable for exploring and analyzing fundamental laws and principles
for a variety of natural and physical phenomena. The potential candidates that can be considered for
such exploration is quite broad including (1) attractor/inhibitor systems such as Turing patterns which
describe the way in which patterns in nature such as stripes and spots (and even appendages such as fingers
and hands) can arise naturally out of a homogeneous, uniform state, as well as (2) cellular automata, a
formalism originally invented by Stanislaw Ulam, to model and simulate John von Neumann’s theoretical
electromagnetic constructions whose ultimate goal was to create life1. Monte Carlo simulations are also
explored as a means to obtain approximations of mathematical quantities such as percolation thresholds.

1.4 Unusual circumstances of the course:

None

2. Course Justification Information

2.1 Anticipated audience / demand:

This course is applicable for students in all majors who have no prior background in computer programming
and who want to learn how to solve problems using computational techniques.

2.2 Indicate how often this course will be offered and the anticipated enrollment:

This course will be offered regularly in the Spring semester with an anticipated enrollment of around 30
students.

2.3 If it is a significant change to an existing course, please explain why it is needed:

This is a significant change to an existing course. It is intended to broaden participation in computing.
It is also intended to supplement existing preparatory courses being used to get students ready for the
more rigorous computer programming courses by focusing more on basic computational problem solving
techniques rather than mastery of a certain language or technology.

3. List of performance objectives stated in learning outcomes in a
student’s perspective:

The student that successfully completes this course will:

3.1 Students will apply their knowledge of computational thinking in order to develop algorithms of simple
complexity related to the construction of geometric patterns.

3.2 Students will apply their knowledge of computational thinking in order to develop algorithms of moderate
complexity related to the construction of geometric patterns.

3.3 Students will be able to design computational solutions to problems whose solutions require the creation
of geometric patterns of simple complexity.

3.4 Students will be able to design computational solutions to problems whose solutions require the creation
of geometric patterns of moderate complexity.

1John von Neumann defined life as a creation (as a being or organism) which can reproduce itself and simulate a Turing
machine.

2



3.5 Students will apply their knowledge of problem decomposition techniques in order to manage problem
complexity.

3.6 Students will be able to employ programming as a creative tool.

3.7 Students will have increased spatial abilities – that is, the ability to understand, reason, and remember
the spatial relations among 2D and 3D artifacts.

3.8 Students will have an increased ability to recognize the attributes (e.g., symmetry and repetition) possessed
by visual patterns.

3.9 Students will have a semi-formal understanding of the semantics of the core of the SML programming
language.

4. Content and Organization

List the major topics central to this course:

Digital Literacy

1. Files and Folders (saving, backing up, transferring, renaming, extensions)

2. Text editor basics (e.g., copy, cut, paste, column edit, search, replace, undo, redo, select)

3. Representing Discrete Values

(a) Base n for n = 2, 10, 16

4. RGB color representations

(a) Hex representations

(b) Base 10 representations

5. Floating point numbers

Mathematics

1. Coordinate Systems

(a) Cartesian

2. Functions

(a) Transformations

(b) Mappings

(c) Projections

3. Probability

4. Operators

(a) Logical

(b) Relational

(c) Arithmetic

5. Sets

6. Graphs

3



7. Sequences

(a) Arithmetic Progressions

(b) Geometric Progressions

8. Summations

9. Induction

10. Recurrence relations and closed forms

Computer Science

1. Syntax

(a) The basics of regex

(b) The basics of context-free grammars

2. Language Constructs

(a) Values

i. Integer

ii. Real

iii. String

iv. Function

v. Aggregations

A. Tuple

B. List

(b) Expressions

i. Arithmetic

ii. Boolean

(c) Declarations

i. Variables

ii. Functions

A. Declarations

B. Formal and actual parameters

C. Curried functions

3. Control flow

(a) Conditional Expressions

(b) Sequential Composition

(c) Iterators

4. Scope

5. Types

6. Design Concepts and Techniques

(a) Verification and validation

(b) Overwriting

(c) Abstraction

4



(d) Generalization

(e) Composition/Decomposition

(f) Debugging techniques

(g) Code structuring

(h) Reliable software development processes

(i) Correctness-preserving transformations

i. Refactoring

ii. Optimization

Patterns

1. Static patterns

2. Growth patterns (sequences)

(a) Arithmetic Patterns

(b) Geometric Patterns

(c) Evolutionary Patterns

3. Symmetry

Modeling and Simulation

1. Random Numbers

2. Cellular Automata and Elementary Cellular Automata

3. Attractor/Inhibitor Systems

4. Using Computers to Obtain Mathematical Approximations

5



5. Teaching Methodology Information

5.1 Methods

Teaching methods include (1) short lectures and demonstrations, (2) videos and on-line reading, (3)
interactive web apps, (4) discussions, (5) hands-on in-class coding activities, (6) group and individual
pixel art projects, and (7) group and individual art shows.

5.2 Student role in the course

The student is expected to attend class, complete in-class coding activities, participate in discussions, give
Art Show presentations, complete assigned homework problems, and pass a midterm and final examination.

5.3 Contact hours:

3 hours per week

6. Evaluation Information

6.1 Describe the typical types of student projects that will be the basis for evaluating student performance:

Students will be evaluated on the code they develop, their presentations, as well as their performance
on exams. Given the artistic possibilities of LEGO, a successful type of project-based student-directed
assignment is an open-ended ”Art Show”. In an Art Show, students can work in groups or individually
to create any LEGO structure they desire and the resulting artifact and the code that created it will be
displayed for the entire class to see. Such art shows have proven to be extremely motivating.

6.2 Basis for determining the final grade:

Homework and Presentations 50%
Midterm 25%
Final 25%

6.3 Grading scale

Grades will range from A to F, with the specifics given by the table shown below. This information will
be contained in the course outline and made available on the first day of class.

Grade Point Value

A+ 96 ≤ x ≤ 100
A 92 ≤ x < 96
A- 89 ≤ x < 92
B+ 86 ≤ x < 89
B 82 ≤ x < 86
B- 79 ≤ x < 82
C+ 76 ≤ x < 79
C 72 ≤ x < 76
C- 69 ≤ x < 72
D+ 66 ≤ x < 69
D 62 ≤ x < 66
D- 59 ≤ x < 62
F x < 59

6



7. Resources

1. Textbooks(s) or other required readings used in the course:

The textbooks given below cover some of the foundational material of the course and will be provided
to the students as in PDF form free of charge.

[1] K. H. Rosen. Discrete Mathematics and Its Applications. McGraw-Hill, New York, NY, USA, 6th

edition, 2007.

[2] J. D. Ullman. Elements of ML Programming. Prentice Hall, 1998.

2. Other student suggested reading materials.

[1] J. S. Conery. Explorations in Computing - An Introduction to Computer Science. Taylor and Francis
Group, 2011.

[2] T. Gaddis. Starting Out with Programming Logic and Design. Pearson, 2013.

[3] J. Kun. A Programmer’s Introduction to Mathematics. Pimbook.org, 2018.

[4] J. D. Stone. Algorithms for Functional Programming. Springer-Verlag, 2018.

3. Current bibliography and other resources:

[1] J. A. Adam. Mathematics in Nature: Modeling Patterns in the Natural World. Princeton University
Press, 2006.

[2] P. Ball. The Self-Made Tapestry - Pattern Formation in Nature. Oxford University Press, 1999.

[3] P. Ball. Patterns in Nature: Why the Natural World Looks the Way It Does. The University of
Chicago Press, 2016.

[4] R. Bird. Thinking Functionally with Haskell. Cambridge University Press, 2015.

[5] A. Deutsch and S. Dormann. Cellular Automaton Modeling of Biological Pattern Formation.
Birkhauser, 2nd edition, 2017.

[6] M. Felleisen, R. B. Findler, M. Flatt, and S. Krishnamurthi. How to Design Programs. MIT Press,
2001.

[7] M. R. Hansen and H. Rischel. Introduction to Programming using SML. Addison-Wesley, 1999.

[8] A. S. Khot and R. K. Mishra. Learning Functional Data Structures and Algorithms. Packt Pub-
lishing, 2017.

[9] J. P. Mueller. Functional Programming for Dummies. John Wiley & Sons, 2019.

[10] M. du Sautoy. Symmetry - A Journey into the Patterns of Nature. HarperCollins, 2008.

[11] D. K. Washburn and D. W. Crowe. Symmetries of Culture: Theory and Practice of Plane Pattern
Analysis. University of Washington Press, 1998.

[12] S. Wolfram. A New Kind of Science. Wolfram Media, Inc., 2002.

8. Estimate Computer Science Accreditation Board (CSAB) Cate-
gory Content (class time in hours):

CSAB Category Core Advanced
Data structures 4 0
Computer organization and architecture 0 0
Algorithms and software design 16 0
Concepts of programming languages 8 0

7



9. Oral and Written Communications:

Every student is required to submit at least 0 written reports (not including exams, tests, quizzes, or com-
mented programs) to typically 0 pages and to make 4 oral presentations of typically 4 minutes duration.

Approximately 4 Art Show assignments will be given during the semester. For each Art Show, students
will be expected to give a short presentation (4 minutes) to the class in which they describe the artifact they
have submitted to the Art Show. For example, what inspired their creation? What is interesting about their
creation? What was challenging about their creation? When appropriate the instructor will direct questions
to the class relating to how an artifact was created (e.g., what kind of algorithm or construction process was
employed?). The instructor will also provide a light critique of the student’s code.

10. Social and Ethical Issues:

No coverage

11. Theoretical content:

The primary focus of CSCI 1280 is on understanding patterns and expressing patterns in code. At the heart
of this problem lies the management of complexity. The understanding of a pattern must be intellectually
manageable. Similarly, the code which creates a pattern must also be intellectually manageable.

Pattern Analysis techniques: 15 hours
Code restructuring techniques: 15 hours

12. Problem analysis:

Students are exposed to problem analysis and problem solving through coding examples and assignments. In
CSCI 1280 problem analysis and problem solving center on challenges relating to the construction of 2D/3D
artifacts. There are three major areas in which the problem analysis and problem solving skills of students
will be engaged: (1) construction processes, (2) group coordination, planning, and communication, and (3)
artifact composition/decomposition techniques.

13. Solution design:

A sequence of programming assignments provides students with hands-on experience in the design and imple-
mentation of functional programs.

14. Change History

Date Change By whom Comments
03/29/2019 Submission of proposal Winter Submitted to CSCI

8



A Gen Ed Science

SLO 1 demonstrate a broad understanding of the fundamental laws and principles of science and
interrelationships among science and technology disciplines

Science, can be broadly defined as the intellectual and practical activity encompassing the systematic study
of the structure and behaviour of the physical and natural world through observation and experiment.

The frontiers of modern science encompass phenomena for which computer-based modeling and simulation
are playing an increasingly important role. As a result, computational science is now considered to be the
“third pillar” of scientific inquiry [1]. Aligning with this perspective, CSCI 1280 includes construction and
experimentation with cell-based visual models and simulations suitable for exploring and analyzing funda-
mental laws and principles for a variety of natural and physical phenomena. The potential candidates that
can be considered for such exploration is quite broad including (1) attractor/inhibitor systems such as Turing
patterns which describe the way in which patterns in nature such as stripes and spots (and even appendages
such as fingers and hands) can arise naturally out of a homogeneous, uniform state, as well as (2) cellular
automata, a formalism originally invented by Stanislaw Ulam, to model and simulate John von Neumann’s
theoretical electromagnetic constructions whose ultimate goal was to create life2.

Figure 1: A Turing-like pattern created in Bricklayer. Note the pattern has horizontal reflection symmetry
and appears hand-like.

Successful completion of this course provides the following.

1. The student will be able to formulate hypothesis, design experiments to test hypothesis, and collect and
interpret data obtained from:

(a) attractor/inhibitor models and simulations, and

(b) cellular automata-based models and simulations.

2John von Neumann defined life as a creation (as a being or organism) which can reproduce itself and simulate a Turing
machine.

9



2. The student will have:

(a) an understanding of the increasingly important role played by computer-based modeling and sim-
ulation in scientific inquiry and the discovery of scientific laws.

SLO 2 demonstrate a broad understanding of various natural and/or physical phenomena that sur-
round and influence our lives

Computational science views a system (S) as a potential source of data, an experiment (E) as a process of
extracting data from a system by exerting it through its inputs, and a model (M) of S as anything to which
E can be applied in order to answer questions about S.

While some consider computer science to be an artificial science because it studies phenomena surrounding
computers and related digital technologies, in its essence, computer science studies information processes
both artificial and natural [2]. Information processes take data inputs and produce outputs just as physical
and biological processes take stimuli and produce responses. There has been an increasing realization that
many natural phenomena are, fundamentally, information processes. DNA encodes information about living
organisms, and quantum electrodynamics had been described as nature’s computational method for combining
quantum particle interactions [3]. To study information processes, there is a need to study the foundational
computing principles that underlie these processes. The study of these computing principles is a central focus
of CSCI 1280.

Scientists have come to increasingly rely on computational models to study and describe complex phe-
nomena in a variety of fields including: climate science, particle physics and system biology. Many problems
in these fields are not amenable to theoretical solutions and can only be addressed through large scale com-
putations and simulations. Percolation theory [8] provides an example of the importance of computational
models and simulations. A representative question in Percolation theory is as follows. Assume that a liquid
is poured on top of some porous material. Will the liquid be able to make its way from hole to hole and reach
the bottom? Percolation is an important scientific model because of its numerous applications to chemistry,
biology, statistical physics, epidemiology, and materials science. For example, a composite system comprised
of metallic (open) and insulating (blocked) materials is an electrical conductor if there is a metallic path from
top to bottom, with full sites conducting. The creation of 2D and 3D percolation models can be useful in
studying this phenomenon. Monte Carlo simulations can be used to approximate percolation thresholds (i.e.,
the probability that a system with a given density percolates). This is an example of a calculation for which no
mathematical solution has yet been derived and for which computational models can provide important infor-
mation. Two-dimensional models and simulations involving experimentation with and analysis of percolation
thresholds lie well within the technical reach and scope of CSCI 1280.

Successful completion of this course provides the following.

1. The student will be able to:

(a) conduct experiments involving Monte Carlo simulations of natural phenomena and draw conclusions
from such simulations, and

(b) use Monte Carlo simulations in support of mathematical analysis and to obtain mathematical
results.

2. The student will have:

(a) an increased understanding of information processes and phenomena surrounding computers,

(b) an increased understanding of the computational principles that underlie information processes,
and

(c) an increased understanding of how computer-based models and simulations can be used to study
various natural phenomena.

SLO 3 describe how scientists approach and solve problems including an understanding of the basic
components and limitations of the scientific method

10



Figure 2: A randomly generated Bricklayer 2D cell structure that percolates.

A foundational component of CSCI 1280 is the introduction of computational thinking [9]. Computational
thinking is broadly defined as the process by which computer scientists approach and solve problems. Compu-
tational thinking is a way of solving problems by mapping a natural problem into an algorithmic model that
is amenable to a computational solution. This is a form of empirical inquiry [5] similar to how scientists would
approach a problem by devising hypotheses and designing experiments to validate the hypothesis. The imple-
mentation of the program on a computational device becomes the experiment that validates the algorithmic
model. It is worth noting that computational errors arising from faulty programming can produce incorrect
results and have been known to lead to retractions [4]. Formal training of future scientists in the computer
science disciplines can reduce the risk of such errors. CSCI 1280 provides a starting point for studying the
principles of sound software development practices.

Successful completion of this course provides the following.

1. The student will be able to:

(a) map a natural problem to an algorithmic model, and

(b) employ hypothesis and experimentation-based techniques to validate a variety of algorithmic models
and their implementations in software.

2. The student will have:

(a) an increased understanding of computational thinking and its role in problem solving,

(b) an increased understanding of sound software development practices, and

(c) an increased understanding of the limits of computation.

SLO 4 solve problems and draw conclusions based on scientific information and models, using crit-
ical thinking and qualitative and quantitative analysis of data and concepts in particular to
distinguish reality from speculation

11



The second law of thermodynamics states that the total entropy of an isolated system can never decrease
over time. Or stated in layman’s terms, “the universe tends towards disorder”. Thus, we expect meaning in
the patterns we see because, in a random universe, it takes energy to create order. So when we see a particular
pattern, we expect that through investigation we can identify the force that caused it. This line of reasoning
suggests that patterns play an important (possibly central) role in science. “Futurist and entrepreneur Ray
Kurzweil considers pattern recognition so important that in his recent book, How to Create A Mind, he argued
that pattern recognition and intelligence are essentially the same thing. Expertise, in essence, is the familiarity
of patterns of a specific field.”[7]

The National Science Teachers Association (NSTA) also recognizes the importance of patterns and has
classified patterns as a concept crosscutting all the sciences.

• “Noticing patterns is often a first step to organizing phenomena and asking scientific questions about
why and how the patterns occur.”[6]

• “Once patterns and variations have been noted, they lead to questions; scientists seek explanations for
observed patterns and for the similarity and diversity within them.”[6]

Such statements provide support for an argument that patterns provide a catalyst for observation and
experiment, the essence of science.

A pattern can be defined as a perceived regularity in a particular domain (e.g., visual domain). A consider-
able body of work is devoted to the classification of visual patterns according to their mathematical properties.
Such classification begins by determining whether the pattern (i.e., the perceived regularity) occurs in one,
two, or three dimensions. Further classification of a pattern is based on the symmetries it possesses (e.g.,
rotation, reflection, translation). Bricklayer provides an environment well-suited for exploring and developing
an understanding of visual patterns. Such patterns can have natural or mathematical origins. Mystique, a web
app which is part of the Bricklayer ecosystem, has been specifically designed to develop and strengthen the
understanding of symmetry. Furthermore, the effort involved in writing a Bricklayer program that creates a
pattern, reduces as the programmers understanding of the pattern increases.

Figure 3: A randomly generated Bricklayer 2D pattern possessing horizontal and vertical reflection symmetry
as well as 2-fold and 4-fold rotational symmetry.

Successful completion of this course provides the following.

1. The student will be able to:

(a) recognize reflectional and rotational symmetry in visual artifacts,

12



Figure 4: A 3D tessellation created in Bricklayer.

(b) classify a variety of visual patterns according to their mathematical properties, and

(c) use symmetry-based information and analysis to solve problems relating to the construction of a
variety of visual patterns in code.

2. The student will have:

(a) an increased understanding of relationships between visual patterns and their mathematical char-
acteristics, and

(b) an increased understanding of the role of pattern recognition as a driver of scientific inquiry based
on computational simulations and analysis.

B What are the proposed method(s) for assessment of this course
for the Natural Science SLOs?

CSCI 1280 includes an in-depth study of patterns and symmetry. A number of assignments as well as quizzes
will be given on these topics.

In CSCI 1280, students will also be given assignments where involving experimentation with modeling and
simulation. In addition to computational experimentation, student will be asked to write brief summaries of
their experiments and findings.

References

[1] P. I. T. A. Committee. Computational Science: Ensuring America’s Competitiveness. PITAC, 2005.

[2] P. J. Denning. Is computer science science? Commun. ACM, 48(4):27–31, Apr. 2005.

[3] P. J. Denning. Computing is a natural science. Commun. ACM, 50(7):13–18, July 2007.

[4] Z. Merali. Computational science: ...Error. Nature, 467(7317):775–777, 2010.

[5] A. Newell and H. A. Simon. Computer science as empirical inquiry: Symbols and search. Commun. ACM,
19(3):113–126, Mar. 1976.

[6] N. R. C. of the National Academes. A Framework for K-12 Science Eduction - Practices, Crosscutting
Concepts, and Core Ideas. The National Academies Press, 2012.

[7] G. Satell. The Science of Patterns. Forbs, May 2015.

[8] D. Stauffer and A. Aharony. Introduction to Percolation Theory. CRC Press, 1994.

[9] J. M. Wing. Computational thinking. Commun. ACM, 49(3):33–35, Mar. 2006.

13



C Relationship to ACM CS Curriculum Matrix

The ACM Curriculum Matrix uses three levels of mastery, defined as:

• Familiarity : The student understands what a concept is or what it means. This level of mastery concerns
a basic awareness of a concept as opposed to expecting real facility with its application. It provides an
answer to the question “What do you know about this?”

• Usage: The student is able to use or apply a concept in a concrete way. Using a concept may include,
for example, appropriately using a specific concept in a program, using a particular proof technique, or
performing a particular analysis. It provides an answer to the question “What do you know how to do?”

• Assessment : The student is able to consider a concept from multiple viewpoints and/or justify the
selection of a particular approach to solve a problem. This level of mastery implies more than using
a concept; it involves the ability to select an appropriate approach from understood alternatives. It
provides an answer to the question “‘Why would you do that?”

C.1 Knowledge Area: CN - Computational Science

Abstraction is a fundamental concept in computer science. A principal approach to comput-
ing is to abstract the real world, create a model that can be simulated on a machine. The
roots of computer science can be traced to this approach, modeling things such as trajecto-
ries of artillery shells and the modeling cryptographic protocols, both of which pushed the
development of early computing systems in the early and mid-1940’s.

Modeling and simulation of real world systems represent essential knowledge for computer
scientists and provide a foundation for computational sciences. Any introduction to modeling
and simulation would either include or presume an introduction to computing. In addition, a
general set of modeling and simulation techniques, data visualization methods, and software
testing and evaluation mechanisms are also important.

CN/Introduction to Modeling and Simulation

Explain the concept of modeling and the use of abstraction that allows the use of a
machine to solve a problem.

usage

Describe the relationship between modeling and simulation, i.e., thinking of simu-
lation as dynamic modeling.

usage

Create a simple, formal mathematical model of a real-world situation and use that
model in a simulation.

familiarity

Differentiate among the different types of simulations, including physical simula-
tions, human-guided simulations, and virtual reality.

familiarity

Describe several approaches to validating models. familiarity

Create a simple display of the results of a simulation. usage

14



CN/Modeling and Simulation

Explain and give examples of the benefits of simulation and modeling in a range of
important application areas.

familiarity

Demonstrate the ability to apply the techniques of modeling and simulation to a
range of problem areas.

familiarity

Explain the constructs and concepts of a particular modeling approach familiarity

Explain the difference between validation and verification of a model; demonstrate
the difference with specific examplesa

aVerification means that the computations of the model are correct. If we claim to compute
total time, for example, the computation actually does that. Validation asks whether the model
matches the real situation.

familiarity

Verify and validate the results of a simulation. familiarity

Evaluate a simulation, highlighting the benefits and the drawbacks. familiarity

Choose an appropriate modeling approach for a given problem or situation. familiarity

Compare results from different simulations of the same situation and explain any
differences.

not covered

Infer the behavior of a system from the results of a simulation of the system. familiarity

Extend or adapt an existing model to a new situation. not covered

15



CN/Processing

Explain the characteristics and defining properties of algorithms and how they relate
to machine processing.

familiarity

Analyze simple problem statements to identify relevant information and select ap-
propriate processing to solve the problem.

assessment

Identify or sketch a workflow for an existing computational process such as the
creation of a graph based on experimental data.

not covered

Describe the process of converting an algorithm to machine-executable code. assessment

Summarize the phases of software development and compare several common life-
cycle models.

not covered

Explain how data is represented in a machine. Compare representations of integers
to floating point numbers. Describe underflow, overflow, round off, and truncation
errors in data representations.

familiarity

Apply standard numerical algorithms to solve ODEs and PDEs. Use computing
systems to solve systems of equations.

not covered

Describe the basic properties of bandwidth, latency, scalability and granularity. not covered

Describe the levels of parallelism including task, data, and event parallelism. not covered

Compare and contrast parallel programming paradigms recognizing the strengths
and weaknesses of each.

not covered

Identify the issues impacting correctness and efficiency of a computation. not covered

Design, code, test and debug programs for a parallel computation. not covered

CN/Interactive Visualization

Compare common computer interface mechanisms with respect to ease-of-use, learn-
ability, and cost.

not covered

Use standard APIs and tools to create visual displays of data, including graphs,
charts, tables, and histograms.

not covered

Describe several approaches to using a computer as a means for interacting with
and processing data.

not covered

Extract useful information from a dataset. not covered

Analyze and select visualization techniques for specific problems. familiarity

Describe issues related to scaling data analysis from small to large data sets. familiarity

16



CN/Data, Information, and Knowledge

Identify all of the data, information, and knowledge elements and related organiza-
tions, for a computational science application.

not covered

Describe how to represent data and information for processing. familiarity

Describe typical user requirements regarding that data, information, and knowledge.
not covered

Select a suitable system or software implementation to manage data, information,
and knowledge.

not covered

List and describe the reports, transactions, and other processing needed for a com-
putational science application.

not covered

Compare and contrast database management, information retrieval, and digital
library systems with regard to handling typical computational science applications. not covered

Design a digital library for some computational science users/societies, with appro-
priate content and services.

not covered

Numerical Analysis

Define error, stability, machine precision concepts and the inexactness of computa-
tional approximations.

familiarity

Implement Taylor series, interpolation, extrapolation, and regression algorithms for
approximating functions.

not covered

Implement algorithms for differentiation and integration. not covered

Implement algorithms for solving differential equations. not covered

17



C.2 Knowledge Area: DS - Discrete Structures

Discrete structures are foundational material for computer science. By foundational we mean
that relatively few computer scientists will be working primarily on discrete structures, but
that many other areas of computer science require the ability to work with concepts from
discrete structures. Discrete structures include important material from such areas as set
theory, logic, graph theory, and probability theory.

The material in discrete structures is pervasive in the areas of data structures and algorithms
but appears elsewhere in computer science as well. For example, an ability to create and
understand a proof–either a formal symbolic proof or a less formal but still mathematically
rigorous argument–is important in virtually every area of computer science, including (to
name just a few) formal specification, verification, databases, and cryptography. Graph theory
concepts are used in networks, operating systems, and compilers. Set theory concepts are used
in software engineering and in databases. Probability theory is used in intelligent systems,
networking, and a number of computing applications.

Given that discrete structures serves as a foundation for many other areas in computing, it
is worth noting that the boundary between discrete structures and other areas, particularly
Algorithms and Complexity, Software Development Fundamentals, Programming Languages,
and Intelligent Systems, may not always be crisp. Indeed, different institutions may choose to
organize the courses in which they cover this material in very different ways. Some institutions
may cover these topics in one or two focused courses with titles like “discrete structures” or
“discrete mathematics,” whereas others may integrate these topics in courses on programming,
algorithms, and/or artificial intelligence. Combinations of these approaches are also prevalent
(e.g., covering many of these topics in a single focused introductory course and covering the
remaining topics in more advanced topical courses).

DS/Sets, Relations, and Functions

Explain with examples the basic terminology of functions, relations, and sets. familiarity

Perform the operations associated with sets, functions, and relations. familiarity

Relate practical examples to the appropriate set, function, or relation model, and
interpret the associated operations and terminology in context.

familiarity

DS/Basic Logic

Convert logical statements from informal language to propositional and predicate
logic expressions.

usage

Apply formal methods of symbolic propositional and predicate logic, such as calcu-
lating validity of formulae and computing normal forms.

not covered

Use the rules of inference to construct proofs in propositional and predicate logic. not covered

Describe how symbolic logic can be used to model real-life situations or applica-
tions, including those arising in computing contexts such as software analysis (e.g.,
program correctness), database queries, and algorithms.

not covered

Apply formal logic proofs and/or informal, but rigorous, logical reasoning to real
problems, such as predicting the behavior of software or solving problems such as
puzzles.

usage

Describe the strengths and limitations of propositional and predicate logic. not covered

18



DS/Basics of Counting

Apply counting arguments, including sum and product rules, inclusion-exclusion
principle and arithmetic/geometric progressions.

usage

Apply the pigeonhole principle in the context of a formal proof. not covered

Compute permutations and combinations of a set, and interpret the meaning in the
context of the particular application.

familiarity

Map real-world applications to appropriate counting formalisms, such as determin-
ing the number of ways to arrange people around a table, subject to constraints
on the seating arrangement, or the number of ways to determine certain hands in
cards (e.g., a full house).

not covered

Solve a variety of basic recurrence relations. usage

Analyze a problem to determine underlying recurrence relations. usage

Perform computations involving modular arithmetic. usage

DS/Graphs and Trees

Illustrate by example the basic terminology of graph theory, as well as some of the
properties and special cases of each type of graph/tree.

familiarity

Demonstrate different traversal methods for trees and graphs, including pre-, post-,
and in-order traversal of trees.

not covered

Model a variety of real-world problems in computer science using appropriate forms
of graphs and trees, such as representing a network topology or the organization of
a hierarchical file system.

familiarity

Show how concepts from graphs and trees appear in data structures, algorithms,
proof techniques (structural induction), and counting.

not covered

Explain how to construct a spanning tree of a graph. not covered

Determine if two graphs are isomorphic. not covered

DS/Discrete Probability

Calculate probabilities of events and expectations of random variables for elemen-
tary problems such as games of chance.

familiarity

Differentiate between dependent and independent events. familiarity

Identify a case of the binomial distribution and compute a probability using that
distribution.

not covered

Apply Bayes theorem to determine conditional probabilities in a problem. not covered

Apply the tools of probability to solve problems such as the average case analysis
of algorithms or analyzing hashing.

not covered

Compute the variance for a given probability distribution. not covered

Explain how events that are independent can be conditionally dependent (and vice-
versa). Identify real-world examples of such cases.

not covered

19



C.3 Knowledge Area: PL - Programming Languages

Programming languages are the medium through which programmers precisely describe con-
cepts, formulate algorithms, and reason about solutions. In the course of a career, a computer
scientist will work with many different languages, separately or together. Software devel-
opers must understand the programming models underlying different languages and make
informed design choices in languages supporting multiple complementary approaches. Com-
puter scientists will often need to learn new languages and programming constructs, and must
understand the principles underlying how programming language features are defined, com-
posed, and implemented. The effective use of programming languages, and appreciation of
their limitations, also requires a basic knowledge of programming language translation and
static program analysis, as well as run-time components such as memory management.

PL/Functional Programming

Write basic algorithms that avoid assigning to mutable state or considering reference
equality.

usage

Write useful functions that take and return other functions. usage

Compare and contrast (1) the procedural/functional approach (defining a function
for each operation with the function body providing a case for each data variant)
and (2) the object-oriented approach (defining a class for each data variant with
the class definition providing a method for each operation). Understand both as
defining a matrix of operations and variants.

not covered

Correctly reason about variables and lexical scope in a program using function
closures.

not covered

Use functional encapsulation mechanisms such as closures and modular interfaces. not covered

Define and use iterators and other operations on aggregates, including operations
that take functions as arguments, in multiple programming languages, selecting the
most natural idioms for each language.

familiarity

20



PL/Basic Type Systems

For both a primitive and a compound type, informally describe the values that have
that type. [

familiarity

For a language with a static type system, describe the operations that are forbidden
statically, such as passing the wrong type of value to a function or method.

familiarity

Describe examples of program errors detected by a type system. familiarity

For multiple programming languages, identify program properties checked statically
and program properties checked dynamically.

not covered

Give an example program that does not type-check in a particular language and
yet would have no error if run.

not covered

Use types and type-error messages to write and debug programs. usage

Explain how typing rules define the set of operations that are legal for a type. familiarity

Write down the type rules governing the use of a particular compound type. not covered

Explain why undecidability requires type systems to conservatively approximate
program behavior.

not covered

Define and use program pieces (such as functions, classes, methods) that use generic
types, including for collections.

not covered

Discuss the differences among generics, subtyping, and overloading. not covered

Explain multiple benefits and limitations of static typing in writing, maintaining,
and debugging software.

familiarity

21


