
UNIVERSITY OF NEBRASKA AT OMAHA
COURSE SYLLABUS

Department and Course Number CSCI 1200
Course Title Computer Science Principles
Course Coordinator Harvey Siy
Total Credits 3
Repeat for Credit? No
Date of Last Revision May 7, 2013

1.0 Course Description Information

1.1 Catalog description:
This course introduces students to the foundational principles of computer science. It
aims to help students learn the essential thought processes used by computer scientists to
solve problems, expressing those solutions as computer programs. The exercises and
projects make use of mobile devices and other emerging platforms.

1.2 Prerequisites of the course:
MATH 1310 (or equivalent)

1.3 Overview of content and purpose of the course:
This is an implementation of the CS Principles course (http://www.csprinciples.org)
proposed by the College Board and the National Science Foundation as a new AP course
in Computer Science. The purpose is to broaden participation in computing and computer
science by providing a fresh approach to teaching computing, focusing on the notion of
computational thinking, and imparting the following themes (a.k.a, “Big Ideas”):
1. Creativity: Computing is a creative activity.
2. Abstraction: Abstraction reduces information and detail to facilitate focus on

relevant concepts.
3. Data: Data and information facilitate the creation of knowledge.
4. Algorithms: Algorithms are used to develop and express solutions to computational

problems.
5. Programming: Programming enables problem solving, human expression, and

creation of knowledge.
6. Internet: The Internet pervades modern computing.
7. Impact: Computing has global impacts.
Furthermore, due to the increasing popularity of mobile applications, the use of mobile
devices makes the course relatable and attractive to students who may not otherwise be
interested in computing. Note that the choice of programming platform may change over
time as newer technologies become available.

1.4 Unusual circumstances of the course.
None.

2.0 Course Justification Information

2.1 Anticipated audience / demand:
This course is applicable for students in all majors who have no prior background in
computer programming and who want to learn how to solve problems using
computational techniques.

2.2 Indicate how often this course will be offered and the anticipated enrollment:

http://www.csprinciples.org/

This course will be offered regularly in the Fall and Spring semesters with an anticipated
enrollment of around 60 students per semester.

2.3 If it is a significant change to an existing course, please explain why it is needed:
This is a new course. It is intended to broaden participation in computing. It is also
intended to supplement existing preparatory courses being used to get students ready for
the more rigorous computer programming courses by focusing more on basic
computational problem solving techniques rather than mastery of a certain language or
technology.

3.0 List of performance objectives stated in learning outcomes in a student’s perspective:
3.1 Students will understand the societal need for continued computing innovations.
3.2 Students will be able to express algorithms in a well-defined and unambiguous manner.
3.3 Students will map practical problems to a computational solution.
3.4 Students will develop appropriate abstractions to manage problem complexity.
3.5 Students will use programming as a creative tool.
3.6 Students will learn teamwork implementing a small group project.

More detailed learning objectives and evidence statements are available from the CS Principles
website.

General Education Student Learning Objectives
Describe how the course meets the Student Learning Outcomes

Natural and Physical Sciences: SLO #1: Demonstrate a broad understanding of the fundamental
laws and principles of science and interrelationships among science and technology disciplines.

Increasingly, computer science is getting recognition as the third pillar of science
alongside theory and experimentation (PITAC, 2005). It enables the study of theoretical
models of phenomena too complex, costly, hazardous, vast or small for experimentation.
All disciplines of science stand to benefit from high-resolution model predictions,
theoretical validations and experimental data analysis brought about by advances in
computing and computing technology. Hence computer science is indispensable to 21st
century scientific endeavors. CSCI 1200 serves as an introduction and broad overview to
the field of computer science.

In the process, the course examines how computation pervades and enables modern
scientific discovery by supporting data collection, modeling, analysis and visualization, a
new paradigm known as computational and data-enabled science and engineering. Much
as experimentation helps students connect theory to natural phenomena, the design and
solution of computational models serves a similar purpose for furthering the
understanding of scientific theory. The projects and exercises in the course are geared
towards helping students develop the basic skills needed for building computational
models.

Natural and Physical Sciences: SLO #2: Demonstrate a broad understanding of various natural
phenomena that surround and influence our lives.

While many consider computer science to be an artificial science because it studies
phenomena surrounding computers and related digital technologies, in its essence,
computer science studies information processes both artificial and natural (Denning,
2005). Information processes take data inputs and produce outputs just as physical and

http://www.csprinciples.org/home/about-the-project/docs/CSP_LO_EvidenceStatements.pdf?attredirects=0&d=1

biological processes take stimuli and produce responses. There has been in increasing
realization that many natural phenomena are, fundamentally, information processes.
DNA encodes information about living organisms, and quantum electrodynamics had
been described as nature’s computational method for combining quantum particle
interactions (Denning, 2007). To study information processes, there is a need to study the
foundational computing principles that underlie these processes. These principles are the
central focus of CSCI 1200.

Furthermore, scientists have come to increasingly rely on computational models to study
and describe complex phenomena in climate science, particle physics, system biology,
etc. Many problems in these fields are not amenable to theoretical solutions and can only
be addressed through large scale computations and simulations. Due to its crucial role,
computational errors arising from faulty programming can produce incorrect results and
have been known to lead to retractions (Merali, 2010). Formal training of future scientists
in the computer science disciplines can reduce the risk of such errors. CSCI 1200
provides a starting point for studying the principles of sound software development
practices.

Natural and Physical Sciences: SLO #3: Describe how scientists approach and solve problems
including an understanding of the basic components and limitations of the scientific method.

A foundational component of the course is the introduction of computational thinking
(Wing, 2006). Computational thinking is broadly defined as the process by which
computer scientists approach and solve problems. Computational thinking is a way of
solving problems by mapping a natural problem into an algorithmic model that is
amenable for computational solution. This is a form of empirical inquiry (Newell and
Simon, 1976) similar to how scientists would approach a problem by devising hypotheses
and designing experiments to validate the hypothesis. The implementation of the program
on a computational device becomes the experiment that validates the algorithmic model.

Natural and Physical Sciences: SLO #4: Solve problems and draw conclusions based on
scientific information and models, using critical thinking and qualitative and quantitative
analysis of data and concepts in particular to distinguish reality from speculation.

CSCI 1200 gets away from traditional pedagogical models that introduce computer
science by teaching students how to use a particular computing technology or how to
write programs in a particular language. Instead, the course seeks to instill the discipline
of computational thinking in students. Computational thinking complements other critical
thinking skills by helping students think about how to make use of increasingly
ubiquitous computing devices (PCs, mobile devices, etc.) to aid them in solving everyday
problems. An overarching goal of the course is to help students gain an increased
awareness of how computing impacts their lives and the world around them. It
emphasizes that computer science is not an isolated field, but rather has relevance in
everyday life, and when combined with other math and science disciplines, becomes a
powerful vehicle for addressing relevant problems. In particular, the semester project of
the course will provide first-hand problem-based learning experiences through
developing mobile applications that address real-life problems.

References
(Denning, 2005) Denning, Peter J. (2005). “Is computer science science?” Communications of the

ACM, 48(4): 27-31.

(Denning, 2007) Denning, Peter J. (2007). “Computing is a natural science.” Communications of
the ACM, 50(7): 13-18.

(Merali, 2010) Merali, Z. (2010). “Computational science: ...Error,” Nature, vol. 467, no. 7317,
pp. 775–777, October 2010. [Online]. Available:
http://www.nature.com/news/2010/101013/full/467775a.html

 (Newell, Perlis and Simon, 1967) Newell, Allen, Alan J. Perlis, and Herbert Simon. (1967).
“What is computer science?” Science, 157(3795): 1373-1374.

(Newell and Simon, 1976) Newell, Allen, and Herbert A. Simon. (1976). “Computer science as
empirical inquiry: Symbols and search.” Communications of the ACM, 19(3): 113-126.

(PITAC, 2005) President’s Information Technology Advisory Committee. (2005).
“Computational science: ensuring America’s Competitiveness.”
http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf

 (Wing, 2006) Wing, Jeannette M. (2006). “Computational thinking.” Communications of the
ACM, 49(3): 33-35.

4.0 Content and Organization Information

4.1 List the major topics central to this course:
4.1.1 Societal impact of computing (1.5 hours)
4.1.2 Computational thinking (1.5 hours)
4.1.3 Algorithms (3 hours)
4.1.4 How computers work:

4.1.4.1 The von Neumann architecture (1.5 hours)
4.1.4.2 Data and bits (1.5 hours)

4.1.5 Exploring programming
4.1.5.1 Variables and data manipulation (3 hours)
4.1.5.2 Decisions, loops and logical reasoning (3 hours)
4.1.5.3 Simple data structures (6 hours)

4.1.6 Designing larger programs
4.1.6.1 Modularization (3 hours)
4.1.6.2 Stepwise refinement (3 hours)

4.1.7 Writing applications
4.1.7.1 Web applications (6 hours)
4.1.7.2 Mobile applications (6 hours)
4.1.7.3 Big data (3 hours)
4.1.7.4 Graphics and multimedia (3 hours)

Table 1 shows how the course topics map to the Student Learning Objectives (SLOs) for science:
1. Demonstrate broad understanding of fundamental laws and principles of science and

interrelationships among science and technology disciplines
2. Demonstrate a broad understanding of various natural phenomena that surround and influence

our lives.
3. Describe how scientists approach and solve problems including and understanding of the

basic components and limitations of the scientific method.
4. Solve problems and draw conclusions based on scientific information and models, using

critical thinking and qualitative and quantitative analysis of data and concepts in particular to
distinguish reality from speculation.

Table 1: Mapping between course topics and student learning objectives for science.

Content Relevant Student Learning Objectives
4.1.1 Societal impact of computing SLO #1: Emphasizes that computing is not just an isolated

http://www.nature.com/news/2010/101013/full/467775a.html
http://www.nitrd.gov/pitac/reports/20050609_computational/computational.pdf

(1.5 hours) activity for hackers but has strong connections with other
STEM disciplines and that the integration has great potential
for addressing diverse community-relevant problems.

SLO #2: Explores how technology connects and influences the
activities of 21st century society.

4.1.2 Computational thinking
(1.5 hours)

SLO #3: Introduces the foundational component of the course,
computational thinking. Computational thinking is the process
by which computer scientists approach and solve problems by
mapping a natural problem into an algorithmic model that is
amenable for computational solution.

4.1.3 Algorithms
(3 hours)

SLO #1: Algorithms are the step-by-step solution to a
computational problem. This topic introduces algorithms as a
way of describing information processes so that they can be
studied further.

SLO #3: Introduces algorithms as the creative expression of
computational thinking.

4.1.4 How computers work
(3 hours)

SLO #2: Studies the phenomena surrounding computers, how
they work internally, particularly the common von Neumann
architecture. Understanding this phenomenon provides a
frame of reference for understanding how algorithms run and
why they are expressed that way.

4.1.5 Exploring programming
(12 hours)

SLO #2: Programs are algorithms realized in a formal language
that computers can understand. The execution of programs on
a computer and the inevitable debugging activity further helps
students understand the phenomenon of computing.

4.1.6 Designing larger programs
(6 hours)

SLO #3: Introduces the important computational thinking
concept of abstraction, which enables students to describe
larger problems and solve them with larger programs.

4.1.7 Writing applications
(18 hours)

SLO #1: Introduces various modern computing technologies
(web, mobile, graphics, databases) and provides a framework
for integrating them together to solve STEM-related problems.

SLO #1: Studies the complex information processes resulting
from the interplay of devices, networks and data.

SLO #2: Examines how technology enables scientific discovery
by supporting data collection and analysis, also known as
cyber-enabled discovery and innovation.

SLO #2: Develops skill in creating meaningful models to
understand natural phenomena and solve real-world problems.

SLO #3: Demonstrates how problems can be systematically and
methodically solved by the combining the strengths of diverse
technologies.

SLO #4: Introduces the technologies that are the basic
ingredients for “building a smarter planet”. The technologies
are likely to change over time as new ones emerge that better
suit the learning objectives of an increasingly sophisticated
student population.

(The contributions and objectives of the current technologies
are explained below.)

4.1.7.1 Web applications (6 hrs) SLO #4: Introduces the cloud which enables flexible computing
resources and provides centralized access to data and
applications.

SLO #3: Studies how the web enables collaborative problem
solving.

4.1.7.2 Mobile applications (6 hrs) SLO #4: Introduces application development on mobile devices,
which are practically portable computers with state-of-the-art
sensors for collecting data about its physical environment.

SLO #2: Sensor data of environment enables study of the
natural phenomena that surrounds us.

4.1.7.3 Big data (3 hrs) SLO #4: Solves real-world problems through the development
of solutions that are grounded in data rather than speculation.

SLO #2: Analysis of scientific data facilitates cyber-enabled
discovery.

4.1.7.4 Graphics and multimedia
(6 hrs)

SLO #4: The foundation for visual data analytics, which is
crucial to analyzing and understanding data.

5.0 Teaching Methodology Information
5.1 Methods:

This course will be held in a hybrid lecture/lab format every week. The lecture describes
essential computational concepts while the lab enforces the concepts through active
learning techniques.
The course uses two programming languages, starting off with a visual programming
language and transitioning to a textual language in the latter half of the semester. The
choice of language may change over time with adoption of newer programming
platforms.
For the initial offerings of this course, the first part uses the App Inventor language
(http://appinventor.mit.edu), a simple graphical language used to create applications
running on the Android platform. App Inventor programs are expressed as a collection of
blocks, each corresponding to some statement. Like similar languages such as Scratch
and Alice, App Inventor was designed to have a low barrier of entry for novices to write
programs without becoming frustrated with program syntax.
The second part of the course uses Python, an interpreted procedural language. This was
intended to give students a feel for reading and writing programs in textual languages,
facilitating a smoother transition into conventional languages like Java.

http://appinventor.mit.edu/

5.2 Student role:
Students are expected to attend the lectures and participate in class discussions. They are
required to do all homeworks and assigned readings. To spur creativity, students will also
propose and implement a small team-based project.

6.0 Evaluation Information
6.1 Describe the typical types of student projects that will be the basis for evaluating student

performance:
Homework assignments will typically be small problems requiring programming
solutions as well as short writing assignments or reports discussing various societal
impacts of computing.
The term project will be an application involving mobile devices. Students will give two
oral presentations on the project, once at the onset, describing their proposal, and then at
the end, presenting the finished project.

6.2 Describe the typical basis for determining the final grade (e.g. weighting of various
student projects):

Homework assignments/laboratories: 50%
Term project: 20%
Midterm exam: 10%
Final exam: 20%

6.3 Grading type:
Percent Grade Percent Grade
97 – 100 A+ 77 – 79 C+
93 – 96 A 73 – 76 C
90 – 92 A– 70 – 72 C–
87 – 89 B+ 67 – 69 D+
83 – 86 B 63 – 66 D
80 – 82 B– 60 – 62

0—59
D–
F

7.0 Resource Material Information

7.1 Textbooks and/or other required readings used in course:
Hal Abelson, Ken Ledeen, Harry Lewis. (2010). Blown to Bits: Your Life, Liberty, and

Happiness After the Digital Explosion. Addison-Wesley. http://www.bitsbook.com.

Allen Downey. (2012). Think Python: How to Think Like a Computer Scientist. Green
Tea Press. http://www.greenteapress.com/thinkpython.

David Wolber, Hal Abelson, Ellen Spertus, and Liz Looney. (2011). App Inventor:
Create Your Own Android Apps. O’Reilly Media, Inc.
http://www.appinventor.org/projects.

7.2 Other student suggested reading materials:

John Conery. (2010). Explorations in Computing: An Introduction to Computer Science.
CRC Press.

7.3 Current bibliography and other resources:

J. Glenn Brookshear. (2011). Computer Science: An Overview, 11th Edition. Addison-
Wesley.

http://www.bitsbook.com/
http://www.greenteapress.com/thinkpython
http://www.appinventor.org/projects

Matthias Felleisen, Robert Bruce Findler, Matthew Flatt, Shriram Krishnamurthi. (2012).
How to Design Programs, 2nd Edition. MIT Press. http://htdp.org.

Jerry Lee Ford. (2008). Scratch Programming for Teens. Course Technology PTR.

Tony Gaddis. (2011). Starting Out with Alice, 2nd Edition. Addison-Wesley.

Tony Gaddis. (2012). Starting Out with Programming Logic and Design, 3rd Edition.
Addison-Wesley.

Mark J. Guzdial, Barbara Ericson. (2012). Introduction to Computing and Programming
in Python, 3rd Edition. Prentice Hall.

Michael Kölling. (2009). Introduction to Programming with Greenfoot: Object-Oriented
Programming in Java with Games and Simulations. Prentice Hall.

Jeff Kramer. (2007). Is abstraction the key to computing? Communications of the ACM
50, 4, April 2007, pp. 36-42.

Casey Reas, Ben Fry. (2010). Getting Started with Processing: A Quick, Hands-on
Introduction. O’Reilly Media.

David Reed. (2010). A Balanced Introduction to Computer Science, 3rd Edition. Prentice
Hall.

8.0 Other Information:

8.1 Accommodations statement:
Accommodations are provided for students who are registered with UNO Disability
Services and make their requests sufficiently in advance. For more information, contact
Disability Services (EAB 117, Phone: 402.554.2872, TTY: 402.554.3799) or visit the web
at http://www.unomaha.edu/disability.

8.2 Other:

8.3 Author(s):
 Harvey Siy and Jong-hoon Youn

9.0 Computer Science Accreditation Board (CSAB) Category Content (class time in hours):

CSAB Category Core Advanced
Data structures 10 0
Computer organization and architecture 5 0
Algorithms and software design 45 0
Concepts of programming languages 5 0

10.0 Oral and Written Communications:

Every student is required to submit at least 1 written report (not including exams, tests, quizzes,
or commented programs) to typically 10 pages and to make 2 oral presentations of typically 10
minutes duration.

11.0 Social and Ethical Issues:

Throughout the course, we will introduce the social impacts of computing by including discussion
from the text “Blown to Bits” [Abelson, et al. 2010]. We will also connect lab exercises to real-
world problems.

http://htdp.org/
http://www.unomaha.edu/disability

12.0 Theoretical content:
Please list the types of theoretical material covered, and estimate the time devoted to such
coverage.
Algorithm analysis – 3 hours
Reasoning about programs – 3 hours
Abstraction and modeling – 3 hours

13.0 Problem analysis:

Please describe the analysis experiences common to all course sections.
We will focus on helping students develop a mindset for problem solving using computational
thinking.

14.0 Solution design:
Please describe the design experiences common to all course sections.
Students will have the opportunity to design their own mobile applications and implement them
using App Inventor and Python.

CHANGE HISTORY
Date Change By whom Comments
8/8/2012 Initial special topics course draft Siy
8/9/2012 Added sections 8-14. Siy
8/27/2012 Revised into a regular course proposal. Siy
9/21/2012 Revised content; more applications Siy
10/10/2012 Revised catalog description, added

prerequisite, reorganized bibliography
Siy

10/11/2012 Clarified in Section 6 how written and
oral communication requirements
(Section 10) fit in the evaluation process.

Siy

5/7/2013 Added Science Student Learning
Objectives so that course can be used as
a general education course.

Siy

This table is used to relate performance objectives (in section 3 of the syllabus) to the ABET program
outcomes. List the appropriate performance objectives in the left column. In the body of the table, use S
and X to indicate the relationship between the performance objective and the ABET program outcomes.
Leave cells blank if there is no relationship. Add additional rows to the table as needed.

S – Strong relationship
X – Contributing relationship

Course objective

(a
) k

no
w

le
dg

e
of

 d
is

ci
pl

in
e

(b
) a

na
ly

ze
 p

ro
bl

em
, d

ef
in

e
re

qu
ir

em
en

ts

(c
) d

es
ig

n
an

d
im

pl
em

en
t s

ol
ut

io
n

(d
) f

un
ct

io
n

on
 a

 te
am

(e
) e

th
ic

al
 is

su
es

(f
) c

om
m

un
ic

at
e

ef
fe

ct
iv

el
y

(g
) a

na
ly

ze
 im

pa
ct

 o
f c

om
pu

tin
g

(h
) c

on
tin

ue
d

pr
of

es
si

oa
nl

de

ve
lo

pm
en

t

(i)
 C

ur
re

nt
 te

ch
ni

qu
es

 a
nd

 to
ol

s

(j
) a

pp
ly

 fo
un

da
tio

ns

(k
) a

pp
ly

 d
es

ig
n

an
d

de
ve

lo
pm

en
t

pr
in

ci
pl

es

3.1 X S S S
3.2 S S S
3.3 S X
3.4 S S X
3.5 S S
3.6 S S

	UNIVERSITY OF NEBRASKA AT OMAHA
	COURSE SYLLABUS
	Percent
	CHANGE HISTORY

