YOU CAN BE A SUCCESSFUL SCIENTIST AND STILL MAKE MISTAKES

Featuring Dr. Jessie Huisinga
University of Kansas Medical Center

February 24, 2017 | 12:00 - 1:00 pm | HPER 112
Parking Available in Lot T

ABSTRACT

Scientific presentations often present exciting discoveries without any acknowledgment of the behind the scenes problems or challenges faced by researchers. Elegant research is discussed without note of the years of data collections, problems with co-investigators, and graduate student pep talks that it took to get there. These struggles can be particularly acute for early career scientists yet senior faculty seemingly handle them with ease. Dr. Huisinga, an alumni of the Biomechanics program at UNO, will discuss her early career path so far and the specific challenges that have both helped and hindered her research goals as she transitioned from student to postdoc to faculty to (hopefully) tenured faculty. Much of Dr. Huisinga’s research focuses on understanding gait and balance problems in persons with multiple sclerosis. Her talk will use specific research project examples to highlight the challenges and successes she has experienced and learned from.

ABOUT DR. HUISINGA

Dr. Huisinga is an Assistant Professor in Physical Therapy and Rehabilitation Science and the Director of the Human Performance Laboratory within the Landon Center on Aging. She is also faculty in the Bioengineering Department at KU-Lawrence. Dr. Huisinga completed her undergraduate degree in Biomedical Engineering at the University of Iowa. She then attended the University of Nebraska at Omaha where she received her PhD in Biomechanics. She completed a postdoctoral fellowship within the Neurology Department at Oregon Health and Science University where she was a National Multiple Sclerosis Society Research Fellow. Dr. Huisinga’s overall research goal is to create a better understanding of the underlying neuromotor deficits experienced by pathological populations in order to improve treatment protocols related to movement disorders. She has extensive expertise in evaluating gait and postural control in healthy and neurologically impaired populations and her research includes the use of novel engineering technology to evaluate movement in the real world.