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INTRODUCTION 

Osteoporosis is a multifactorial skeletal disease that 

continuously reduces bone mass and tissue deterioration of 

microarchitectural structure [1]–[3]. Numerous patients who 

were diagnosed with this illness have a higher rate of 

experiencing bone fracture compared to the healthy group. 

Within the United States, 55% of people who are 50 years and 

older are expected to have osteoporosis disease [4]. The basic 

aspects that increase osteoporotic patients to fall are associated 

with aging, and physical degradation, and cognitive 

functionality [5]. The dynamic stability is quantified with the 

Maximum Lyapunov Exponent, which quantifies the local 

divergence of nearby trajectories and is approximated 

measurement of microscopic perturbation from its real-time 

responses [6]. The purpose of this research was to quantify 

dynamic stability while walking from osteoporosis patients and 

investigate if it can differentiate the Faller and Non-Faller 

group.  

 

METHODS 

For this study, a total of 16 osteoporosis patients participated, 

eight Faller and eight Non-Faller, and their anthropometry data 

is indicated in Table 1. Any subjects with current surgical 

treatment or hospitalization with any severe mental, respiratory, 

cardiovascular, and musculoskeletal diseases were excluded 

from the study. The participants signed the written consent 

authorized from Arizona State University and MAYO IRB 

before conducting the experiment. The Dynaport MM+ 

(Motion Monitor+, McRoberts BV, The Hague, Netherlands) 

IMU sensor was used to collect the continuous walking data 

from the subjects with a sampling frequency of 100Hz. While 

collecting the data, this device was located at the posterior 

lumbar region of the spine area. To collect the continuous gait 

data, 3minute walking was performed with each subject’s 

normal walking speed without stopping on the clear pathway 

setting in a Mayo clinic. 
Table1: The anthropometry information of Osteoporosis Faller and 

Non-Faller subject 

 

 

RESULTS AND DISCUSSION 

The result indicated that the Maximum Lyapunov Exponent for 

the Osteoporosis Fallers were 1.71 and Non-Fallers were 1.31, 

shown in Figure 1. Since the Maximum Lyapunov Exponent  

indicates the average logarithmic rate of divergence, the higher 

value represents instability of the larger divergence between the 

nearest neighbors and the lower value implies more stable 

kinematic stability [7]. This determines that the Faller group 

had immense instability when they are walking continuously 

compared to the Non-Fallers.  

 

 
Figure 1: This graph represents the Lyapunov Exponent difference 

between the Faller and Non-Faller Osteoporosis patients 
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  Osteoporosis  

 Faller (n = 8) 
Non-Faller (n = 

8) 

 M SD M SD 

Age 78.13 8.49 67.50 10.41 

Height (cm) 
162.1

9 
9.48 

164.3

9 
9.03 

Weight (kg) 66.73 15.19 70.73 21.45 

Body Max Index (BMI) 25.86 6.53 25.89 6.58 
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INTRODUCTION 

Motor deficits in children suffering from cerebral palsy (CP) 

result in gait deviations and vary depending on pathology 

severity. Head stabilization allows for visual-vestibular control 

of gait and posture and is likely to be perturbed in children with 

CP [1]. Head variability can be assessed between repetitive gait 

cycles using clinical gait analysis and might represent an 

indicator of overall walking function.  

This exploratory study focuses on quantifying and comparing 

head variability between young individuals with CP and control 

subjects.  

 

METHODS 

249 subjects comprising 211 individuals with CP (hemiplegia, 

n=122; diplegia, n=76, quadriplegia, n=13) and 38 control 

subjects were included in this study. The analyzed trajectory 

was the average of all four head markers. For each subject, five 

gait cycles were randomly selected. Each cycle was further 

represented using 100 points (0%-100%) obtained by applying 

a linear interpolation. For each individual, the modeling 

included a projection of all points into the frontal plane. All 

points were then wrapped in one polygon concave hull. Based 

on least squares method, an ellipse that best encompasses the 

given points in a polygon was then fitted [2], and the ratio 

between the two axes of the ellipse was calculated. Finally, the 

standard deviation (SD) of the ratio for all five gait cycles 

represented the variability measure of each subject.  

To compare the dispersion between groups, one-way ANOVA 

was used, with Tukey's HSD correction for multiple 

comparisons on post hoc, Cohen's d for effect size and 

significance level p≤0.05*. 

 

RESULTS AND DISCUSSION 

ANOVA results show that the SD ratio's mean values are 

significantly different for all three groups (p < 0.0001). Table 1 

gives a more detailed comparison between the mean of the 

groups (post hoc comparison), which shows highest significant 

difference for control versus patients with severe motor deficits. 

Overall, the dispersion of cycle points is wider in patients than 

controls (Figure 1), reflecting increased head roll as a 

compensatory strategy for movement deficits [1].  
 

 
Figure 1: Frontal-plane movement dispersion/fitted ellipses on 

five cycles represented for one control subject, one patient with 

unilateral CP, and one patient with bilateral CP. 

 

CONCLUSIONS 

Head movement variability was increased for patients with 

severe motor deficits. The presented findings should be 

confirmed after correction for age and walking speed. Further 

studies are needed to explore variability metrics of different 

segments, as well as machine learning methods for an automatic 

classification of these groups. 
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Table 1: Tukey HSD post hoc comparison of the mean variability values (based on the SD of the ratio of all five cycles) between 

groups with correction for multiple comparisons. 

Group A Group B Measures 

  mean(A) mean(B) diff se p-value cohen 

Control Bilateral CP 0.20167 0.27153 -0.06987 0.01605 0.00100* -0.84382 

Control Unilateral CP 0.20167 0.24018 -0.03852 0.01538 0.03316* -0.46520 

Bilateral CP Unilateral CP 0.27153 0.24018 0.03135 0.01154 0.01834* 0.37862 
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INTRODUCTION 

Coordination is foundational to human movement1. One 

prominent model of coordination is the Haken-Kelso-Bunz 

(HKB) which predicts change in relative phase between two 

oscillators according to the following equation: 

�̇� = ∆𝜔 − 𝑎 sin(𝜙) − 2𝑏 sin(2𝜙) − √𝑄𝜁𝑡, 

where  quantifies differences in natural periods between the 

oscillators. The ratio, b/a, models the collective frequency of 

coordinated oscillation. √𝑄𝜁𝑡 is a noise term with strength Q. 

Δ𝜔 is an ‘imperfection parameter’ that predicts deviations in 

relative phase, 𝜙, due to timing differences in oscillators. 

Another possibility is that deviations of 𝜙 might result from 

asymmetries in spatial alignment of oscillators, such as in visual 

motor coordination. We propose two possible mechanisms for 

modeling asymmetry based on a modified HKB model:  

�̇� = ∆𝜔 + ∆𝑠 − 𝑎 sin(𝜙 − 𝜂) − 2𝑏 sin(2𝜙) − √𝑄𝜁𝑡 

Two potential terms, Δ𝑠 and 𝜂, can model the effects of spatial 

asymmetries of oscillators. Both predict shifts in mean relative 

phase,  �̅�, away from stable fixed points. Only the ∆𝑠 parameter 

predicts a shift in 𝑆𝐷�̅�,, a decrease in the stability of 

coordination. This study was designed to distinguish which, if 

either, of those parameters best models spatial asymmetry. 
 

METHODS 

10 healthy adults (26.4 ± 6.87 years, 7 males, 3 females) 

participated in this study. A 6-camera system (Optotrak, NDI) 

measured upper body movement at 100 Hz. The aim was to 

investigate the effects of reference frame alignment on the form 

and stability of visuomotor coordination. Participants 

coordinated their arm movements with a visually displayed 

sinusoidally oscillating stimulus (𝑆𝑆𝑖𝑛𝑒). Forearm movements 

pivoted about the elbow which rested on 

a rotating platform. A user controlled 

visual stimulus (𝑆𝑅𝐴) was displayed on 

the screen that oscillated due to elbow 

rotation. Figure 1A shows a display in 

which the horizontal centers of 

oscillation of 𝑆𝑆𝑖𝑛𝑒 and 𝑆𝑅𝐴 are 

manipulated. Given horizontal screen 

coordinates (x) an amplitude of 

oscillation (A) of 𝑆𝑆𝑖𝑛𝑒, we scaled this 

offset parameter as  = xshift/A (Figure 

1C). Figure 1B depicts the relative 

positions of 𝑆𝑆𝑖𝑛𝑒 and SRA for  = -2.0 

over several cycles. We hypothesized 

that particular spatial offsets will be 

preferred. To test this hypothesis, we 

studied preferences for particular spatial arrangements of  𝑆𝑆𝑖𝑛𝑒 

and 𝑆𝑅𝐴  that arise from initial arrangements of  = -3, -2, -1, 0, 

1, 2 or 3. Participants were free to move the location of 𝑆𝑅𝐴 as 

long as they could comfortably perform anti-phase and in-phase 

coordination. Subjects performed 3 trials for each phase (in-

phase, anti-phase) ×  pair, each lasting 60 seconds. 3 practice 

trials were given at  = 0 to familiarize subjects with the task.  
 

Analysis Strategy. We computed instantaneous relative phase 

between 𝑆𝑆𝑖𝑛𝑒 and 𝑆𝑅𝐴 for all trials, along with circular means 

and standard deviations.2 We then modeled �̅� and 𝑆𝐷�̅�  as a 

function of  and phase (inphase/antiphase) in separate 

Bayesian multilevel models developed specifically for 

circular/directional dependent variables.3  

 

RESULTS AND DISCUSSION 

Estimates in Table 1 replicate well known differences between 

required phases because the 95% credible intervals defined by 

LB and UB do not overlap. Modeling results in Table 2 show 
 

Table 1. Estimated circular descriptive statistics for �̅� as a 

function of required phase. Estimates are in radians. 

  Mean Mode SD LB UB 

Anti-phase -2.82 -2.87 0.13 -2.98 -2.59 

In-phase 0.14 0.12 0.03 0.08 0.21 
 

that most slope estimates indicate that a one unit change in ρ 

predicts a negative change in �̅� because credible intervals do 

not contain 0. Models relating ρ and 𝑆𝐷�̅� (not reported to due 

to space) found no evidence of such a relationship, implying 

that ∆𝑠 may not be useful in modeling asymmetry effects.  

 

Table 2. Slope estimates for ρ predicting �̅� 

Slopes Mean SD Mode LB UB 

𝛽𝑐 -0.18 -0.22 0.23 -0.31 0.14 

AS -0.08 -0.08 0.15 -0.22 -0.02 

SAM -0.08 -0.09 0.06 -0.20 -0.02 
Note: 𝛽𝑐 = Slope at inflection point, AS = Average Slope, SAM = Slope at 

Grand Mean, LB/UB = Upper and lower bounds of 95 % credible interval 

from Bayesian estimates.  

 

CONCLUSIONS 

Results suggest that, in the current context, spatial asymmetries 

may best be modeled via the 𝜂 parameter in the modified HKB 

model. Future work will investigate the extent to which this 

modification transfers to other conditions of asymmetry. 
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INTRODUCTION 

Foundational studies in the field of motor coordination suggest 

that coordination is multiscale in nature. Von Holst [1] 

demonstrated that two oscillators coordinating at different 

frequencies influence each other. The participant whose data 

are depicted in Figure 1 moved the forearms up and down to 

establish a 2:1 pattern, with one arm moving twice as fast as the 

other. Superposition is evident in the trace of each arm: spectral 

decomposition would reveal the presence of both fast and slow 

frequencies in each signal.  

 

 

 

 

 

Figure 1:  Von Holst (1937) observed bidirectional influence 

across the arms during performance of 2:1 coordination. The 

slow arm (bottom) shows influence of the faster arm (top) and 

vice versa. 

 

A general characteristic of polyrhythmic coordination is that 

behaviors are performed at different tempos (frequencies) and 

are integrated into an overall, system-level, pattern. Since many 

group activities – e.g., teamwork in business, sport, etc. – result 

from integration of differently-timed behaviors, the primary 

goal of this research is to use multiscale analyses to understand 

coordination of polyrhythms within people at different scales. 

 

METHODS 

Data were from a pilot study on the polyrhythm performance in 

humans.  Participants were seated in front of an iPad that 

displayed an image of the pattern to be performed (Figure 2).  

 

 

 

 

Figure 2: Performance templates identify required relations 

across processes. Vertical hash marks indicate the timing of 

finger flexion for both the left and right hands.  

 

Participants read the image from left to right like a score of 

music and attempted to make a finger tap for each vertical mark 

they encountered. Participants continually tapped the given 

polyrhythm for 3 minutes. The motion of the fingers of the 

participants was recorded.  Movement measurements were 

recorded using Northern Digital Optotrak 3-D Investigator 

motion tracking system. The motion tracking camera, which 

was positioned facing the participant, recorded the three-

dimensional positions of two infrared-light-emitting diodes 

(IREDS) that were attached to the end of the participant’s index 

fingers.  Data were sampled at 100 Hz (see raw data, Figure 3A) 

and analyzed using wavelet coherence analysis (WCA) [2]. 

WCA characterizes multiscale relationships in between two 

time series in time-frequency space (Figure 3B) and provides 

insight into the  time scales of coordination. 

 

RESULTS AND DISCUSSION 

Illustrative results from one participant are shown in Figure 3B. 

Frequency bands show that the movements of the left and right 

index fingers are coordinated across multiple frequencies. The 

strongest coherence is evident just above 1 Hz. 
 

 

 

Figure 3: (A) Raw position data from a participant performing 

a 2:1 ratio. (B) Wavelet coherence measuring correlation 

between the two signals at varying frequencies. 

 

CONCLUSIONS 

Multiscale analysis revealed that polyrhythmic performance 

entails simultaneous coordination at multiple frequencies. That 

proves preliminary support for foundational observations made 

nearly eighty years ago (Figure 1). Ongoing research explores 

the multiscale structure of polyrhythms using a variety of 

multiscale methods. 
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across the arms during performance of 2:1 (multifrequency)

coordination. The trace of the slower arm (bottom) shows

the influence of the faster arm (top) and vice versa.
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INTRODUCTION 

A persistent belief of the gait research community is that higher 

kinematic variability is indicative of lower stability. This 

viewpoint has emerged mainly because early studies on gait 

variability reported higher kinematic variability in older adults’ 

walking compared to young individuals [1]. Since older adults 

have lower gait stability and thus a higher risk of falling, higher 

variability has typically been equated to lower stability. 

 

However, higher kinematic variability may not be the result of 

lower stability only. Indeed, two factors can contribute to gait 

kinematic variability, namely external perturbations 

(mechanical and non-mechanical), which can cause instability, 

and sensorimotor noise [2]. As increased gait kinematic 

variability could be the result of increased sensorimotor noise, 

kinematic variability may not cause gait instability. However, 

the effect of sensorimotor noise on gait kinematic variability 

and stability has not been studied. 

 

The aim of this study was, therefore, to investigate the effect of 

simulated sensorimotor noise on gait kinematic variability and 

stability using a biped walking model.  

 

METHODS 

The simplest passive dynamic walking model [3] was used to 

investigate the effect of simulated sensorimotor noise on gait 

kinematic variability and stability. Gaussian white noise of 

different amplitudes (0.001,0.002,0.003) was added to the 

differential equations of the biped model resulting in a 

stochastic differential equation (SDE). The SDE was solved 

using the Euler-Maruyama method [4]. The inter-step standard 

deviation (SD) of step time and swing angle trajectory were 

calculated as the measures of kinematic variability. The local 

divergence exponent (LDE) was calculated as the measure of 

gait stability. Poisson regression analysis was performed to 

determine the effect of noise level on the kinematic variability 

and stability measure. The significance level was set at 0.05. 

 

RESULTS AND DISCUSSION 

The regression coefficients were statistically significant 

(p<0.05) for step time SD, swing angle SD, and LDE. In 

addition, step time SD and swing angle SD had greater 

regression coefficients and coefficient determination (R2) 

compared to LDE (Table 1). Moreover, step time SD (p=0.007) 

and swing angle SD (p=0.009) had lower p-values compared to 

LDE (p=0.04). These findings indicate that sensorimotor noise 

mainly resulted in higher levels of kinematic variability but its 

influence on gait stability is minimal. 

 

 
Figure 1:  Kinematic variability (step time SD and swing angle 

SD) and gait stability (LDE) at three noise amplitudes. 

 

CONCLUSIONS 

The findings of this preliminary study imply that kinematic 

variability observed in older adults’ gaits might be the result of 

internal sensorimotor noise but this noise may not result in gait 

instability. 
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Table 1: Kinematic variability and gait stability regression analyses. 
 

  Regression Coefficient Standard Error R2 p-value 

Step time SD 1076.60 403.08 0.90 0.007 

Swing angle SD 1095.90 423.40 0.87 0.009 

LDE 504.60 247.23 0.55 0.040 
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