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Estimating Gene Signals From
Noisy Microarray Images
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Abstract—In oligonucleotide microarray experiments, noise
is a challenging problem, as biologists now are studying their
organisms not in isolation but in the context of a natural en-
vironment. In low photomultiplier tube (PMT) voltage images,
weak gene signals and their interactions with the background
fluorescence noise are most problematic. In addition, nonspecific
sequences bind to array spots intermittently causing inaccurate
measurements. Conventional techniques cannot precisely separate
the foreground and the background signals. In this paper, we pro-
pose analytically based estimation technique. We assume a priori
spot-shape information using a circular outer periphery with an
elliptical center hole. We assume Gaussian statistics for modeling
both the foreground and background signals. The mean of the
foreground signal quantifies the weak gene signal corresponding
to the spot, and the variance gives the measure of the undesired
binding that causes fluctuation in the measurement. We propose
a foreground-signal and shape-estimation algorithm using the
Gibbs sampling method. We compare our developed algorithm
with the existing Mann–Whitney (MW)- and expectation maxi-
mization (EM)/iterated conditional modes (ICM)-based methods.
Our method outperforms the existing methods with consider-
ably smaller mean-square error (MSE) for all signal-to-noise
ratios (SNRs) in computer-generated images and gives better
qualitative results in low-SNR real-data images. Our method is
computationally relatively slow because of its inherent sampling
operation and hence only applicable to very noisy-spot images. In
a realistic example using our method, we show that the gene-signal
fluctuations on the estimated foreground are better observed for
the input noisy images with relatively higher undesired bindings.

Index Terms—cDNA microarray, Gibbs sampling, low PMT
voltage image, spot segmentation.

I. INTRODUCTION

I N microarray experiments, noise is increasingly becoming
a problem, as biologists now are studying their organisms

not in isolation (e.g., pure RNA from a single species grown in
culture), but in the context of a natural environment. Namely,
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Fig. 1. (a) RGB image of a oligonucleotide-based microarray. (b) Intensity
image of a single spot where the circular outer periphery and the elliptical center
hole are shown using dashed lines.

the amoebic RNA signal is more difficult to ascertain in the
presence of stochastic, confounding host-RNA noise, such as
when RNA is measured from amoebae surrounded by liver
cells , as well as high background noise produced by
the imaging scanner because of the low photomultiplier tube
(PMT) voltage setting. In this paper, we develop a Gibbs-sam-
pling method for estimating the foreground signal and the shape
information from such noisy microarray spot images.

A. Oligonucleotide Microarray

Oligonucleotide microarray technology is a powerful tool for
the analysis of differences in the gene expression levels of a
multitude of genes in parallel. Hybridized oligonucleotide mi-
croarrays are prepared by automatically printing thousands of
distinct oligonucleotides, each representing different genes, as
several gridded, predefined spots in an array format on glass
microscope slides [1]. Messenger RNAs present in a partic-
ular sample of cells are extracted and used to form fluor-tagged
cDNA in vitro using the reverse transcription method. Tagged
cDNAs are then hybridized to the array of oligonucleotides, and
the gene expression level is quantified at the site of each immo-
bilized cDNA [1]. Fig. 1(a) shows a typical oligonucleotide mi-
croarray red–green–blue (RGB) image, where each spot shows
the gene-expression signal corresponding to a particular gene.
Fig. 1(b) presents the intensity image of a single noisy spot.
In general, processing of such images requires following three
prior information.

Shape: During the manufacturing process, a robot finger
places the oligonucleotide on the slide, resulting in variability
in the placement. Because of surface tension, significantly less
oligonucleotide may be deposited at the center of the target.
Consequently, the center of the hybridized target emits fewer
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Fig. 2. A schematic view of a oligonucleotide-based microarray spot with an
elliptical center hole.

fluorescent photons, thereby giving the target the shape of a
doughnut. Therefore, it is critical to consider the center hole in
signal-intensity estimation methods, especially when the signal
is weak and the center hole is large. In practice, the center holes
have an elliptical shape (see Fig. 2) [2]. In a few cases, there
may even be more than one hole.

Background Noise: The oligonucleotide microarray images
are collected by scanning the signal intensities of the corre-
sponding spots using dedicated fluorescence scanners [3]. The
major scanner settings for increasing the spot intensities are the
laser power and the voltage of the PMT. In almost all scan-
ners, within a limited intensity range from 200 to 50 000 (mean
spot intensity), gene expressions are independent of the PMT
voltage. This usable intensity range is considerably smaller than
the maximum detection range of the PMTs. However, spot and
background intensities outside this range will produce errors in
the measured expression levels. The brightest spots reach satu-
ration level at high PMT settings, and differences in expression
levels cannot be ascertained. In order to avoid saturation, the im-
ages are acquired at low-PMT settings. As a consequence, the
captured images of the weakest spots become noisy [2].

Foreground Noise: In this paper, we assume that the inten-
sity measurement of each spot is a function of the specific gene
available within each sample. The random fluctuation in the
foreground occurs because of the undesired binding of the host
RNA. It is often difficult to identify the foreground gene-ex-
pression region (shape) in low signal-to-noise ratio (SNR) situ-
ations, since the signal is weak and there is no marked transition
between the foreground and background noise.

B. Literature Review

In order to estimate gene-signal intensities in each spot,
local segmentation of the image is used to distinguish fore-
ground pixels (signals) from the background. In conventional
software, this segmentation method creates a local target mask
[see Fig. 3(a)] on the gene-signal region comprising a set of
foreground pixels for every spot. Then, quantification is per-
formed to extract raw data intensities from the signal areas and
their relative backgrounds. The image-processing challenge is
to extract the shape of the spot [denoted as the target site in
Fig. 3(a)] emitting the gene signals. Most software resources

Fig. 3. Gene signals from (a) high and (b) low signal-to-noise ratio spots.
(c) The intensity image of (b) with the signal intensities represented by height
along the pixels on the focal plane.

assume during the processing that the target mask itself contains
the gene signals. Some others use the Mann–Whitney (MW)
test to differentiate the target site from the target mask [1].

The existing literature abounds in methods for automatic
segmentation of the microarray images. In [4], the authors
propose Markov random field (MRF) and active-contour-based
methods. In [5], the authors explore an order-statistics-based
technique. A correlation-statistics-based method is proposed
in [6]. In a complementary work, the authors use a wavelet-
denoising method for microarray image enhancement [7]. In
[8], the authors propose a noise-reconstruction-based method.
A k-means clustering-based microarray image-segmentation
method is described in [9]. The main disadvantage of the
preceding methods is that they perform well only for high
SNR images. In addition, conventional adaptive-thresholding
techniques are unsatisfactory in low-SNR microarray spot
images since it is difficult to differentiate the foreground and
the background for such cases [see Fig. 3(b) and (c)]. Standard
morphological methods also fail to capture the shape informa-
tion because of the weak signal.

In a recent work [10], the researchers present an expectation
maximization (EM)/iterated conditional modes (ICM)-based
method for processing noisy microarray spot images. In their
work, the authors do not assume any spot-shape information
for processing images. In this paper, we present an improved
and simplified version of their method by introducing a priori
spot-shape information for the microarray spots using para-
metric doughnut shapes.

Estimating the gene-signal intensity accurately is essential for
its use in biological analysis. For example, in ratio-based ex-
pression analysis, often the gene-signal intensity of a control
may be transcribed poorly (say, with a value of 0) using conven-
tional software at low SNR. However, in the experiment let the
gene be transcribed with a value of ten. Hence, the gene is inac-
tive in the control, but active in the experiment, which should be
considered significant. In these instances, however, generating
a fold ratio is impossible since 10/0, the ratio of the gene signal
intensities, is undefined. Therefore, a more analytically based
estimation is necessary.
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C. Overview of Our Method

In this paper, we consider the following analytical strategy
for estimating gene-signal intensities from oligonucleotide mi-
croarray spot images:

• a parametric doughnut-shape model for the spot shape and
location;

• a parametric model for the foreground and background sig-
nals;

• a Gibbs sampling-based algorithm for estimating the
unknown shape and signal parameters from a given spot
image.

We test our proposed algorithm numerically and compare
the results with the existing MW- and EM/ICM-based methods
[1], [10]. Our proposed method significantly outperforms these
existing methods at low SNR. Our algorithm performs better
because it contains prior spot-shape information, whereas the
other methods (MW and EM/ICM) do not have that flexibility.
Namely, we observe that the performance of the center-hole
estimation is overly sensitive using the EM/ICM algorithm in
very low SNR images, whereas our proposed method does not
have that limitation. In a realistic example using our proposed
method, we show that the gene-signal fluctuations at the esti-
mated foreground are better observed as host redundancy in-
creases in the noisy input images. Our research verifies the fact
that statistical signal processing can play a significant role in es-
timating noisy microarray image data.

One application of our proposed work is in infectious disease
research where many amoebic genes produce very low-intensity
signals in the measurement. Biologists often discard such noisy
spot measurements because no existing methods guarantees the
desired segmentation performance [11]. However, our proposed
approach performs better than the existing methods. Note that
our method is slower than the existing algorithms. Hence, we
propose using conventional methods for segmenting high-SNR
spot images and our proposed method for segmenting very noisy
spot images.

The paper is organized as follows. In Section II, we present
our proposed method for modeling microarray spot shapes and
signals. Then, we describe the measurement model with noise.
In Section III, we present a Gibbs sampler for estimating the
shape and signal parameters of a given spot. In Section IV,
we review existing MW- and EM/ICM-based methods. In
Section V, we present our results using real data on Entamoeba
oligonucleotide microarrays that were collected at the Wash-
ington University School of Medicine Microarray core facility
[11]. In Section VI, we present numerical examples for quanti-
tative and qualitative comparison of the parameter estimation
using our proposed, MW-, and EM/ICM-based methods for
low-SNR images. Finally, we conclude in Section VII.

II. SPOT SHAPE AND SIGNAL MODELING

In this section, we first present a gridding method to obtain a
rough estimate of the position of each spot in the microarray by
finding a rectangular grid. Then, we discuss our proposed para-
metric model of the spot shape and location. Finally, we present
the statistical measurement model comprising the foreground
and background signal.

Fig. 4. Illustration of the gridding algorithm [12]. The image is projected onto
the x axis and y axis. The off-peaks in the two projections define the lines of
the grid.

Gridding: We adopt a similar method to that proposed in [12]
for gridding. We manually select the image portion of interest
from the microarray. We project this image onto the and
axes. The projection looks like a series of peaks separated by
off-peaks. Finally, the grid is formed by plotting a line in each
off-peak. We present an illustration of the gridding algorithm in
Fig. 4.

Spot-Shape modeling: We model the spot shape using a
parametric circle with an elliptical center hole resembling a
doughnut shape. Parametric formulation of the spot introduces
prior information in the gene signal estimation algorithm, as we
show in the next section. In most cases, microarray spot shapes
are circular without any center hole. The remainder are mostly
doughnut shaped. Spots with more than one center hole are
possible, but very rare in practice. Hence, we confine ourselves
to modeling the spots using a single center hole.

We assume that the signal region is given by

(1)

where and denotes a pixel location
and the center of the circle and the ellipse in Cartesian coordi-
nates, respectively; `` '' is a matrix transpose operation; is
the radius of the circular spot; and is defined as

(2)

where is an axis parameter, the area,
and the orientation parameter (in ra-
dians) of the ellipse. Here, and are the axes
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of the elliptical hole. The inverse of is defined as

.

We denote the unknown shape-parameter vector as
, the rectangular grid containing the th spot

and its neighborhood as , where
denotes the union operation. It is worth mentioning that our
proposed spot-shape model can be extended to the more general
case using multiple overlapped center holes.

Signal Modeling: The gene signal in the th spot, ignoring
the background noise in , is given by

(3)

where is the measurement and the th gene’s ex-
pression. For notational convenience, we will omit the subscript

in the remainder of this paper, since we present a generalized
analysis of the gene signal estimation for each spot location. The
measurement-noise model is given by

(4)

where is the vector of unknown foreground spot
signal parameters and the independent identically dis-
tributed (i.i.d.) Gaussian random variable in with unknown
mean and variance [13]. The parameter denotes the
gene expression level and signifies the random fluctuation
as caused by the undesired binding of the host. The local back-
ground noise values in are modeled as inde-
pendent from pixel to pixel and identically distributed additive
Gaussian random variables with known mean and variance

. We assume that and are independent of each
other at every pixel location. Hence, the unknown spot shape,
location, and signal parameters are .

Data Preprocessing: We estimate the background-noise pa-
rameters locally from the noise-only data. Then, we subtract
the estimated from the available data in . In this
way, the local background noise in become
i.i.d. Gaussian random variables with zero mean and known es-
timated variance .

Summary: We adopt a shape bounded by a circle with an
elliptical center hole and also take into account the Gaussian
signal and noise models. Similar frameworks are applicable to
other analysis fields as well [14]. We ignore the randomness
along the periphery for modeling the oligonucleotide deposition
spot. The elliptical shape model for the center hole is well suited
to random horizontal and vertical axes. In [13], a more general
modeling of the periphery considering a random variation is as-
sumed; however it requires a larger number of parameters and,
as a consequence, the solution to the reverse problem becomes
more computationally intensive.

III. ESTIMATION

In this section, we discuss a Bayesian approach for estimating
the unknown parameters in . The Bayesian approach is based

on the Gibbs sampling method as discussed in [14] for nonde-
structive evaluation (NDE) defect signal analysis.

We denote the probability density function (pdf) of a
Gaussian random variable with mean and variance as

and the conditional pdf of a random vari-
able given random variable as . Then, the conditional
pdf of any observation given is

(5)

We assume the available measurements are
and the vector form of the lumped measure-

ments is . The likelihood of the measurement given
is

(6)

where .
• Prior specification: We denote the prior pdf of a random

variable as . We assume the parameters in
are independent a priori and we assume uniform

distribution priors for all the parameters, e.g., i)
uniform ; ii) uniform ; iii)

uniform ; iv)
uniform ; v) uniform ;
vi) uniform ; vii)

uniform ; viii)
uniform . Hence, the joint prior distribution of
the parameters in is given by

(7)

• Posterior pdf of given : Hence, the posterior pdf of
given the observations in is

(8)

We draw samples to estimate the unknown parameters in
from the posterior pdf in (8).

• Sampling the parameters in : Sampling from (8) is a large
dimensional problem. This motivates us to draw samples
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from the joint posterior using a Gibbs sampling method
[15]. The sequence (see, for example, [14]) is as follows:
1) We first draw from using

rejection sampling [15].
•

• Rejection sampling:
a) We draw from ;
b) We draw from uniform(0,1);
c) We repeat steps a) and b) until

, where

2) We then draw from ,
which is a truncated Gaussian distribution
[16]. The pdf is equivalent to

, where
.

3) Finally, we draw from using a
shrinkage slice sampling [17].
• .

a) We define the starting hyperrectangle as fol-
lows: ; ;

; ; ; ;
; ; ;

; ; .
b) We draw an auxiliary random variable

from uniform .
c) We draw from

uniform uniform
uniform uniform
uniform , and uniform ,
respectively.

d) If is within the starting hyperrectangle, i.e.,
, we return . Oth-

erwise we shrink the original hyperrectangle as
follows:
— if , we set otherwise

we set .
— if , we set otherwise

we set .

— if , we set otherwise we
set .

— if , we set otherwise
we set .

— if , we set otherwise we
set .

— if , we set otherwise
we set .

— we repeat from step c.
• Any floating-point underflows that occur while eval-

uating the expression in MATLAB are
adjusted numerically.

4) We repeat from Step 1 until a sufficient number of sam-
ples have been drawn.

The samples produce a guaranteed sta-
tionary (invariant) posterior distribution of [18].

• Sampling the signals : We estimate the signals
for each pixel using a composition sampling from

the posterior pdf
as mentioned in [14]. The process is as follows:
1) We draw as mentioned before.
2) We draw from such that

• for we draw from

• for we set .

Samples yield a Markov
chain with a stationary posterior distribution equal to

.
• Estimating and : We define as the burn-in period.

Hence, the minimum mean-square estimates (MMSE) of
and are computed as follows:

(9)

(10)

where is the MMSE of as defined in (9).

IV. COMPARISON OF MW, EM/ICM, AND OUR PROPOSED

ESTIMATION METHODS

In this section, we first present the MW-test-based segmen-
tation method [1] analytically. Then, we present the EM/ICM-
based method as proposed by Gottardo et al. [10]. Finally, we
present a comparative study of MW, EM/ICM, and our proposed
estimation methods.

A. Mann–Whitney Segmentation Method

In [1] the authors propose a MW-test-based segmentation
method for gene-signal estimation. First, the independent mea-
surements and are collected
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from two random variables and with sample means
and , respectively. The rank-sum statistic is defined as
the sum of ranks of all the samples in the combined ordered
sequence of the and samples. The testing problem is
defined as follows:

(11)

Rejection of occurs when , the critical value
corresponding to the significance level [19].

A predefined target mask is used to identify a portion of the
image of the spot and its background that contains the target
site. Eight samples are randomly selected from the known
background (outside the target mask) as , and
the lowest eight samples are picked within the target mask as

. The rank-sum statistic is calculated and,
for a given significance level , compared with . Under
the null hypothesis, we have

(12)

if both and are large [19]. If the null hypothesis is not
rejected, then one sample is discarded at random from the eight
potential target region’s samples and the lowest eight remaining
samples are selected from the target mask. The Mann–Whitney
test is repeated until the null hypothesis is rejected. When
is rejected, the target site is decided, with significance level ,
to be the eight samples causing the rejection, together with all
pixels in the target mask whose values are greater than or equal
to the minimum value of the eight. If the null hypothesis is never
rejected, then we conclude that there is no significant signal at
the target site. Once a target site is determined, gene expression
is measured by the median of the target site minus the median
of the background area (outside the target mask area).

B. Gottardo Segmentation Method [10]

We summarize briefly the segmentation method as proposed
by Gottardo et al. (see [10] for more information on this
method). For a given spot, the measurement model at every
pixel location is proposed as [10]

(13)

where denotes a pixel location, is the background effect,
quantifies the gene signal corresponding to the spot, is 1

to classify the pixels as belonging to the spot and 0 otherwise,
follows , and follows a Gamma dis-

tribution, . The random variables and are
independent of each other and i.i.d. from pixel to pixel. Hence,

follows a -random variable with degrees of
freedom and variance . A modified symmetric first-order Ising
model is used to estimate the pixel classification level . The
spot pixels are forced to lie within a circle of fixed radius and
center . The lumped vector forms of , and are

, and . In [10], the authors propose an EM/ICM-based mi-
croarray spot-image segmentation algorithm for estimating the
unknown parameters assuming and
values are known.

C. Comparison

Our proposed parametric method is clearly an improvement
over the existing nonparametric MW-test-based segmentation
method which only works well at high SNR. We justify this
claim in Section VI where we show that both the MW- and
EM/ICM-based segmentation methods do not perform as well
as our proposed method in very low-SNR images. Since our
proposed method is an improved and simplified version of the
EM/ICM-based segmentation method, we confine ourselves
to compare with that method in the rest of this subsection.
The segmentation method as proposed by Gottardo et al. is
a pixel-by-pixel process whereas our method is more para-
metric. The forward model (13) is not analytically tractable
for developing a user friendly MCMC-based signal-estimation
algorithm. The EM/ICM-based algorithm was developed for
multiple-center-hole case. Our proposed method can be ex-
tended to such case at the cost of added computational load.
Note that cDNA microarray spots with more than one center
hole are very rare in practice.

Gottardo et al. assume the radius of the spot is fixed and
known, whereas we assume that the circular outer-periphery ra-
dius is an unknown parameter. As an advantage, if the signal
level in a spot is insignificant, the spot-outer-periphery radius
parameter in (1) is expected to be estimated as a value near
to zero using our algorithm.

In our analysis we take into account the random fluctuation of
the gene signal in the spots by modeling the undesired binding of
the host. As a consequence, we estimate the signals in each spot-
pixel location using a composition sampling method, assuming
random fluctuation of the gene signals. On the other hand, the
Gottardo et al. segmentation method does not account for that
in their analysis and models the gene signal in the spot as a
deterministic constant.

We observe that estimation of the center holes using the
EM/ICM method is overly sensitive to the initialization of the
unknown parameters in very low-SNR images. Namely, such
sensitivity occurs because the EM/ICM algorithm employs a
pixel-by-pixel processing. In contrast, our proposed method
can overcome such a problem because of the realistic and para-
metric spot-shape information that we employ in our analysis.
As a consequence, more accurate prior knowledge is employed
during the initialization of the estimation using our method. In
general, our algorithm is time intensive and hence we propose
using conventional methods for segmenting high-SNR spot
images and our method for segmenting very noisy spot images.

V. RESULTS USING REAL DATA

A 70-base-pair oligonucleotide microarray designed to
analyze 6242 genes from the protozoan human gut parasite
Entamoeba histolytica was used for image signal analysis [11].
The average computed melting temperatures for all oligos was
80.8C, with a standard deviation of 2.73 (range 70.5–95.5C).
The oligonucleotides were manufactured by Illumina (San
Diego, CA) and were printed in triplicate on 100-cell-associate
epoxy slides (Santa Clara, CA) by the Washington University
School of Medicine Microarray core facility. RNA was isolated
from approximately log-phase Entamoeba histolytica
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Fig. 5. Two different regions of Entamoeba microarray intensity image data
exhibiting gene signals in low signal-to-noise ratio. Signals in the dash-dotted
regions in (a) and (b) are not visible and the corresponding genes’ expressions
cannot be discerned.

HM-1:IMSS grown in 15-ml glass flasks using the Qiagen
RNeasy kit (Valencia, CA) following the manufacturer’s pro-
tocol, including a DNase treatment. Past studies suggested that
in amoebae more than 30% of genes are transcribed at de-
tectable levels when grown in culture [20], [21]. RNA quantity
and quality were obtained from an absorbance ratio at 260 nm
and 280 nm. RNA quality was confirmed for each sample using
an Agilent 2100 bioanalyzer (Palo Alto, CA) according to the
manufacturer’s instructions. Cy3- and Cy5-labeled cDNA was
created using the Genisphere 3DNA array350 kit (Hatfield,
Pennsylvania). Slides were scanned using a ScanArray Express
HT scanner (Perkin Elmer, Boston, MA) to detect Cy3 and Cy5
fluorescence. Laser power was kept constant, and PMT was
varied for each experiment to achieve optimal signal intensity
with lowest possible background fluorescence. In order to
differentiate expression levels among highly expressed genes,
the data were collected at low-PMT settings. We applied our
proposed estimation algorithms to noisy parts of the microarray
image data.

In Fig. 5(a) and (b), we show intensity images of two dif-
ferent parts of the raw data from Cy3 and Cy5 fluorescence,
respectively. In most regions, gene signals are hardly visible
compared with those of the few highly expressed genes’ sig-
nals in some spots. We use two randomly chosen spots and their
neighboring regions for analysis (see elliptical dash-dotted re-
gions in Fig. 5(a) and (b), respectively).

We denote the randomly chosen spots and their neighboring
regions as data-sets A and B, respectively. The images have
dimensions of 35 35 pixels in each. Realistic and para-
metric modeling of the spot-shapes allows us to initialize the
prior shape-parameter pdf’s accurately. We chose prior pdf’s
with

. We chose
, and around the neighborhood of
. We picked pixels using a prior

knowledge from the high SNR spots. The size parameters of
the center hole ellipse, , and , are chosen
to span inside the outer periphery. Note that Markov chain

calculation may not converge to a true value for too small an
value.

We used a Intel dual-core CPU (Clocks: 2.4 GHz and
1.58 GHz; RAM: 1.99 GB) for all the computer simulations
in this paper. We compare the estimated spot-shapes after
running individual Gibbs samplers for 10 000, 1000, 500, and
100 cycles, all starting with different initialization points, while
evaluating our proposed MCMC-based MMSE estimation.
We discarded 8000, 800, 400, and 80 samples, respectively;
therefore the burn-in periods were and 80,
respectively. We estimated the MMSE of posterior pdf’s
and as well as the unknown parameters of using
(9) and (10) from the last 2000, 200, 100, and 20 samples of the
respective Gibbs samplers. We eliminated the weak-estimated
signals to zero values if ,
where the threshold 0.75 was chosen arbitrarily. We introduced
this step in our analysis for making a rough estimate of other
center-holes (if they at all exist).

In Figs. 6 and 7 we present the signal estimation results for
these data-sets using our method. We computed the sample es-
timates of the background noise mean and variance as
(120.59, 122.58) and (119.91, 181.74), respectively. In these fig-
ures, we present the noisy images and our estimated images for
data-sets A and B, respectively. Here, we ran separate Gibbs
samplers of 10 000, 1000, 500, and 100 cycles for each data-set.
In Fig. 8, we present convergence plots of the Markov chains
for data-set A with 100 draws for parameters a) , b) , c)

, d) , e) , f) , g) , and h) . We computed the SNRs of
the data-sets A and B as 2.9 dB and dB, respectively,
using (14) (see Section VI). Note that the estimated center hole
might not be very accurate for the data-set B since this data-set
is overly noisy. In Table I we present the estimated gene signal
means and computation times for data-sets A and B with 10 000,
1000, 500, and 100 Markov draws.

We conclude that our method: i) clearly segments the fore-
ground spot shapes from the respective backgrounds and ii) also
estimates the foreground signals using Gibbs sampler with 1000
runs. The data-set A is less noisy and hence the estimation per-
formance using this data-set does not vary much (see Table I
and Fig. 6). However, the data-set B is very noisy and estima-
tion performances with 500 and 100 draws using this data-set
do not appear very satisfactory (see Table I and Fig. 7). Despite
of this deficiency, we cannot use long time in real-life analysis
for a single-noisy spot since the whole microarray might contain
thousands of such spots. Hence, we recommend using 500-cycle
Gibbs sampler that takes around reasonable 10 min to process
images of dimension 35 35 pixels. We justify this claim using
a numerical example in Section VI.

VI. NUMERICAL EXAMPLES

In this section we present two numerical examples. In Ex-
ample 1, we compare the estimation accuracy of our proposed
method with MW- and EM/ICM-based methods. This analysis
is performed for a spot shape with two elliptical nonoverlap-
ping center holes using the estimation method we proposed in
Section III. In Example 2, we address a more realistic example
where we generate noisy data for parasitic amoebae surrounded
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Fig. 6. Estimation results using our proposed algorithm of Markov chain
Monte Carlo-based minimum mean-square error algorithm for the data-set
A. (a) Noisy data. (b)–(e) estimated shape, signals, and location after 10 000,
1000, 500, and 100 draws, respectively. The estimated images are presented
using the methodology described in Section V.

by a host of varying amount. Here, we generate the spot shape
considering a more realistic model as proposed in [13]. We qual-
itatively compare the estimated image using this data with the
ideal amoeba image data.

Example 1: In this example we aim to show that at low SNR
our method outperforms the existing methods. We generated the
simulated image of dimensions 25 25 pixels, assuming the
spot shape with two elliptical nonoverlapping center holes [see
Fig. 9(a)]. We used the foreground signal mean , which
resembles the gene signal, and variance . In Fig. 9(b),
we present the noisy version of this image with noise variance

. Here we use noise mean without loss of gen-
erality. In Fig. 9(c), we present the estimated image from this
noisy image using the EM/ICM algorithm. Here, the estimated
foreground signal mean is . In Fig. 9(d), we present
the estimated image using the MW-test-based image segmenta-
tion method with . We observe that the separation of
the foreground and background is impossible.

In Fig. 9(e), (f), (g), and (h), we present the segmentation
results using our proposed method as outlined in Section III
with a priori spot-shape information, assuming two elliptical
center holes, with the flexibility that the center holes can merge
with each other. We drew 4000, 1000, 500, and 100 sam-
ples, respectively, for evaluating our proposed Gibbs sampler.

Fig. 7. Estimation results using our proposed algorithm of Markov chain
Monte Carlo-based minimum mean-square error algorithm for the data-set
B. (a) Noisy data. (b)–(e) estimated shape, signals, and location after 10 000,
1000, 500, 100 draws, respectively. The estimated images are presented using
the methodology described in Section V.

In these figures, we estimated the foreground signal means
, and , respectively. Note that

here we present the estimated directly unlike elimi-
nating the weak signals as we performed in Section V. Here
we used a similar initialization strategy as described for the
real-data case. In Table II we present estimated gene signal
means and computation times for different simulations that we
performed in this example. From this result (see Table II and
Fig. 9), we conclude that our proposed method performs very
well using the 500-cycle Gibbs sampler that takes around 6.21
min to process images of dimensions 25 25 pixels. Such a
result is ascertained given that we initialize our algorithm with
good starting points. We already discussed in Section V that
accurate initialization is always feasible in our analysis for the
case of real data.

In Fig. 10, we present a quantitative comparison of the esti-
mation accuracy of these three methods. We define the SNR as
follows:

(14)

In our analysis we define mean-square error (MSE) as
, where denotes the statistical mean.
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Fig. 8. Convergence plots of the Markov chain for parameters a) x , b) z , c)
r , d) d, e) A, f) �, g) �, and h) �, respectively, using data-set A.

TABLE I
ESTIMATED GENE SIGNAL MEANS AND COMPUTATION TIMES (IN MINUTES)

FOR DATA-SETS A AND B AFTER 10 000, 1000, 500, AND 100 MARKOV DRAWS

USING OUR PROPOSED METHOD

We perform 20 realizations per SNR. We vary the background
noise level to obtain noisy images with different SNR values.
Though the MW-test-based method performs worst in the
beginning, starting from 20 dB it starts outperforming the
EM/ICM-based method. Our proposed method performs the
best.

The EM/ICM cannot efficiently estimate the spot shape in
large noise. Also this algorithm is very sensitive in estimating
the center holes because of employing a pixel-by-pixel pro-
cessing. In conclusion, though our method is time intensive than

Fig. 9. (a) Simulated image of dimensions 25� 25 pixels with the foreground
signal mean � = 20 and variance � = 3. (b) The noisy version of this image
with noise variance� = 300 and mean� = 0. (c) The estimated image from
the noisy image using EM/ICM algorithm. The estimated foreground signal
mean is �̂ = 15:98. (d) The estimated image using MW-test based image
segmentation method using # = 0:05. (e)–(h) The segmented images using
our proposed method after running individual Gibbs samplers for 4000, 1000,
500, and 100 cycles, respectively. The estimated foreground signal means are
�̂ = 19:0219:25; 19:49, and 15:38, respectively.

compared to existing methods but outperforms them with sig-
nificant margins. In our future work we aim at developing a fast
version of our proposed algorithm.

Example 2: In this example we qualitatively show how our
proposed method is useful in a more realistic environment. For
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TABLE II
ESTIMATED GENE SIGNAL MEANS AND COMPUTATION TIMES IN EXAMPLE 1

Fig. 10. A quantitative comparison of the mean-square-error of the estimated
�̂ using our proposed MCMC-based, MW-test-based, and EM/ICM-based
methods. We use # = 0:05 for evaluating the MW-test-based segmentation
method.

this analysis, we consider the case of clinically measured human
gut parasite Entamoeba histolytica data. In such data, host RNA
obscures the ground-truth. As a result, the measured Entamoeba
RNA image varies measurably from the truth. Our motivation in
this example is to show that the application of statistical signal
processing can decrease that variance from the truth.

In this example we generate data using the spot shape model
as we proposed in Section II. We further distort the true spot
shape to make it more realistic. In order to do that, we i) elim-
inate one chord using a randomly chosen chord length and
position and ii) introduce an edge noise effect in the spot by
randomly keeping or removing the spot pixels along the spot
edge [13].

We generate data by assuming that the truth attached to
the gene-signal quantification level is 5 in the spot where

is a known constant (see Fig. 11, first row). This spot can
be assumed as an outcome of a purified Entamoeba RNA
image. Human RNA is sticky and binds weakly/intermittently
to the spot, causing fluctuations/false readings in the fore-
ground signal. In general, the host RNA quantity is large in
the measured clinical sample, reducing the amount of labeled
Entaomeba RNA hybridizing to the spot. As a result, the mea-
surement image becomes noisy. We generate noisy image data
at SNRs of 5 dB, 0 dB, and 5 dB, respectively. Such images
are generated assuming the following mixtures: i) amount
of Entamoeba and 4 amount of host; ii) 0.5 amount of
Entamoeba and 4.5 amount of host; and iii) 0.25 amount of

Entamoeba and 4.75 amount of host. We vary the foreground
signal variance in the images as where is the
host amount in the clinical mixtures. We estimate the unknown
parameters for these images using our proposed method. Then,
we compare the uncorrected and signal-processed samples with
the original pure Entamoeba sample.

In Fig. 11 we present the analysis result. The ground-truth is
shown in the first row. In the second row we present the esti-
mation results at 5, 0, and 5 dB, respectively, for the mixture
i) image data. The results for mixtures ii) and iii) are presented
in the third and fourth rows, respectively. Our proposed method
estimates the spot shapes efficiently for all the generated noisy
images of all the mixtures. In addition, we notice that the signal
fluctuations at the estimated foreground are better observed as
the host redundancy increases in the input noisy images (see
Fig. 11, last row). On the other hand, when the host redundancy
is less, the estimated foreground signal fluctuation is not well
observed at low SNR (see Fig. 11, second and third rows). We
estimate the means of the foreground signals satisfactorily in
these nine cases. We conclude that statistical signal processing
can play a significant role in estimating spot shapes and signals
in noisy microarray image data as we present in this example.

VII. CONCLUSION

We have presented a novel mechanism for microarray image
analysis that has several potential advantages for biological
investigators. The drastic reduction in stochastic noise will
increase the accuracy of all measured ratios compared to
the methods currently used for signal quantification. Most
significantly, oligonucleotide and similar microarray images
analyzed with our algorithm can experience log increases in
gene-expression dynamic range by expanding the lower limit.
This will be accomplished by decreasing noise from spots that
would otherwise be excluded from microarray analysis due to
SNRs that are too low for reliable quantification. The drastic
reduction in noise and accurately defined area of signal will ad-
ditionally result in a more accurate quantification, and therefore
a more accurate resultant ratio, from spots where at least one
channel has low SNR. Other researchers, using less rigorous
algorithms, have found that the quality of measured ratios
from low expression spots is unreliable. By differentiating low
SNR spots from no-signal spots, microarray and other similar
images could be more reliably employed in sensitive biode-
tection assays [22]. In addition, by combining more accurate
signals from differentially stringent hybridization conditions,
off-target hybridization thermodynamic estimates could then
more accurately suggest the degree of sequence misidentifica-
tion. Our algorithms for microarray analysis should make these
applications feasible.

In our future work we will apply our proposed method to the
real microarray image data of a mixture of Entamoeba RNA
and host human RNA to determine the effects of interference.
We have already analyzed a soft version of this experiment in
Example 2 in Section VI. This RNA mixture will vary signifi-
cantly from amoebic RNA isolated without any host cells. One
would expect some true transcriptional difference to exist based
on the organism’s adaptation to its environment; however, we
do not anticipate that the true biological transcriptional profile
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Fig. 11. Row 1: Simulated spot-image of purified Entamoeba RNA with the truth attached as the gene signal quantification level is 5 a in the spot where a is a
known constant; Row 2: Segmented images using our proposed method for the clinical mixture composed of a amount of Entamoeba and 4 a amount of host at
SNRs 5 dB, 0 dB, and �5 dB; Row 3 and Row 4: Similar analysis result as shown in Row 2 for clinical mixtures composed of 0.5 a amount of Entamoeba and
4.5 a amount of host (Row 3) and 0.25 a amount of Entamoeba and 4.75 a amount of host (Row 4), respectively.

would be as distinct as the dual-source RNA profile of the host
and the amoeba.

Our algorithm is relatively slow but is more accurate than ex-
isting methods. In order to analyze the total-genome-microarray
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images of any organism, we propose using our method for pro-
cessing low-SNR spot images and conventional methods for
processing high-SNR spot images. In our future computational
development, we aim at increasing the computational speed of
our method.
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