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INTRODUCTION

Endurance exercise long has been recognized to not only
enhance physical performance but also bring about beneficial
health outcomes. The most studied phenotypic adaptations in
skeletal muscle to chronic exercise are increased vasculariza-
tion (angiogenesis), fiber type transformation toward oxida-
tive myofibers, and increased mitochondrial content/function.
Extensive effort has been afforded to the pursuit of understan-
ding the underlying molecular mechanisms that regulate
mitochondrial biogenesis, the process by which new mito-
chondria are formed. These efforts have culminated with the
discovery of peroxisome proliferator-activated receptor-F
(PPAR-F) coactivator-1> (PGC-1>) (38) and the unveiling
of its function in exercise-induced mitochondrial biogenesis
in skeletal muscle. Interestingly, data from Krieger et al. (20)
suggest that exercise improves the function of the subsar-
colemmal portion of mitochondria. Therefore, exercise seems
to not only increase the number of organelles but also improve
the function/efficiency of the mitochondrial pool/network.
The resulting functional improvement in the mitochondrial
network most likely results from increased rates of mitochon-

drial biogenesis and efficient removal of dysfunctional/damaged
mitochondria. In other words, mitochondrial biogenesis is
critical but may not be the only regulatory event that leads to
the improved function of the mitochondrial network in skel-
etal muscle. Although a discussion of the many facets of
mitochondrial function is beyond the scope of this review, it
is known that this organelle is not only responsible for the
aerobic synthesis of adenosine triphosphate (ATP) but also
may affect calcium (Ca2+) homeostasis and redox state
in muscle cells. In fact, exercise training seems to positively
impact all of these aspects in skeletal muscle. However,
mitochondria, like other organelles, are subject to damage,
and the mitochondrial DNA is especially susceptible to
deletions caused by oxidative stress and aging compared
with nuclear DNA (26). Therefore, it is imperative that
muscle cells have means not only to generate new mito-
chondria but also maintain the healthy ones and remove the
damaged/dysfunctional ones. The regulation of this mito-
chondrial life cycle, from the biogenesis of new mitochon-
dria to the removal of damaged/dysfunctional mitochondria,
ultimately determines the overall quantity and, most impor-
tantly, quality and function of mitochondria in skeletal muscle,
which are the determinants of metabolic function and physi-
cal performance (Figure). These processes allow for a program
to replace old unhealthy mitochondria with new healthy
mitochondria; analogous to the idea of replacing old cars of
low fuel efficiency for new cars of high fuel efficiency to
clean the environment. In this review, we present evidence
suggesting that exercise training stimulates not only the
biogenesis of mitochondria but also the removal of old and
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unhealthy mitochondria through mitochondrial dynamics
and autophagy.

BIOGENESIS

Our laboratory has published a recent review on the topics
of mitochondrial biogenesis, fiber type switching, and
angiogenesis in skeletal muscle (50). Here, we will seek to
summarize the current understanding of exercise-induced
mitochondrial biogenesis and to evaluate new concepts re-
lated to the process of mitochondrial maintenance in this
field. For decades, investigators have explored the adaptive
mechanisms of endurance exercise training and observed
increases in mitochondrial density either indirectly assessed
by the expression of mitochondrial markers (e.g., cyto-
chrome c oxidase IV (COX IV)) or more directly observed
through transmission electron microscopy and mitochon-
drial function measured by mitochondrial enzyme activity
and oxygen consumption. Although it is well known that
the process of mitochondrial biogenesis requires a coordi-
nated regulation of both the nuclear and mitochondrial
encoded genes, the primary mechanisms of adaptation re-
mains unclear. The discovery of PGC-1> in brown adipose
tissue, originally as a cold-inducible regulator of adaptive
thermogenesis, has triggered mounting interest in elucidat-
ing the molecular and signaling mechanisms underlying
exercise-induced mitochondrial biogenesis in skeletal mus-
cle. Biochemically identified as a coactivator of PPAR-F,
PGC-1> is a coactivator of a great number of transcrip-
tion factors, including the PPAR family transcription factors,
nuclear respiratory factors (NRF), transcription factor of acti-
vated mitochondria, and others (28,37). PGC-1> is indeed
capable of coactivating the required nuclear and mitochon-
drial genes for the organelle’s synthesis. Because in large
part of this common theme among the PGC-1>-inducible
transcription factors, PGC-1> is now considered a ‘‘master

regulator’’ of mitochondrial biogenesis. Recent data from
Ugoccioni et al. (45) suggest that other factors act in parallel
to PGC-1> to improve mitochondrial viability and function.
Nevertheless, only more recently, the questions of whether
PGC-1> is induced in skeletal muscle by exercise and whe-
ther its induction is sufficient and necessary to promote mito-
chondrial biogenesis have been addressed. The short answer to
these questions is now a resounding yes.

Overexpression of PGC-1> Enhances Mitochondrial
Biogenesis, and PGC-1> Deficiency Blunts
Endurance Exercise-Induced Mitochondrial
Biogenesis in Skeletal Muscle

Work by Leick et al. (22) demonstrated that mice with
global deletion of the PGC-1> gene exhibited normal wheel
running activity and were capable of inducing oxidative gene
expression in skeletal muscle. However, subsequent work using
this same mouse model led to the conclusion that PGC-1>
is indeed necessary for exercise training-induced protection
from an age-related decline in oxidative function (citrate syn-
thase activity) and antioxidant gene expression (superoxide
dismutase 2) (21). It is important to understand that such
global gene deletion approaches may directly affect other
metabolically active tissues, including the brown adipose
and neural tissues. These multiorgan effects, coupled with en-
hanced adenosine monophosphate-activated protein kinase
(AMPK) activity in resting skeletal muscle, may have pre-
vented the delineation of the functional importance of PGC-
1> in skeletal muscle, particularly under the condition of
exercise training (25). More recently, skeletal muscle-specific
PGC-1> knockout mice were generated (15), and data obtained
from these mice showed that although exercise training-induced
fiber type transformation appeared normal, exercise-induced
mitochondrial biogenesis and angiogenesis in skeletal muscle
were significantly attenuated (11). These results indicate
the necessity of PGC-1> for normal exercise-induced meta-
bolic adaptations, including mitochondrial biogenesis, in skel-
etal muscle. Considering the previous findings from Lin et al.
(24) that transgenic mice with a skeletal muscle-specific over-
expression of PGC-1> have enhanced expression of mitochon-
drial genes, fatigue resistance, and fiber type transformation
toward oxidative myofibers, we now postulate that enhanced
PGC-1> activity is sufficient to induce mitochondrial bio-
genesis, fiber type transformation, and angiogenesis. How-
ever, PGC-1> activity is necessary only for the induction of
mitochondrial biogenesis and angiogenesis.

PGC-1> Regulation by Exercise
A relative wealth of data has been published documenting

the effects of acute exercise and exercise training on PGC-1>
expression. A consensus now exists that exercise training,
including both endurance and resistance exercise, enhances
PGC-1> expression because of transcriptional regulation
(3,7,10). More recent evidence from Perry et al. (35) showed
that a single bout of exercise was sufficient to induce PGC-1>
protein and messenger ribonucleic acid (mRNA) expression
in skeletal muscle, whereas increases in markers for mito-
chondrial biogenesis could be observed only after the third
bout. Interestingly, PGC-1> mRNA level returned to baseline

Figure. Schematic representation of exercise-induced mitochondrial
maintenance. Exercise is proposed to promote biogenesis, fusion, fission,
and mitophagy in an effort to promote the formation of new mitochon-
dria and the identification and removal of damaged and dysfunctional
mitochondria to improve metabolic function.
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between each bout, and the induction of PGC-1> was lessened
with each bout. These findings suggest that the signaling-
transcription coupling machinery for the PGC-1> gene can
accurately sense the stress induced by altered functional
demands of exercise and provide appropriate instructive cues
to induce adaptations in skeletal muscle to minimize the
exercise-induced stress.

Exercise-induced mitochondrial biogenesis also may be
controlled by targeted activation of PGC-1>, indicated by its
translocation to the nucleus (43), and this adaptive process
may begin before increased PGC-1> expression (48). Intri-
guingly, Safdar et al. (41) showed that a single bout of exercise
increases PGC-1> level not only in the nucleus but also in the
mitochondria. Furthermore, the increased PGC-1> expres-
sion also was associated with enhanced interaction between
PGC-1> and transcription factor of activated mitochondria at
the mitochondrial DNA D-loop, as well as increased binding
of PGC-1> to the NRF-1 promoter in the nucleus. Therefore,
exercise is not only capable of inducing PGC-1> protein
expression but also the translocation of PGC-1> to necessary
compartments to stimulate the transcription of the nuclear
and mitochondrial encoded mitochondrial genes, as well as
the replication of mitochondrial DNA.

PGC-1> also is regulated by posttranslational modification,
such as phosphorylation and deacetylation. For example,
PGC-1> can be deacetylated by sirtuin (silent mating type
information regulation 2 homolog) 1 (SIRT1). Although
there is no correlation between the total muscle content
of SIRT1 and PGC-1> or mitochondrial biogenesis, SIRT1
activation is associated with increases in PGC-1> target gene
expression, consistent with SIRT1 activation of PGC-1>
through deacetylation (14). Interestingly, this SIRT1-mediated
PGC-1> activation requires phosphorylation of PGC-1> by
AMPK (4). The fact that PGC-1> activity is controlled both
transcriptionally and posttranscriptionally reveals an elegant
regulatory system with great fidelity in integrating both con-
tractile and metabolic cues in exercise-induced skeletal mus-
cle adaptation.

PGC-1> expression and activity are largely regulated by
upstream signaling pathways of protein kinases. The two
primary protein kinases involved in the regulation of PGC-
1> in skeletal muscle are AMPK (18) and p38F mitogen-
activated protein kinase (p38F MAPK) (1,36). At least
two AMPK phosphorylation sites have been identified on
PGC-1> (18). AMPK not only activates PGC-1> but also
promotes the transcription of the PGC-1> gene (17), con-
trolling both PGC-1> expression and activity. It also has
been shown that AMPK induces mitochondrial gene ex-
pression through PGC-1> (18). In fact, AMPK has been
referred to as a ‘‘master metabolic switch’’ for acute regulation
of energy metabolism and exercise training-induced adapta-
tions. Acute exercise appears to activate AMPK by phosphor-
ylation at Thr172 (22). Although a single bout of exercise
results in increased AMPK activity in skeletal muscle, long-
term exercise training leads to an increase in AMPK protein
content (6,43). However, neither acute exercise nor long-term
exercise training is capable of increasing AMPK-> protein
content in skeletal muscle of PGC-1>-deficient mice (22).
This suggests that not only is PGC-1> reliant on AMPK but
also, at least, the > subunit of AMPK is reliant on PGC-1>.

We have previously shown that a single bout of volun-
tary running in mice is sufficient to activate the p38 MAPK
pathway (1). We further showed that p38 MAPK activity is
sufficient to promote the PGC-1> promoter activity through
myocyte enhancer factor 2 and activating transcription factor
2 (1). In subsequent studies, we demonstrated that muscle-
specific deletion of either p38> or p38A MAPK does not
affect exercise-induced mitochondrial biogenesis and angio-
genesis in skeletal muscle; however, mice with muscle-specific
deletion of the p38F MAPK or PGC-1> gene exhibit atte-
nuated mitochondrial biogenesis and angiogenesis (11,36).
These studies revealed for the first time that p38 MAPK stim-
ulation of PGC-1> is specifically modulated by the F isoform
(36) and led to the conclusion that the p38F MAPKYPGC-1>
regulatory axis is functionally required for the normal exer-
cise-induced metabolic adaptations in skeletal muscle.

MAINTENANCE AND MITOPHAGY

Although exercise-induced addition of new mitochondria
is of extreme importance, the maintenance of a healthy
population of mitochondria may be of equal or greater value.
Mitochondrial damage induced by reactive oxygen species
(ROS) (2) can lead to the accumulation of metabolic inter-
mediates (19), which in turn further impair mitochon-
drial function and trigger a vicious cycle. These pathological
changes ultimately hinder the ability of mitochondria to
function properly. It is conceivable that efficient removal of
damaged mitochondria is critical in maintaining overall mito-
chondrial function in a tissue/organ like skeletal muscle.
Furthermore, an accumulation of damaged mitochondria,
associated with sedentary lifestyle and/or high-fat diets, may
impair skeletal muscle contractile and metabolic functions.
For example, mitochondrial dysfunction has been implica-
ted in the development of insulin resistance (39), likely the
result of excessive production of ROS and accumulation of
by-products of lipid metabolism. Therefore, it is imperative
for the muscle to be able to both recognize and selectively
remove damaged mitochondria.

Maintenance and Mitochondrial Dynamics
Mitochondria form tubular networks in mammalian cells,

which extend through the cytosol and exist in close proximity
to other important organelles and structures, such as the
nucleus, endoplasmic reticulum, and cytoskeleton. Interest-
ingly, skeletal muscle fibers contain two distinct mitochondrial
populations (i.e., subsarcolemmal and intermyofibrillar).
Although the intermyofibrillar mitochondria maintain a rel-
atively high respiratory capacity, the subsarcolemmal mito-
chondria more readily adapt to exercise training (20).
Mitochondria are dynamic organelles that move about the
cell, joining and separating as necessary. However, because of
the physical limitation posed by the dense contractile appa-
ratus in skeletal muscle, it is unlikely that such processes
occur frequently across different mitochondrial populations
in skeletal muscle. This joining and separating of mitochon-
dria from the network are referred to as fusion and fission,
respectively, and allow healthy, metabolically active cells to
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form a large interconnected network of mitochondria for shar-
ing of components (proteins, substrates, mitochondrial DNA)
and removal of dysfunctional regions. Therefore, the balance
between these processes and the signals responsible for their
regulation are of extreme importance to the maintenance of
the mitochondrial network.
The machinery involved in mitochondrial dynamics re-

quires the participation of several proteins. Mitochondrial
fusion involves mitofusins 1 and 2 (MFN1 and MFN2), which
control fusion of the mitochondrial outer membrane, and optic
atrophy type 1 (Opa1), which controls fusion of the mito-
chondrial inner membrane. Fission of the mitochondrial outer
membrane in mammalian species is largely controlled by dyna-
min-related protein 1, which may be recruited by Fission 1 (Fis1)
or mitochondrial fission factor. Westermann has previously
published a more complete review on the machinery of mito-
chondrial dynamics (46).
Genetic manipulation of the genes encoding the machi-

nery of mitochondrial dynamics reveals the importance of a
balance between the fusion and fission processes. For exam-
ple, knockdown of Opa1 produced a fragmented mitochon-
drial structure as the cells might be capable of performing
fission but incapable of fusion (12). In contrast, animals with
cardiac-specific deletion of MFN2 demonstrated abnormally
enlarged subsarcolemmal mitochondria, but not intermyofi-
brillar mitochondria in cardiomyocytes (32). These findings
demonstrate the importance of mitochondrial dynamics in
maintaining a normal healthy mitochondrial network. How-
ever, certain conditions favor one process over the other for
the overall maintenance of this network. For example, mito-
chondrial fusion appears to be shut down in depolarized mito-
chondria, whereas mitochondria undergoing a fission event
are often depolarized (44). The depolarization and fission
events appear to precede the removal of those mitochondria by
mitophagy (44), providing a possible link from the regulation
of mitochondrial dynamics to the removal of damaged portions
of the mitochondrial network.
Exercise training appears to regulate both mitochondrial

fusion and fission processes. For example, seven sessions of
high-intensity interval training have been shown to pro-
gressively increase the protein content of MFN1 and Fis1
(35). Ding et al. (8) further showed that a single bout of
treadmill running in rats induced increased MFN1 and
MFN2 mRNA 24 h after exercise while both MFN1 and
MFN2 proteins remained at baseline. Cartoni et al. (5)
demonstrated that MFN1 and MFN2 mRNA content was
enhanced in human skeletal muscle at 24 h after a single
bout of cycling exercise, concurrent with an increase in
COX IV mRNA. It is of note that cycling exercise induced
increases in PGC-1> and estrogen-related receptor-> (ERR-
>) mRNA at 2 h after exercise, before the changes in MFN1,
MFN2, and COX IV. Interestingly, subsequent in-vitro
studies showed that MFN1 and MFN2 transcription was
regulated by PGC-1> through ERR-> (5). Together, these
findings suggest that PGC-1> plays an important function in
regulating the expression of the machinery for at least the
mitochondrial fusion process in skeletal muscle under the
conditions of exercise. Therefore, not only may mitochon-
drial biogenesis be regulated by PGC-1> but also the dynamics
of mitochondrial fusion and fission.

Mitophagy
Autophagy is an evolutionarily conserved process for

lysosome-dependent degradation of organelles and macro-
molecules. Two major forms of autophagy are known: non-
selective autophagy, which is often stimulated by starvation,
and selective autophagy, which may be triggered by and
functions to remove aggregate/misfolded proteins and dam-
aged organelles (e.g.,mitochondria) (27). Autophagy begins
when a preautophagosomal structure of unknown origin
gives rise to a phagophore, which elongates and engulfs the
target, forming a double-membrane structure known as
autophagosome. The autophagosome then fuses with lyso-
some to form autophagolysosome for execution of degrada-
tion (33). The whole process requires a family of proteins
termed ‘‘autophagy-related genes’’ (Atgs), including Atg1
(also known as Ulk1), Atg5, Atg6 (also known in mamma-
lian systems as Beclin 1), Atg7, and Atg14. Specifically, the
autophagic removal of mitochondria (mitophagy) may be a
critical control step in the maintenance of mitochondrial qual-
ity, which presumably occurs after selection of dysfunctional,
depolarized mitochondria through the fission/fusion processes.
Indeed, inhibition of autophagy (deletion of the Atg7 gene)
resulted in reduced mitochondrial respiration in mouse skeletal
muscle and increased oxidative stress in cell culture (49).

The regulation and impact of endurance exercise on
autophagy in skeletal muscle only are starting to emerge.
Wohlgemuth et al. (47) has shown that mild (8%) life-long
calorie restriction either alone or in combination with exer-
cise prevented the aging-induced reduction in basal autoph-
agy in skeletal muscle in rats. Smuder et al. (42) recently
showed that 5 days of treadmill exercise blunted the global
induction of autophagy markers in the soleus muscle of rats
treated with the antitumor agent doxorubicin, but that it also
resulted in moderate increases in Atg6 mRNA and protein
and Atg7 mRNA in nonYdoxorubicin-treated rats. Altogether,
these results suggest that exercise training helps maintain the
expression of autophagy proteins with aging and may even
promote the expression of autophagy proteins in skeletal mus-
cle, which may mediate the beneficial effects of exercise train-
ing. In this context, recent studies demonstrate that autophagy
is induced by acute exercise in skeletal muscle (13,16,31) and
other peripheral tissues (13,16). More importantly, He et al.
(16) reported that acute exercise-induced increases in autoph-
agy flux was inhibited in mice lacking three conserved phos-
phorylation residues in B-cell lymphoma 2 (Bcl-2) (mice
termed Bcl-2AAA)), which disables the required dissociation of
Atg6 from the Bcl-2 protein for the induction of autophagy.
The authors further observed that exercise trainingYinduced
improvements in glucose tolerance and blood triglycerides and
cholesterol profiles in mice on a high-fat diet were blunted. In
addition, deficient activation of autophagy by exercise also
prevented normal phosphorylation and activation of AMPK
and its downstream target acetyl CoA carboxylase, as well as
translocation of glucose transporter 4 to the cell membrane
in skeletal muscle, which is a potential mechanism for the lack
of metabolic adaptation in Bcl-2AAA mice. What regulatory
mechanism is responsible for acute exercise-induced autophagy
and whether long-term exercise training affects autophagy in
skeletal muscle remain to be ascertained.
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Mitophagy in skeletal muscle has received growing atten-
tion, especially in the context of muscle atrophy (40,49), but
very little is known about the key proteins involved and the
signals required for the regulation of basal levels of mitophagy.
Much of our current understanding of mitophagy comes from
studies in neural tissues from animal models of neural diseases,
such as Parkinson’s disease. We now know that among regu-
latory factors with key functional roles in the regulation
of mitophagy, Bcl-2 anchors to the membranes of both
the endoplasmic reticulum (ER) and the mitochondria (34).
Bcl-2, a key anti-apoptotic factor that binds to the mito-
chondrial outer membrane, also binds to and tethers Atg6 to
the mitochondrial and ER membranes. Atg6 forms a complex
with Atg14 to induce the formation of phagophore (23),
playing a critical role in the induction and flux of autophagy.
In addition, Parkin and phosphatase and tensin homolog
deleted on chromosome 10-induced putative kinase pro-
tein 1 (Pink1) have been demonstrated to relay the signals
associated with mitochondrial damage to the induction of
mitophagy (29).

Other proteins that have been implicated in mitophagy are
mitochondrially localized BNIP3 (Bcl-2 and 19 kd interact-
ing protein 37) and BNIP3-like protein (BNIP3L) (30,40).
Indeed, forced expression of BNIP3 in adult fibers induces
massive mitophagy (40), and BNIP3L seems to be involved in
the recruitment of the autophagy machinery to the mito-
chondria (30).

Finally, two classic exercise-induced pathways, AMPK, the
master metabolic switch, and mammalian target of rapamycin
(mTOR), perhaps the primary cog of protein synthesis and
therefore muscle hypertrophy, have been shown to play im-
portant roles in autophagy regulation. In concert with the
generally opposed nature of AMPK and mTOR, previous
evidence supports that activation of AMPK induces stim-
ulatory phosphorylation of Ulk1 for induction of autophagy,
whereas mTOR results in an inhibitory phosphorylation of
Ulk1 (9). Because these kinases are differentially regulated
depending on the mode and intensity of exercise, they may
help to fine tune mitophagy after acute exercise and as an
adaptation to exercise training. However, their specific role in
skeletal muscle autophagy has yet to be explored. This is an
exciting new area of research, and future studies should look
into the proteins involved in the mitophagy process, as well
as their regulation in the context of exercise.

SUMMARY

Adaptations to exercise training are broad and span mul-
tiple organ systems. In skeletal muscle, one of the most im-
portant adaptations is enhanced metabolic capacity, which
helps improve performance and health. The primary under-
lying mechanisms involve the regulation of the mitochondrial
network. Great attention has been paid in recent years to the
mechanisms involved in the generation and addition of new
mitochondria, which is now known to be regulated by PGC-
1>. Here, we propose that remodeling of the mitochondrial
network through fusion and fission and elimination of dam-
aged/dysfunctional mitochondria through mitophagy are all
of importance in exercise-induced adaptation. This dynamic

process of replacing old unhealthy mitochondria with new
healthy mitochondria underscores enhanced quantity and
quality of mitochondria in skeletal muscle after exercise
training (Figure).
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