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Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43
expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-
expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-
231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56%
and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35%
reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected
MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar
aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43
expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7

and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing
Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both
2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not
affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D
and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the
membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in
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3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects
in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be
implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of

MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus.
& 2013 Elsevier Inc. All rights reserved.
Introduction

Direct cell–cell interaction is mediated by a variety of junctional
complexes that maintain proper tissue homeostasis. Adherens
junctions, tight junctions, and gap junctions (GJs) play over-
lapping roles in the development and differentiation of many
tissues, and the disruption of any of them has been associated
with various diseases, including cancer [1,2]. For instance, it has
been shown that GJs, the main junctions that permit the transfer
of small molecules between cells via GJIC, are downregulated
during primary tumor initiation [3–5]. Moreover, it has been
established that while the re-expression of different connexin
(Cx) proteins (the building blocks of GJs) into tumor cells
decreases their growth rates and inhibits their invasive abilities
[6–9], Cx down-regulation increases tumor cell malignancy [10].
It is assumed that cancerous cells at the primary tumor site tend
to downregulate Cxs simply in order to inhibit the assembly of GJs
so as to release themselves from their physical constraints, hence
allowing easier proliferation and free cell movement. Interest-
ingly, the mechanisms mediating the tumor suppressive effects of
Cxs remain largely unknown, and have been shown to be
mediated independently of GJIC [11].
Nevertheless, several studies have illustrated the importance of

GJ assembly and GJIC in development, in maintenance of tissue
homeostasis, and in differentiation of various tissues [12–14],
including the mammary gland [15]. In fact, studies from our lab
have shown that Cxs are highly regulated during mammary gland
development and differentiation [16], and that mammary epithe-
lial cell differentiation in vitro relies on GJIC in a β1-integrin
independent and possibly OCT-1 dependent manner [17,18].
Moreover, we have shown that under conditions favoring mam-
mary epithelial differentiation, β-catenin (which is a key player of
the Wnt signaling pathway) is sequestered by GJ complexes at the
membrane, away from the nucleus [19] where it usually promotes
cellular proliferation, angiogenesis, invasion, motility, differentia-
tion and stem cell renewal [20]. Given that the fundamental
processes required for mammary gland development and differ-
entiation are usually deregulated in breast cancers [21,22], we
propose that the tumor-suppressive role played by Cxs is indeed
independent of GJIC and the transfer of small molecules between
cells, but is mediated via Cx-associated proteins within the GJ
complex, in a mechanism that involves sequestering β-catenin at
the membrane. In some breast cancer cell lines, Cx overexpression
was only successful in reverting the tumorigenic phenotype when
cells were cultured in conditions mimicking the original micro-
environment, i.e. on Engelbreth-Holm Swarm (EHS) reconstituted
basement membrane [23], or when cells were implanted into the
mammary fat pads of nude mice [5]. These studies suggest that
the tumor suppressive effect of Cx over-expression is conveyed in
a context-dependent manner that perhaps allows the proposed
assembly of GJ complexes.
This study aims to address the mechanism via which Cx43
mediates its tumor suppressive effects, and investigate the
possible role for GJ complex assembly in 2D and 3D cultures of
low invasive MCF-7 and highly invasive MDA-MB-231 breast
cancer cells, with primary emphasis on the role played by
β-catenin and other Cx-associated partners. The two cell lines
were stably transfected with Cx43 and the effect of Cx43 over-
expression on the morphology and proliferation in 2D and 3D
growth conditions in addition to their trans-endothelial migration
potential was assessed. We also studied changes in Cx-associated
proteins, in particular β-catenin, and whether these may be
implicated in any of the observed effects. Our results suggest
that reversion of a tumor phenotype is context dependent and
associates with Cx43 assembly into GJ complexes at the mem-
brane of breast cancer cells, and the recruitment of β-catenin from
the nucleus into such complexes.
Materials and methods

Cell culture

MCF-7 and MDA-MB-231, human mammary adenocarcinoma cell
lines, and MCF10A, nonneoplastic human mammary cell line,
kindly provided by Dr. Mina Bissell (LBNL, CA), were grown in
humidified incubator (95% air, 5% CO2) at 37 1C. MCF-7 and MDA-
MB-231 cells were cultured in RPMI 1640 medium with 10% Fetal
Bovine Serum (FBS) (Sigma, St. Louis) and MCF10A cells in DMEM
F-12 medium (Lonza, Belgium) supplemented with 5% horse
serum, 20 ng/ml EGF, 0.5 mg/ml hydrocortisone, 100 ng/ml choler-
atoxin, and 10 mg/ml insulin. All media were supplemented with
1% penicillin–streptomycin. When reaching 80% confluence, cells
were washed with 1� Dulbecco's Phosphate Buffered Saline
(PBS) then incubated with 2� trypsin (containing 5.0 g porcine
trypsin, 2.0 g EDTA, 4NA per liter of 0.9% NaCl; Sigma, St. Louis) at
37 1C for 1 min. For three-dimensional cultures, Growth Factor
Reduced Matrigel obtained from BD Biosciences was used. 35 mm
culture dishes were coated with 500 μl of growth factor-reduced
Matrigel, and then incubated at 37 1C for 30 min to form a bed of
100% solidified EHS measuring approximately 1–2 mm in thick-
ness. Cells were diluted in complete media with 2% EHS, to
achieve a final concentration of 50,000 cells/ml. Cells were
supplemented with fresh complete media with 2% EHS every
two days. Clusters start to form by day 3, and cells were kept in
culture for 8 days.
pEGFP-N1 and pGFP-V-RS plasmid vectors

pEGFP-N1: for Cx43 overexpression, total RNA from Mode-K cells
was extracted using TRIZOL reagent (Invitrogen), then treated
with DNase I (Amersham Pharmacia Biotech). RT-PCR was then
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used to produce a cDNA covering the complete reading frame of
mouse Cx43 and another that codes for a C-terminus truncated
version of Cx43 having the complete sequence up to amino acid
242. The cDNAs were inserted downstream of a cytomegalovirus
promoter (CMV) to the amino terminus of Enhanced Green
fluorescent Protein (EGFP) (Clontech).

pGFP-V-RS: for Cx43 silencing, four unique constructs against
Cx43 (shRNA-Cx43), one construct containing non-effective
scrambled Cx43 (shRNA-scr), and one construct lacking the
shRNA insert were purchased from OriGene Technologies, Inc.

The above vectors were purified and cloned into QIAGEN PCR
Cloning kit (Qiagen) using pDrive Cloning vector. Then they were
transformed into DH5α competent bacteria by heat shock and
plasmids were purified using midi plasmid purification kit (Qiagen).
Adequate restriction digestion enzymes were used to verify the
purified plasmids before amplification.

Transfection

MDA-MB-231, MCF-7 and MCF10A cells were plated on 35 mm
diameter tissue culture plates, at a density of 0.5�106 cells/well
in 2 ml of media. After 24 h, media was removed, and cells were
first washed with 1� PBS then washed with OptiMEM media
(Gibco, UK). Transfection was performed using Lipofectamine-Plus
reagent (Invitrogen), according to manufacturer's instructions.
Selection of MCF-7 and MDA-MB-231 transfected cells was in
RPMI with 1% penicillin–streptomycin (Gibco, UK) and 10% FBS
supplemented with 400 μg/ml and 600 μg/ml geneticin (Gibco,
UK) for MCF-7 and MDA-MB-231 respectively. 0.35 ug/ml pur-
omycin was used to select for transfected MCF10A cells. Selection
medium was used throughout the study.

Protein extraction and immunoblotting

Total cellular protein extraction
For two-dimensional cultures, cells used for protein extraction are
collected at 80% confluency. Cells were scraped into 300 μl of lysis
buffer (50 mM Tris-Cl, pH 7.5, 150 mM NaCl, 1% Nonidet P40, 0.5%
Sodium deoxycholate) to which 40 μl/ml Protease inhibitors
(CompleteTM) and 40 ml/ml phosphatase inhibitors were added.
DC Protein Assay (Bio-Rad, Hercules, CA) was used to quantify
proteins using bovine serum albumin (BSA, Sigma Chemical Co.)
as standards. For three-dimensional cultures, cells were disso-
ciated using PBS-EDTA (2.5 mM) followed by collection of cell
pellets and addition of 150 μl lysis buffer to the cell pellet.

Extraction of nuclear proteins
Cells are gently scraped with 1 ml 1� PBS (Lonza, Belgium) into a
microcentrifuge tube and centrifuged at 1000� g for 10 min at
4 1C to obtain a cell pellet. The pellet is lysed by rapid freezing and
thawing and then resuspended into 70 μl of hypotonic Buffer A
(10 mM Hepes PH 7.9, 10 mM KCl, 1.5 mM MgCl2, and 1 mM
Dithiothreitol), incubated for 10 min at 4 1C, and then vortexed for
10 s. The mixture was centrifuged at 4500� g for 10 min, and the
pellet (representing nuclei) was resuspended in 15 μl of hyper-
tonic Buffer C (20 mM Hepes pH 7.9, 0.4 M NaCl, 1.5 mM MgCl2,
25% (v/v) Glycerol, 0.2 mM EDTA, 1 mM Dithiothreitol, 0.5 mM
PMSF), placed on a shaker for 30 min at 4 1C, and then centrifuged
at 14,000� g for 20 min. The supernatant is diluted with 30 μl of
Diluting Buffer D (20 mM Hepes, 50 mM KCl, 20% (v/v) Glycerol,
0.2 mM EDTA, 1 mM Dithiothreitol, 0.5 mM PMSF) and stored
at �20 1C.

Western blot analysis of proteins
On basis of equal protein loading, protein extracts were resolved
on polyacrylamide gels. After electrophoresis, proteins were
transferred overnight on the immobilin blot polyvinylidene
diflouride (PVDF) membrane (BioRad, Hercules, CA) using wet
blot apparatus in transfer buffer (39 mM glycine, 48 mM Tris base,
0.037% SDS and 20% methanol). Blocking of the membranes was
carried out for 1.5–2 h in wash buffer (100 mM Tris-Cl, pH 8,
150 mM NaCl, 0.1% Tween-20) with 5% skimmed milk, then
incubated overnight at 4 1C with 1% milk in wash buffer with
the primary antibody, of interest (dilutions were typically 1:400
unless specified otherwise by company's datasheet). The bound
antibody was detected by addition of the corresponding horse
reddish peroxidase conjugated IgG (Santa Cruz Biotechnology,
Santa Cruz, CA) followed by enhanced chemiluminescence (ECL,
Santa Cruz). All incubations were performed at room tempera-
ture. Equal loading was determined by probing total extracts for
mouse anti-GAPDH (1:10000-v/v) and probing nuclear extracts
for Lamin A/C (1:5000-v/v).

Quantitative analysis of nuclear β-catenin Western blots
NIH Image 1.62 software was used for densitometric quantitation
of Western blots for nuclear β-catenin. Quantification was normal-
ized in reference to the Lamin A/C. ANOVA uni-variant test
using the Graph Pad Prism software version 3.00 was used for
statistical significance. Quantifications were from three different
experiments.

Quantitative real time PCR (qRT-PCR)

Total RNA was extracted from cells using RNeasy Minikit (Qiagen)
according to the manufacturer's instructions. 1 μg of total RNA was
reversed transcribed to cDNA using Revertaid 1st strand cDNA
synthesis kit (Fermentas). RT-PCR was performed using iQ SYBR
Green Supermix in a CFX96 system (Bio-Rad Laboratories). Products
were amplified using primers for Cx43: 5′-CAAAATCGAATGGGG-
CAGGC-3′ (forward) and 5′-GCTGGTCCACAATGGCTAGT-3′ (reverse),
and for GAPDH: 5′-AAGGTGAAGGTCGGAGTCAAC-3′ (forward) and
5′-GGGGTCATTGATGGCAACAATA-3′ (reverse). To quantify changes
in gene expression, the comparative Ct method was used to calculate
the relative-fold changes normalized to GAPDH.

Co-immunoprecipitation

Cell pellets resulting from 2D or 3D cultures were suspended in
RIPA buffer (50 mM Tris-Cl, pH 7.5, 150 mM NaCl, 1% Nonidet P40,
0.5% Sodium deoxycholate and 0.1% SDS) supplemented with
Protease inhibitors (CompleteTM) at a concentration of 10 μl/ml
and phosphatase inhibitors at a concentration of 40 ml/ml. Cell
extracts were centrifuged at 14,000� g for 30 min. The super-
natants were collected and precleared with protein A agarose
beads (Roche Applied Science) and incubated at 4 1C for 1 h.
Protein A agarose beads were collected by centrifugation at
14,000� g at 4 1C for 10 min, supernatants were removed and
incubated with 1 μg of primary antibody at 4 1C for 2 h. A volume
of 20 μl of protein A agarose was added to each 1 ml of lysate and
incubated at 4 1C over 2 nights. The agarose beads bound to the
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antibody-protein complex were collected by centrifugation at
14,000� g at 4 1C for 10 min. The supernatants were discarded
and the beads washed with PBS and centrifuged at 14000� g at
4 1C three times. Finally the beads were re-suspended in 40 μl 2�
sample buffer and electrophoresed using polyacrylamide gels.

Cell counting by trypan blue

In 2D cultures, cells were plated in 24-well tissue-culture plates at
a density of 5�104 cells in each well. The cells were counted from
triplicate wells after days 1, 2, 3, and 4 for MDA-MB-231 and up to
day 6 for MCF-7cells respectively. Cells were then diluted in Trypan
Blue (1:1) ratio (vol/vol) and counted using a hematocytometer.
For 3D cultures, MCF-7, MDA-MB-231 and MCF10A cells were
plated in triplicates in 24-well tissue-culture plates at a density of
25�103 cells in each well. The cells were maintained for 8 days
before counting. Experiments were repeated at least three times.
Statistical significance was determined using one-way ANOVA.

Three-dimensional morphogenesis assay

Cells were plated in 35 mm culture dishes. Ten fields of each well
were imaged at 10� of magnification. Colony morphology was
quantified by counting the number of small and spherical colonies
versus large ones for MCF-7 and stellate colonies for MDA-MB-231
cells. Spherical colonies versus interconnected tubular like colonies
were counted for MCF10A cells. Equal numbers of colonies were
counted. Experiments were repeated at least three times. Statistical
significance was determined using one-way ANOVA. P values less
than 0.05 were considered statistically significant.

Invasion assay

Six-well tissue-culture plates were fitted with inserts (8 μm pore size)
that have been coated with growth factor-reduced EHS (Matrigel).
Endothelial cells (ECV304) were grown in the inserts to confluency,
and then seeded with calcein-labeled tumor cells. After 24 h of
co-culture, inserts were removed and the endothelial cell layer was
gently removed using a cotton swab. The membrane of the insert was
then removed and mounted on a microscopic slide and examined by
fluorescence microscopy. Fluorescent tumor cells that successfully
invaded through the endothelial layer were counted [24].

Immunocytochemistry

For 2D cultures, cells were plated at a density of 1�105 cells in each
well, on top of glass coverslips. After reaching the desired confluency,
slides were blocked for 1 h with 3% (vol/vol) normal goat serum in
PBS (NGS, Santa Cruz Biotechnology) and then washed with PBS, and
incubated overnight at 4 1C with the primary antibody (1 μg/ml in
PBS containing 1% NGS). This was followed with PBS washes and a 1 h
incubation with an appropriate secondary Alexa-568 conjugated
antibody diluted 1:2000. Nuclei were counterstained with Hoechst
(DAPI; 4,6-diamino-2-phenylindole) (Molecular Probes, Eugene, OR,
USA) and mounted with prolong anti-fade, for analysis using
fluorescence microscopy (LSM 410, Zeiss, Germany). For 3D cultures,
media was aspirated; cells were fixed with 4% formaldehyde for
20min at RT, and then permeabilized with 0.5% Triton X-100 in
PBS for 10 min at 4 1C. Cells were washed with PBS and blocked for
2 h in IF buffer (130mM NaCl, 7 mM Na2HPO4, 3.5 mM NaH2PO4,
7.7 mM NaN3, 0.1% bovine serum albumin, 0.2% Triton X-100, 0.05%
Tween-20) and 10% NGS. Then, cells were incubated with specific
primary antibodies (1 μg/ml of blocking buffer) overnight at 4 1C. Cells
were washed and incubated with secondary Alexa-568 conjugated
antibody as above. All immunocytochemistry data were collected
from 3 independent experiments. Multiple fields (up to 20) were
evaluated per experiment per condition by multiple personnel.

Cell cycle analysis

Cells trypsinized at 70% confluency for 2D cultures and at day 8
for 3D cultures were collected by centrifugation 200� g for 5 min
at 4 1C and fixed in ice-cold 70% ethanol for a minimum of 2 h and
a maximum of 2 weeks. Cells were then centrifuged (208� g,
5 min, 4 1C) and the pellet was washed with 1� PBS. DNase free
RNase A was added at a concentration of 0.2 mg/ml (50 μl) and
cells were kept at 37 1C in a water bath for 1 h and 30 min to
allow full digestion of RNA. The pellet was washed in 1� PBS
before final re-suspension in 420 μl of 1� PBS into flow tubes
(BD falcon, USA). 30 μl of 2 mg/ml propidium iodide (PI) was then
added to each flow tube and the cells were then analyzed using
the FACS Vantage SE flow cytometer and cell sorter.
Results

Characterization of Cx43 endogenous expression and
localization in human breast tumor cells

The two human mammary adenocarcinoma cells, MCF-7 (moderately
invasive) and MDA-MB-231 (highly invasive) were screened for
endogenous expression of Cx43. The localization of Cx43 was
examined by immunostaining which showed that Cx43 was mainly
retained in intracellular compartments (discontinuous white arrows)
in both cell lines and rarely deposited on the cell membrane
(continuous white arrows) in MCF-7 cells (Fig. 1A). By immunoblot-
ting, Cx43 was detected in cell lysates from MCF-7 and MDA-MB-231
cells as previously reported in the literature with phosphorylated
isoforms in MCF-7 (Fig. 1B).

Over-expression of Cx43-EGFP in MCF-7 and MDA-MB-231
cells

In this study, MCF-7 and MDA-MB-231 cells were either trans-
fected with the pEGFP-N1 plasmid containing mouse Cx43 fused to
Enhanced Green Fluorescent Protein (EGFP), or with an “empty”
pEGFP-N1 plasmid containing only EGFP as a mock control for
transfection. The former will be referred to as “Cx43 transfected”
cells, and the latter as “sham transfected” cells throughout the
remainder of the text. The transfection of both cell lines was
verified, at the protein level, by immunoblotting, for expression of
Cx43-EGFP or EGFP alone using an anti-Cx43 antibody and a GFP-
specific antibody. Probing with the anti-Cx43 antibody revealed a
70 kDa band in Cx43 transfected cells corresponding to the Cx43-
EGFP fusion protein, as well as fainter bands around 43 kDa
corresponding to endogenous Cx43 in untransfected, sham trans-
fected and Cx43-transfected MCF-7 (Fig. 1B lanes a, b and c) and
MDA-MB-231 (Fig. 1B lanes d, e and f) cells. Interestingly, in the
case of Cx43-EGFP transfected MDA-MB231 cells, the endogenous
levels of Cx43 were down-regulated (Fig. 1B lane f). The EGFP



Fig. 1 – Characterization of endogenous Cx43 and transfected
Cx43-EGFP expression and localization in human breast tumor
cell lines, MCF-7 and MDA-MB-231. (A) Immunofluorescent
analysis of MCF-7 and MDA-MB-231 using a Cx43-specific
antibody showed prominent diffused cytosolic localization in
both cell lines (white discontinuous arrows) and rare
membranous (white arrows) localization in MCF-7 cells.
The micrographs reveal nuclei stained with Hoechst 33342
merged with Cx43 staining. Scale bar corresponds to 20 lm. (B)
Western blots of total cellular extracts of MCF-7 and MDA-MB-
231 cells respectively; untransfected (a and d), sham-
transfected (b and e) and Cx43-EGFP transfected (c and f) using
anti-Cx43 and anti-GFP antibodies. The molecular weights of
respective proteins are indicated. The anti-GFP antibody
showed EGFP (26 kDa) in sham transfected cells (b and e) and
exogenous Cx43-EGFP (70 kDa) in Cx43 transfectants (data not
shown). GAPDH demonstrates equal protein loading. The anti-
Cx43 antibody detected the 70 kDa Cx43-EGFP as well in Cx43
transfected cells (c and f) as well as the 43 kDa band
corresponding to endogenous Cx43 in sham transfected and
untransfected cells. (C) Localization of Cx43-EGFP in 2D and 3D
cultures of MCF-7 and MDA-MB-231 cells. Cx43-EGFP shows
membranous (continuous arrows) and vesicular localization
(discontinuous arrows) in 2D cultures of MCF-7 and 3D
cultures of both MCF-7 and MDA-MB-231 cells compared to
predominantly vesicular localization in 2D cultures of MDA-
MB-231 cells. Scale bar corresponds to 20 lm.

E X P E R I M E N T A L C E L L R E S E A R C H 3 1 9 ( 2 0 1 3 ) 3 0 6 5 – 3 0 8 0 3069
antibody detected both 70 kDa band and EGFP at 26 kDa in Cx43
transfected cells (Fig. 1B lanes c and f) while only a 26 kDa (Fig. 1B
lanes b and e) in the sham transfected cells. To enrich the Cx43-
EGFP expressing cells and generate a population with expression
levels comparable to sham transfected cells, FACS was performed
for two consecutive rounds for both cell lines. Fluorescent micro-
scopy showed that Cx43-EGFP localized at both the membrane
(continuous white arrow heads) and intracellular vesicles (discon-
tinuous white arrow heads) in both 2D and 3D cultures of MCF-7
cells (Fig. 1C). In MDA-MB-231 cells however, Cx43-EGFP showed
punctate fluorescence restricted to intracellular vesicles when
grown in 2D cultures as previously reported in the literature [5].
In contrast, Cx43-EGFP exhibited prominent membranous deposi-
tion when cells were cultured in Matrigel (Fig. 1C).

Cx43-EGFP over-expression decreases proliferation of
human breast tumor cells by modifying their cell cycle
progression

Since Cx43 is generally expected to reduce tumor growth, we
assessed the effect of Cx43-EGFP over-expression on MCF-7 and
MDA-MB-231 cellular growth and proliferation on plastic (2D)
and in Matrigel (3D). Cell counts were monitored using the trypan
blue dye exclusion assay over a period of 6 days for MCF-7 and 4
days for MDA-MB-231 cell grown in 2D cultures and for 8 days in
3D cultures of both cell lines. Cx43-EGFP decreased MCF-7
cellular growth up to 50% by day 6 in 2D cultures and up to
80% by day 8 in 3D cultures (Fig. 2A). In contrast, whereas MDA-
MB-231 cells grown in 2D cultures did not show difference in
growth rate between untransfected, sham-transfected and Cx43-
EGFP transfected cells, Cx43-EGFP overexpression significantly
decreased the growth rate of MDA-MB-231 cells by 30% when
cultured in Matrigel (Fig. 2A). The number of dead cells did not
exceed 2% and did not differ between transfected and untrans-
fected cells in both cell lines.
In addition, photomicrographs taken at day 8 after plating cells in

Matrigel revealed a difference in morphology of Cx43-EGFP trans-
fected MCF-7 cells as compared to sham transfected and untrans-
fected cells (Fig. 2B). In fact, cluster size grouping, based on cluster
diameter, showed that small sized clusters (diameter between
10–35 μm) were abundant in Cx43-EGFP transfected cells versus
sham transfected and untransfected MCF-7 cells. Moreover, large
sized clusters (diameter larger than 75 μm) were not as abundant in
Cx43-EGFP transfected MCF-7 cells when compared to untransfected
and sham eGFP transfected cells (Fig. 2C).
As for MDA-MB-231 cells, the majority of untransfected and

sham-transfected cells formed stellate colonies in Matrigel,
whereas cells over-expressing Cx43-EGFP grew into spherical
colonies that resemble the growth morphology of normal mam-
mary epithelial cells in Matrigel (Fig. 2B). By counting stellate and
spherical colonies that formed at days 3, 5 and 8 in 3D cultures of
untransfected, sham-transfected and Cx43-EGFP MDA-MB-231
transfected cells, cells overexpressing Cx43-EGFP formed
30–40% less stellate colonies than sham-transfected and untrans-
fected cells (Fig. 2C).
In order to establish whether Cx43-EGFP over-expression

affects cell cycle progression of both tumor cell lines given that
it affected their proliferation rate, PI cell cycle analysis was
performed on untransfected, sham transfected and Cx43-EGFP
transfected MCF-7 and MDA-MB-231 cells at 70% confluence.
Cx43-EGFP overexpression induced a 25% increase of S-phase of
MCF-7 Cx43-EGFP transfected cells in both 2D and 3D cultures
(Fig. 2D) and a decrease of about 4% in S1 cells and 14% in G2/M
cells. In addition, cell doubling time of MCF-7 in 2D cultures
increased from 24 h to 36 h (not shown). As mentioned pre-
viously, MDA-MB-231 cells in 2D cultures did not show difference
in growth rate or morphology between untransfected, sham-
transfected and Cx43-transfected cells. In accordance with that,
Cx43-EGFP overexpression in MDA-MB-231 cells exhibited no
significant effect on the percentage of cells progressing through-
out any cell cycle phase as compared to sham-transfected and
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untransfected MDA-MB-231 cells when grown in 2D cultures.
However, when cultured in Matrigel Cx43-EGFP over-expression
in MDA-MB-231 cells induced a 28% increase of G0/G1 cell-cycle
phase when compared to sham-transfected and untransfected
MDA-MB-231 cells (Fig. 2D).

Cx43-EGFP over-expression reduces the transendothelial
invasive potential of human breast tumor cell lines

Since Cx43-EGFP overexpression affected cellular growth and
morphology of MCF-7 and MDA-MB-231 cluster growth, we set
to determine whether Cx43-EGFP also affected the trans-
endothelial invasive ability of these cells. Accordingly, extravasa-
tion was performed by seeding equal numbers of untransfected
and transfected MDA-MB-231 cells labeled with calcein dye over a
uniform layer of endothelial cells, as explained in Materials and
Methods. Twenty four hours after co-culturing the cells, it was
evident that Cx43-transfected MCF-7 and MDA-MB-231 cells
were less able to extravasate across the endothelial cell layer
(Fig. 3A) and to invade through the Matrigel basement membrane
components. Cell counting of MCF-7 cells, labeled with calcein
dye, showed that Cx43-EGFP transfected cells exhibited reduced
invasive ability by 58%, when compared to untransfected and
sham transfected MCF-7 cells. In addition, cell counting of calcein
dye labeled invaded MDA-MB-231 cells showed that Cx43-EGFP
transfection reduced cell invasiveness by �30%, when compared
to sham transfected, and untransfected cells (Fig. 3B).

Truncated Cx43-EGFP does not decrease proliferation and
transendothelial migration in human breast tumor cells

To assess the contribution of Cx43 cytosolic domain, binding site
of Cx-associated proteins, in mediating its tumor suppressive
effects, MCF-7 and MDA-MB-231 cells were transfected with a
Fig. 2 – Effect of Cx43-EGFP over-expression on the proliferation an
and MDA-MB-231 in 2D and 3D culture conditions. (A) Graphs repr
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C-terminus truncated version of Cx43 at amino acid 242 fused to
EGFP. As noted above in Fig. 1C for Cx43-EGFP membrane
localization in MCF-7 cells, the truncated Cx43-EGFP in these �7
cells also localized to the membrane (Fig. 4A). In contrast to
Cx43-EGFP transfected MCF-7 cells which showed slower prolif-
eration and impeded invasion, those transfected with the truncated
Cx43-EGFP showed similar proliferation and invasion potential as
that of sham transfected MCF-7 cells (Fig. 4A). MDA-MB-231 cells
expressing the truncated Cx43-EGFP showed similar distribution as
those expressing the Cx43-EGPF which was restricted to the
cytosol and intracellular vesicles (Figs. 1C and 4A). Cell counts on
day 4 of culture did not show differences among sham, Cx43 and
truncated-Cx43 transfected cells (Fig. 4A).

Overexpressing both Cx43-EGFP and truncated Cx43-EGFP in
MCF-7 cells induced an increase in the GJIC, by Lucifer yellow dye
transfer assay, compared to sham transfected MCF-7 cells. Treat-
ing full length Cx43-GFP transfected cells with 18α-glycerrehtinic
acid (inhibitor of GJIC) did not revert their decreased growth rate
compared to untreated control cells (data not shown), thereby
suggesting a GJ independent tumor suppressive role of Cx43.
ShRNA-Cx43 induces a tumor-like phenotype in MCF10A
cells, nonneoplastic human breast epithelial cells

In order to further illustrate the tumor suppressive role of Cx43 in
the mammary epithelium, Cx43 was stably silenced in MCF10A
cells as revealed by Western blot and qRT-PCR (Fig. 4B). The effect
of Cx43 silencing on both 2D and 3D proliferation and morphol-
ogy of MCF10A cells was assessed. In 2D cultures, shRNA-Cx43
transfected MC10A cells showed a 53% increase by day 5
compared to untransfected and shRNA-scr transfected ones. In
3D culture, shRNA-Cx43 transfected cells showed a 38% increase
in proliferation at day 8 of culture compared to untransfected and
shRNA-scr transfected cells (Fig. 4B).
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Moreover, untransfected and shRNA-scr transfected MCF-10A cells
formed in 3D cultures spherical clusters (white arrow), and shRNA-
Cx43 transfected cells formed interconnected tubular-like colonies
(black arrow) at day 8 of culture (Fig. 4B). Indeed, counting tubular-
like and spherical colonies showed that shRNA-Cx43 transfected
cells formed �50% less spherical clusters than control cells as they



Fig. 3 – Effect of Cx43-EGFP over-expression on the transendothelial invasive potential of human breast tumor cell lines.
(A) Fluorescent photomicrographs of calcein labeled MCF-7 and MDA-MB-231 cells that invaded through endothelial cells and
matrix components. (B) Histograms showing percentage of invaded cells for untransfected, sham and Cx43-EGFP transfected
MCF-7 and MDA-MB-231 cells. Statistical analysis obtained from three experiments that revealed significant differences at po0.05
are represented by asterisk (*) and at po0.001 by (***). Scale bar corresponds to 100 lm.
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formed tubular-like colonies instead. Interestingly, these changes in
growth morphology were also associated with loss of lumen
formation in shRNA-Cx43 transfected cells. In fact, whereas spherical
clusters in control cells had a lumen, typical of MCF10A, shRNA-Cx43
transfected spherical clusters showed no lumen (Fig. 4B).
Cx43-EGFP overexpression restores membranous localization
and association of β-catenin, α-catenin and ZO-2

Previous studies from our lab have shown that under condi-
tions favoring mammary epithelial differentiation, β-catenin was
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sequestered by GJ complexes at the membrane and away from the
nucleus. Moreover, we also showed that α-catenin and ZO-2, which
are also Cx-associated proteins known to have dual roles in sign-
aling and adhesion, assembled at the membrane with Cx43 under
differentiation permissive conditions [19]. To explore the effect
of Cx43-EGFP overexpression on GJ complex assembly immuno-
blotting, immunelabeling and co-immunoprecipitation analyses
were performed. Collectively, data from these assays are adequate
indicators for the assembly of the GJ complex at the membrane.
Western blots of total cellular extracts probed with antibodies for
β-catenin, α-catenin and ZO-2 showed that the levels of these
proteins were not altered among transfected, sham transfected and
untransfected MCF-7 and MDA-MB-231 cells cultured under 2D
and 3D conditions (Fig. 5A). Moreover, indirect immunocytochem-
istry in 2D and 3D cultures for β-catenin demonstrated membra-
nous localization across different transfectants of MCF-7 (Fig. 5B).
Co-localization studies showed that β-catenin co-localized with
Cx43-EGFP in 2D and 3D cultures of MCF-7 cells (Fig. 5C). As for
MDA-MB-231 cells, the localization of β-catenin was not altered by
Cx43-EGFP over-expression in 2D cultures and was mostly intra-
cellular with some weak membranous deposition. In fact nuclear as
well cytosolic staining of β-catenin was noted in 2D cultures of
sham and Cx43-EGFP transfected MDA-MB231 cells. In contrast,
β-catenin localization was clearly membranous in 3D spherical
clusters of Cx43-transfeceted MDA-MB-231 cells, unlike the case of
sham transfected and untransfected stellate clusters (Fig. 5B).

To determine the effect of Cx43-EGFP overexpression on
the complex assembly at the membrane in both cells lines,
co-immunoprecipitation studies were performed to determine
whether Cx43-EGFP associates with β-catenin, α-catenin and ZO-2
in 2D and 3D cultures transfected MCF-7 and MDA-MB-231 cells.
Interestingly, whereas Cx43-EGFP associates with β-catenin, α-catenin,
and ZO-2 in 2D and 3D cultures of Cx43-EGFP transfected MCF-7
cells, no association occurred between Cx43-EGFP and β-catenin,
α-catenin or ZO-2 in 2D cultures ofMDA-MB-231 cells. On the other
hand Cx43-EGFP associated with β-catenin, α-catenin and ZO-2 in 3D
culture conditions of MDA-MB-231 cells only (Fig. 6A).

Given that the fundamental processes required for mammary
gland differentiation are usually deregulated in breast cancers we
sought to determine whether the tumor-suppressive role played
by Cx43 is paralleled by a decrease in nuclear levels of β-catenin
due to its sequestration at the membrane and away from the
nucleus, hence limiting its transcriptional-mediated effects in the
nucleus. Indeed, analysis of nuclear extracts of both tumor cell
lines showed that β-catenin nuclear levels are significantly
reduced only under conditions when Cx43-EGFP is membranous
and associating with β-catenin; namely in 2D and 3D cultures of
Cx43-EGFP expressing MCF-7 cells as well as in 3D cultures of
Cx43-EGFP transfected MDA-MB-231 cells (Fig. 6B).
Discussion

Intercellular adhesion is essential for the maintenance of cellular
organization and proper tissue physiology. Junctional molecules
do not only provide structural integrity, but also act as signaling
hubs integrating signals from external stimuli, or even from
within the cell [25,26]. Amongst cellular adhesion complexes,
GJs have the unique ability to mediate intercellular transfer of
molecules between cells, a phenomenon coordinating a plethora
of cellular responses ranging from cell survival to normal tissue
homeostasis and synchronization [27]. Nevertheless, Cxs also
exhibit various channel-independent functions that control other
processes such as cellular growth, apoptosis and differentiation
[28,11].
Cell–cell adhesion molecules are highly regulated during devel-

opment and differentiation [16], and their disruption is associated
with various diseases. In cancer, junctional molecules are usually
found mutated, down-regulated, or mis-localized [29]. Interest-
ingly, GJ assembly and Cx expression are differentially regulated
throughout the different stages of tumor progression [22,30].
Whereas Cx26 and Cx43 are usually down-regulated in primary
mammary tumors [4,31–34], these same Cxs are up-regulated
during later stages of breast carcinogenesis [35]. This suggests
that during early tumorigenic stages, GJ down-regulation may
contribute to tumor cell detachment, proliferation and intravasa-
tion, and that GJ expression and assembly during later metastatic
stages may facilitate extravasation and secondary tumor forma-
tion [30,36].
Several studies have shown that Cx over-expression in cell lines

of primary mammary tumor origin decreases their growth rates
and inhibits their invasive abilities [5–9,23,37], and that Cx down-
regulation increases cellular malignancy [10], hence establishing a
tumor suppressive role for Cxs in primary tumors. Nevertheless,
the mechanism governing this effect is not completely under-
stood, and has been reported to be GJIC-dependent [9] as well as
GJIC-independent by different groups [5,8,23]. In this study, we
aim to unravel the mechanism mediating the tumor suppressive
effect of Cx43, the major Cx expressed in the mammary gland, in
2D and 3D cultures of two breast adenocarcinoma cell lines:
MDA-MB-231 (highly invasive) and MCF-7 (moderately invasive).
We had previously shown that mammary epithelial cell differ-
entiation involves the assembly of GJ complexes comprising
α-catenin, β-catenin, and ZO-2 at the cellular membrane, with
β-catenin being sequestered away from the nucleus where it
promotes cellular proliferation [19,26]. Given that the fundamen-
tal processes required for mammary gland development and
differentiation are usually deregulated in breast cancers [21], we
set to determine whether Cx43 overexpression would attenuate
breast adenocarcinoma growth and invasiveness by sequestering
β-catenin at the membrane and limiting its downstream tumor
promoting effects.
As an initial step, we characterized the levels and localization of

endogenous Cx43 in MDA-MB-231 and MCF-7 cells. We chose to
utilize both cell lines since they have different degrees of invasive-
ness and because of their widespread usage as breast cancer
research models. Western blot analysis showed that both cell lines
express Cx43, and indirect immunocytochemistry revealed predo-
minant intra-cellular localization of Cx43 in both cell lines, with
some rare membranous deposition in MCF-7 cells. This finding is in
line with studies reporting that cells derived from primary tumors
usually show cytosolic Cx localization or down-regulation of Cx
expression altogether [3,38]. Moreover, it confirms that both of these
cell lines represent good models to study the effect of exogenous
Cx43 over-expression and its assembly into GJ complexes on
tumorigenic properties, as endogenous Cx43 expressed by these
cells does not prominently assemble into membranous GJs [5,23].
Whether the level of phosphorylation in MCF-7 cells modulates the
limited membrane deposition and GJ functionality was not assessed.
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Previously, we reported that in CID-9 cells and in SCp2 mammary
cells Cx43 phosphorylation correlated with GJ functionality and
association with catenins and ZO-2 protein [17,19] and its phosphor-
ylation levels were modulated in the rodent mammary gland during
lactation [16]. As such, we proceeded to over-express Cx43-EGFP in
both cell lines.

Since tumor suppressive effects of Cx re-introduction into
cancer cells, particularly in the MDA-MB-231 cell line, have been
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shown in 3D cultures as well as in vivo [23], we sought to assess
the effect of Cx43-EGFP over-expression on the growth and
proliferation of both cell lines cultured under 2D and 3D culture
conditions. In line with previous reports [23], our results showed
that while Cx43-EGFP over-expression decreased the growth of
2D and 3D cultures of MCF-7 cells, MDA-MB-231 proliferation was
impeded only under 3D culture conditions. A reduction in
proliferation rate in both 2D and 3D conditions was also demon-
strated in HT29 cells, colon cancer cells, upon the ectopic
expression of Cx43 [39]. Importantly, no difference in cell death
was noted among transfected and untransfected cells, hence
establishing that Cx43-EGFP overexpression did not induce apop-
tosis via its interaction with Bak, Bcl-xL and Bax [40,41], or via
GJIC-mediated propagation of death signals as previously
reported [42,43]. Interestingly, truncated Cx43, although capable
of membrane localization did not decrease proliferation of MCF-7
cells suggesting that the anti-proliferative effect of Cx43 requires
an intact C-terminus. Proliferation was not noted in MDA-MB-231
cell line transfected with truncated Cx43-EGFP, Cx43-EGFP and
sham, confirming previous studies which showed that differences
in proliferation of MDA-MB-231 cells following exogenous con-
nexin expression were only observed in 3D culture systems [23].

Studies in our laboratory have demonstrated that Cx43-silenced
MCF10A nonneoplastic human breast cells showed an increased
proliferation rate in both 2D and 3D cultures compared to control
cells. This is in accordance to a similar finding in a recent study by
Gangozo et al. [44] where they demonstrated that the down-
regulation of Cx43 in cultured astrocytes promoted higher pro-
liferation rate. Given all the above, the tumor suppressive effect of
Cx43 requires its localization to the membrane and a C-terminus
to interact with Cx associated proteins. The effect is displayed in a
cell-specific and context-dependent manner.

Moreover, Cx43-EGFP over-expression induced differences in
growth morphology of MDA-MB-231 and MCF-7 cells when
cultured in Matrigel. Whereas the majority of untransfected
MCF-7 cells formed large spherical colonies and MDA-MB-231
cells formed stellate colonies as previously described for the
MDA-MB-231 cell line [23], MCF-7 cells over-expressing Cx43-
EGFP formed smaller sized spherical clusters and Cx43-EGFP
expressing MDA-MB-231 cells grew in compact spherical clusters
that more resembles the acinar growth of normal mammary
Fig. 4 – Effect of truncated Cx43 overexpression on proliferation of
and proliferation of nonneoplastic human breast cells. (A) Trunca
human breast tumor cells. Expression and localization of the differ
truncated Cx43-EGFP transfected MCF-7 cells show mainly membr
plasmid-encoded protein, while GFP is diffused in the cytosol in s
Cx43-EGFP expression the expression of Cx43-EGFP decreased MCF-
in cell count (top graph). It also resulted in a decreased invasion as
(bottom graph). MDA-MB-231 cells transfected with Cx43-EGFP, an
localization of the plasmid-encoded protein. Cx43-EGFP expression
after 4 days in culture (top graph). (B) Cx43 silencing induces a de
MCF10A colonies. Western blot and qRT-PCR (top graph) shows a d
levels, respectively, in cells with shRNA-Cx43 compared to control
number of shRNA-Cx43 transfected cells. The phase contrast photo
morphology from spherical colonies (white arrow) in untransfected
arrow) in shRNA-Cx43 transfected cells on day 8 of culture. DNA s
spherical clusters transfected with shRNA-Cx43 have no lumen co
Statistical analysis obtained from three experiments that revealed
and at po0.001 by (**).
epithelial cells. Interestingly, spherical colonies formed by both
cell lines did not form lumens (not shown) hence indicating that
the over-expression of Cx43-EGFP induced only partial reversion
of their malignant phenotype [23]. Cx43-silenced MCF10A cells
showed a disrupted lumen structure in contrast to control
MCF10A cells that displayed a typical lumen structure enclosed
within a single layer of mammary epithelial cells. In addition,
Cx43 silencing induced a change in 3D growth morphology of
MCF10A colonies where there is an evident shift from the
spheroid colonies to tubular connected growth morphology.
Knowing that cell junctions mediate proper morphogenesis of

mammary epithelium as illustrated by loss of normal acinar
architecture and initiation of tumorigenesis upon tight junctions
destabilization [45]; our findings support a critical role for Cx43, a
main cell junction protein, in sustaining a normally differentiated
breast epithelium.
Given that cell cycle progression has been shown to be affected

by Cx expression [11], we set to determine whether changes
induced by Cx43-EGFP over-expression in MCF-7 and MDA-MB-
231 can be correlated with changes in cell cycle progression.
Whereas Cx43-EGFP transfected MCF-7 cells showed an increased
cell population in the S-phase and reduced population of cells in
G0/G1 and G2/M phases under both 2D and 3D cultures, Cx43-
EGFP over-expression in MDA-MB-231 cells increased cell popu-
lation in G0/G1 cell-cycle phase only when cultured under 3D
conditions. This finding suggests that Cx43 over-expression may
affect different cell cycle phases in different cell lines. For
instance, whereas Cx43 overexpression has been shown to pro-
long G1 phase in U2OS cells by increasing p27 levels [7], and to
prolong S-phase in rat insulinoma cells [46], it was shown to
prolong the G1 and S phases in HEK293T cells when paralleled by
N-cadherin overexpression [47]. Worth noting is that although
transfected MDA-MB231 cells in 3D cultures showed consistent
increase of cells in G0/G1 phases, the effect on other phase varied.
This requires further investigation. Nevertheless, given that our
experiments were performed on non-synchronized cells, syn-
chronizing our transfectants would allow a more accurate quan-
tification of the amount of cells trapped in the different cell cycle
phases [48,49].
Cx43 transfected MCF-7 and MDA-MB-231 cells were both less able

to extravasate through endothelial cells and basement membrane
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Fig. 5 – Effect of Cx43-EGFP overexpression on the total levels and localization of β-catenin in 2D versus 3D cultures of MDA-MB-
231 and MCF-7 cells. (A) Western blots showing expression of β-catenin, α-catenin and ZO-2 in 2D and 3D cultures of untransfected
(a and g), sham (b and h) and Cx43-EGFP transfected (c and i) MCF-7 cells and untransfected (d and j), sham (e and k) and Cx43-
EGFP (f and l) transfected MDA-MB-231 cells respectively. GAPDH demonstrates equal protein loading. Western blots of total
extracts show that the levels of β-catenin, α-catenin and ZO-2 are not affected by Cx43 over-expression in MCF-7 and MDA-MB-231
cells under 2D and 3D conditions. (B) Immunofluorescence of MCF-7 and MDA-MB-231 cells stained using a β-catenin specific
antibody shows membranous localization in both 2D and 3D cultures of untransfected, sham and Cx43-EGFP transfected MCF-7
cells. As for MDA-MB-231 cells, co-localization images revealed cytosolic and nuclear β-catenin localization (arrow head) as well as
limited membranous deposition (arrows) in 2D and 3D cultures of untransfected and sham transfected cells and membranous
localization in Cx43-EGFP transfected cells (arrows). (C) Co-localization images for β-catenin and Cx43-EGFP in 2D and 3D
transfected cells show overlapping membranous distribution (arrows). Scale bars correspond to 20 lm.
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components. Although some studies report that Cx over-expression in
malignant cells enhanced their invasive abilities [50,7], other studies
showed that reintroduction of Cxs into Cx-deficient cell lines
downregulated their invasive abilities [51,52], and are thus in line
with our finding. Our results also indicate that Cx43 silencing in
MCF10A cells altered their morphology and increased their migratory



Fig. 6 – Cx43-EGFP assembles into GJ complexes that sequester β-catenin away from the nucleus. (A) Immunoprecipitation using anti
β-catenin, anti-α-catenin or anti-ZO-2 antibody followed by Western blots for Cx43 in MCF-7 and MDA-MB-231 cells grown in 2D
and 3D conditions. There was no association between Cx43 and β-catenin, α-catenin and ZO-2 in 2D cultures of untransfected and
sham MCF-7 (a and b) and 2D cultures of untransfected, sham and Cx43-EGFP transfected MDA-MB-231 (e, f and g) cells. On the
other hand, Cx43-EGFP associated with β-catenin, α-catenin and ZO-2 in 2D cultures of Cx43-EGFP transfected MCF-7 (c) and 3D
cultures of both Cx43-EGFP transfected MCF-7 (d) and MDA-MB-231 (h) cells. IgG was used for antibody-protein specific
precipitation. (B) Western blots of nuclear cell extracts show that the nuclear levels of β-catenin are decreased by Cx43-EGFP over-
expression in 2D and 3D cultures of MCF-7 cells (c and f) as compared to untransfected (a and d) and sham (b and e) transfected
cells. (C) There was no change in β-catenin levels in 2D and 3D cultures of untransfected (a and d), sham transfected (b and e) MCF-
7 and in 2D cultures of Cx43-EGFP (c) transfected MDA-MB-231 cells as compared to a significant decrease in 3D cultures of Cx43-
EGFP MDA-MB-231 cells (f). Quantification of β-catenin expression in nuclear levels is represented by histograms for MCF-7 and
MDA-MB-231 cells. Statistical analysis from three independent experiments reveals statistical significance, represented by three
asterisks (po0.001) and by two asterisks (po0.01). Lamin A/C demonstrates equal protein loading, and γ-tubulin serves as a control
to demonstrate lack of cytoplasmic contamination in sample preparation.
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potential compared to control cells (unpublished results). As an initial
insight into the tumor suppressive effects of Cx43-EGFP, full length
Cx43-EGFP was noted to localize at the membrane only under culture
conditions mediating a tumor suppressive effect, i.e. in 3D cultures of
MDA-MB-231 cells and in 2D and 3D cultures of MCF-7 cells
suggesting that the tumor suppressive effect of Cx43 may be
dependent on its membranous localization and probably mediated
via its C-terminus. We have previously shown that the membranous
association of Cx43 with β-catenin, α-catenin and ZO-2 is implicated
in mammary epithelial cell differentiation, with β-catenin being
sequestered by membranous GJ complexes away from the nucleus
[19]. Given that Cx43-EGFP localized to the membrane only under
culture conditions affecting the growth of MDA-MD-231and MCF-7
cells, we asked whether over-expressed Cx43-EGFP attenuates breast
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adenocarcinoma growth and invasiveness by assembling into GJ
complexes that sequester β-catenin away from the nuclear compart-
ment. Although the co-immuno-precipitation analyses does not allow
for comparative quantitation of protein interactions in 2D vs. 3D
cultures due to abundance of Matrigel residue in the latter, the data
clearly showed that Cx43-EGFP associates with α-catenin, β-catenin
and ZO-2 only in 3D cultures of MDA-MB-231 cells, as well as in 2D
and 3D cultures of MCF-7 cells. Immuno-cytochemical analysis
suggested that this interaction was mediated at the cell membrane
as membranous co-localization between Cx43-EGFP and β-catenin
was noted only in 3D cultures of MDA-MB-231 cells, and in 2D and
3D cultures of MCF-7 cells. Note that similar co-localization was
observed between Cx43-EGFP and α-catenin and ZO-2 in 2D and 3D
cultures of MCF-7 cells (data not shown). Several studies reported
interaction of Cx with catenins and ZO proteins (reviewed by [26]).
Moreover, nuclear fractionation showed that this membranous asso-
ciation is concomitant with a decrease in the nuclear levels of β-
catenin, without affecting the total levels of β-catenin and other Cx43
associated proteins. No assessment of the cytosolic levels of β-catenin
was attempted. Altogether, these findings suggest that the tumor
suppressive effects of Cx43-EGFP were mediated by its assembly into
GJ complexes at the membrane that sequester β-catenin away from
the nucleus.
Given that β-catenin is known to regulate the expression of

multiple proteins affecting cell proliferation and invasiveness
[47,53,54], we set to assess whether the levels of β-catenin down-
stream targets such as c-myc, cyclin-D1 and p21 are decreased in
conditions showing decreased nuclear β-catenin levels. Interestingly,
whereas the levels of c-myc and cyclin-D1 appeared to be slightly
down-regulated only in 3D cultures of MDA-MB-231 cells, a sig-
nificant decrease in p21 levels was observed in 2D and 3D cultures of
MCF-7 cells (data not shown). Not only do these findings serve as a
functional verification of decreased nuclear β-catenin levels, but they
also carry implications on the downstream effects of decreased
β-catenin levels in these two cell lines. In fact, the finding that cyclin
D1 protein expression levels were decreased only in 3D cultures of
MDA-MB-231 cells is in line with the cell cycle analysis data, as
alterations in cyclin D1 are known to cause a G0/G1 arrest and not
prolongation of S-phase as noted in transfected MCF-7 cells [55].
Moreover, although decreased nuclear β-catenin levels have been
shown to increase p21 expression levels [47], our findings in
transfected MCF-7 cells are in line with a study proposing a
tumor promoting role for p21 via its interaction with cyclin–cdk
complexes [56].
All in all, our results show that Cx43-EGFP attenuates cellular

growth, impedes cell cycle progression, and decreases the extra-
vasation potential of two mammary tumor adenocarcinoma cell
lines, and that context mediated proper cell–cell and cell–matrix
interactions are essential for Cx43 mediated effects to be con-
veyed. We further report, for the first time to our knowledge, a
mechanism by which Cx43 exerts tumor suppressive effects in
breast cancer cells. Our data suggest that the observed phenotype
was mediated via the assembly of GJ complexes with α- and
β-catenins and ZO-2, and the sequestration of β-catenin from the
nucleus to the membrane. The fact that the same mechanism was
found occurring in two adenocarcinoma cell lines having very
different molecular properties and behavior suggests that the
phenotype we observed is not cell type specific. Furthermore,
given that we did not assess whether GJ functionality is affected
by Cx43-EGFP over-expression, we cannot rule out the possibility
of a GJIC-dependent mechanism also playing a role in one
(or both) of the cell lines. However, preliminary data in our lab
indicated that the overexpression of both full length and
C-terminus truncated Cx43 in MCF-7 cells resulted in membra-
nous localization of Cx43 and induced an increase in the GJIC
compared to untransfected and sham transfected MCF-7 cells.
Interestingly, when treating full length Cx43-GFP transfected cells
with 18α-glycerrehtinic acid (inhibitor of GJIC), there was no
reversion of their decreased growth rate, thereby suggesting a GJ
independent tumor suppressive role of Cx43 (data not shown).

In conclusion, we propose that Cx43 tumor suppressive effect is
mediated in a context-dependent manner where GJ assembly at
the membrane and the association of Cx43 with α- catenin,
β-catenin and ZO-2 is possibly implicated in reducing the growth
rate, invasiveness, and, hence, malignant phenotype of 2D and 3D
cultures of MCF-7 cells, and only 3D cultures of MDA-MB-231
cells. This effect is probably mediated by Cx43 sequestering
β-catenin at the level of the membrane and away from the nucleus.
In order to provide a stronger argument on the causality of the
interaction of Cx43 with β-catenin in mediating tumor suppressive
effects, future studies should examine the effect of disrupting the
association of Cx43 with β-catenin in normal mammary epithelial
cells. The mechanism we propose would be validated further if the
disruption of Cx43- β-catenin interactions in normal cells leads to
their acquisition of a transformed phenotype.
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