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Abstract

An inequality involving the logarithmic mean is established. Specifi-
cally, we show that

L(c, x)
ln(c/x)
ln(c/a) L(x, a)

ln(x/a)
ln(c/a) < L(c, a) (1)

where 0 < a < x < c and L(x, y) = y−x

ln y−ln x
, 0 < x < y. Then several

generalizations are given.
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1 Introduction

The logarithmic mean

L(y, x) =
y − x

ln y − lnx 0 < x < y,

has many applications in statistics and economics [8]. It is well known,
and easily established [1,3,6,9]that

G(y, x) ≤ L(y, x) ≤ A(y, x)

where G(y, x) =
√
xy is the geometric mean and A(y, x) = (x + y)/2 is

the arithmetic mean. In fact, writing A(y, x) =M1(y, x) where

Mp(y, x) =

(

yp + xp

2

)1/p

it is known [6] that Mp1(y, x) ≤ Mp2(y, x) for p1 ≤ p2 It is also known,
[4,5,8,11,13], that

L(y, x) ≤M1/3(y, x)

On the other hand, Hlder’s inequality states that

M1(y1y2, x1x2) ≤Mp(y1, x1)Mq(y2, x2)

if 1/p + 1/q = 1 with p, q > 0. . It is thus curious that the logarithmic
mean L(y, x) satisfies the inequality

L(c, x)
ln(c/x)
ln(c/a)L(x, a)

ln(x/a)
ln(c/a) < L(c, a) (2)

where 0 < a < x < c and it is noted that

ln(c/x)

ln(c/a)
+
ln(x/a)

ln(c/a)
= 1

It is the reverse Hölder type inequality (1) which is the subject of
this note and will be established below. (1) arises in a parameter
identification problem for a fractal Michaelis-Mention equation [7].
In the following, use will be made of Jensen’s inequality [10] which
we now state for the reader’s convenience:
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1.1. Jensen’s Inequality
1). if wi > 0 ∀ i = 1, 2, . . . , n
2). α0, α1, α2, . . . , αn ∈ R
3). Φ : [0,∞)→ R is a strictly convex function
then

(

n
∑

i=1

wi

)

Φ

(∑n
i=1 wiαi
∑n

i=1 wi

)

≤
n
∑

i=1

wiΦ(αi)

and the inequality is strict unless α0 = α1 = α2 = · · · = αn.

2 Main Result

Lemma 2.1. Let g(u) = nu
u−1 where g(1) = 1. Then ∀ u > 0

i). g is a strictly decreasing functin of u
ii).
iii). lim

u→0+
g(u) =∞, lim

u→∞
g(u) = 0, lim

u→1
g(u) = 1

iv). g(1/u) = ug(u).

Proof:

Set z(u) = 1−1/u−lnu then z ′(u) = 1
u

(

1
u − 1

)

which is positive for 0 <
u < 1 and negative for u > 1. Thus z(u) increase from −∞ to 0 at u = 1
and then decreases to −∞ as u tends to ∞. Thus g ′(u) is negative except at u = 1.
This establishes (i). The limits in (ii) can be computed in the usual
fashion using L’hopital’s rule. For (iii) we have

g(1/u) =
ln(1/u)

1/u− 1 = ug(u).

¤

Lemma 2.2. Let f(x) = x− lnx, then
i). f is decreasing on (0,1) and increasing on (1,∞)
ii). lim

x→0+
f(x) =∞, f(1) = 1, and lim

x→∞
f(x) =∞

iii). if α > 0, x > 0 then f(αx) = f(x) for x = g(α) so that f(αg(α)) =
f(g(α)).
Proof:

(i) and (ii) can be established in the usual way. For (iii) we have

f(αx) = f(x)⇒ αx− ln(αx) = x− lnx⇒ (α− 1)x = lnα⇒ x = g(α).

¤

Let y(x) denote the left hand side of (1) and set α = ln c− ln a. Note
that y(x) > 0 ∀ a < x < c. Then

α ln y = [ln c− lnx] [ln (c− x)− ln(ln c− lnx)]+[lnx− ln a] [ln(x− a)− ln(lnx− ln a)]
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and so

α y ′

y
= − 1

x
[ln(c− x)− ln(ln c− lnx)] + [ln c− lnx]

[

−1
c− x −

−1/x
ln c− lnx

]

+

1

x
[ln(x− a)− ln(lnx− ln a)] + [lnx− ln a]

[

1

x− a −
1/x

lnx− ln a

]

=
1

x

[

ln

[

x− a
lnx− ln a

]]

+

[

lnx− ln a
x− a

]

− 1

x
+
1

x
− ln c− lnx

c− x − 1

x
ln

[

c− x
ln c− lnx

]

=
1

x
ln

[

x
a/x− 1
ln(a/x)

]

+
1

x

ln(a/x)

a/x− 1 −
1

x

ln(c/x)

c/x− 1 −
1

x
ln

[

x
c/x− 1
ln(c/x)

]

(3)
or

α y ′

y
=
1

x
[f(g(a/x))− f(g(c/x))] =

1

x
h(x) (4)

Now f(g(a/x)) is an increasing function of x while f(g(c/x)) is a
decreasing function of x so that h(x) is an increasing function of x.
Clearly αy ′/y is zero at exactly one point which implies that y ′ is zero
at exactly one point.

Lemma 2.3. y ′ is zero at the point x =
√
ac.

Proof:
Now f(g(c/x)) = f(g(a/x)) = f

(

a
xg(a/x))

)

, from lemma 2.3 (iii), so that
g(c/x) = (a/x)g(a/x) = g(x/a) by lemma 2.2 (iii). Thus c/x = x/a giving
x =
√
ac. ¤

Theorem 2.1. For all values of 0 < a < x < c

(

c− x
ln c− lnx

)ln c−ln x(
x− a

lnx− ln a

)ln x−ln a

<

(

c− a
ln c− ln a

)ln c−ln a

(5)

Proof:
The results hold iff

(ln c− lnx)
(

c− x
ln c− lnx

)

+(lnx− ln a)
(

x− a
lnx− ln a

)

< (ln c− ln a)
(

c− a
ln c− ln a

)

Set x0 = a, x1 = x, x2 = c and let wi = lnxi − lnxi−1, αi =
xi−xi−1

ln xi−ln xi−1

and let Φ (x) = − lnx, the result follows from the Jensen’s inequality
with ≤ rather than <.
But

α y ′ =
y

x
[f(g(a/x))− f(g(c/x))]

so that y ′ is negative on [a,
√
ac] and positive on [

√
ac, c]. Strict inequal-

ity in Theorem 2.4 now follows from the previous results since the
derivative is strictly negative on [a,

√
ac] and positive on the interval

[
√
ac, c]. Thus equality holds only at a and c. ¤

4



3 Convexity

Theorem 3.1. The function

y(x) =

(

c− x
ln c− lnx

)

ln c−ln x
ln c−ln a

(

x− a
lnx− ln a

)

ln x−ln a
ln c−ln a

(6)

is log-convex, and hence convex, on the interval
√
ac.

Proof:
Let w = α ln y, then w ′ = αy ′/y and hence from (5) xw ′ = f(g(a/x)) −
f(g(c/x)) is an increasing function so that w ′ + xw ′′ ≥ 0. Thus xw ′′ ≥
−w ′. Now on [a,

√
ac], w ′ ≤ 0, and so w ′′ ≥ 0 so that w is convex (and

hence log convex) on [a,
√
ac]. ¤

Lemma 3.1. The curve

y(x) =

(

c− x
ln c− lnx

)

ln c−ln x
ln c−ln a

(

x− a
lnx− ln a

)

ln x−ln a
ln c−ln a

(6)

is invariant under the transformation x← ac/x.

Proof:

z(x) =

(

c− ac
x

ln c− ln
(

ac
x

)

)

ln c−ln( ac
x )

ln c−ln a
(

ac
x − a

ln
(

ac
x

)

− ln a

)

ln( ac
x )−ln a

ln c−ln a

=

(

c(x−a)
x

ln c− ln a− ln c+ lnx

)

ln c−ln(ac)+ln x
ln c−ln a

(

a(c−x)
x

ln(ac)− lnx− ln a

)

ln(ac)−ln x−ln a
ln c−ln a

=

(

c(x−a)
x

lnx− ln a

)

ln x−ln a
ln c−ln a

(

a(c−x)
x

ln c− lnx

)

ln c−ln x
ln c−ln a

=
( c

x

)

ln x−ln a
ln c−ln a

(a

x

)

ln c−ln x
ln c−ln a

y(x).

(7)
Now

lnx− ln a
ln c− ln a +

ln c− lnx
ln c− ln a = 1

Thus from (7)

( c

x

)

ln x−ln a
ln c−ln a

(a

x

)

ln c−ln x
ln c−ln a

=
( c

x

)

ln x−ln a
ln c−ln a

(a

x

)1− ln x−ln a
ln c−ln a

=

(

c
x

)

ln x−ln a
ln c−ln a

(

a
x

)

ln x−ln a
ln c−ln a

a

x

=
(a

x

)( c

a

)ln(x/a)/ ln(c/a)

=
a

x

x

a
= 1 since bx = ex ln b.
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Thus z(x) = y(x) and the lemma is proved. ¤

4 Generalizations and Applications

The following theorems follow directly from Jensen’s inequality and
are generalizations of Theorem 2.1.

Theorem 4.1. if:
i). Φ : [0,∞)→ R is a function
ii). f, g : [0.∞)→ R are increasing functions
3). A0, A1, . . . , An

then
1). If Φ is convex

(g(An)− g(A0)) Φ

(

f(An)− f(A0)

g(An)− g(A0)

)

≤
n
∑

i=1

(g(Ai)− g(Ai−1)) Φ

(

f(Ai)− f(Ai−1)

g(Ai)− g(Ai−1)

)

2). If Φ is concave then

(g(An)− g(A0)) Φ

(

f(An)− f(A0)

g(An)− g(A0)

)

≥
n
∑

i=1

(g(Ai)− g(Ai−1)) Φ

(

f(Ai)− f(Ai−1)

g(Ai)− g(Ai−1)

)

3). If Φ is log convex then

Φ

(

f(An)− f(A0)

g(An)− g(A0)

)(g(An)−g(A0))

≤
n
∏

i=1

Φ

(

f(Ai)− f(Ai−1)

g(Ai)− g(Ai−1)

)(g(Ai)−g(Ai−1))

4). If Φ log concave then

Φ

(

f(An)− f(A0)

g(An)− g(A0)

)(g(An)−g(A0))

≥
n
∏

i=1

Φ

(

f(Ai)− f(Ai−1)

g(Ai)− g(Ai−1)

)(g(Ai)−g(Ai−1))

Proof:
In Jensen’s inequality set wi = g(Ai) − g(Ai−1) and αi =

f(Ai)−f(Ai−1)
g(Ai)−g(Ai−1)

and the result follows. ¤
As a first application let M,N : R→ R N strictly monotone. Given

any two numbers a and b, there is a number c, according to the mean
value theorem, such that

M(b)−M(a)

N(b)−N(a) =
M ′(c)

N ′(c)

for some c, a < c < b. If c is uniquely determined then it is called
the (M.N) mean-value mean of a and b [2]. In this case let H be the
inverse of M ′/N ′ and write

c = H

(

M(b)−M(a)

N(b)−N(a)

)
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If M and N are both increasing and H is either log-convex or log-
concave, we can apply one of the inequalities in Theorem 4.1 to write

H

(

M(An)−M(A0)

N(An)−N(A0)

)

≤
n
∏

i=1

H

(

M(Ai)−M(Ai−1)

N(Ai)−N(Ai−1)

)

N(Ai)−N(Ai−1)

N(An)−N(A0)

or

H

(

M(An)−M(A0)

N(An)−N(A0)

)

≥
n
∏

i=1

H

(

M(Ai)−M(Ai−1)

N(Ai)−N(Ai−1)

)

N(Ai)−N(Ai−1)

N(An)−N(A0)

where we have made the associations that Φ = H, f =M, g = N, An =
b, A0 = a

Now specializing to the case of Φ (x) (log-concave Φ ) in theorem
4.1 we obtain

f(An)− f(A0)

g(An)− g(A0)
≥

n
∏

i=1

(

f(Ai)− f(Ai−1)

g(Ai)− g(Ai−1)

)

g(Ai)−g(Ai−1)

g(An)−g(A0)

and interchanging f and g we can write

f(An)− f(A0)

g(An)− g(A0)
≤

n
∏

i=1

(

f(Ai)− f(Ai−1)

g(Ai)− g(Ai−1)

)

f(Ai)−f(Ai−1)

f(An)−f(A0)

From these expressions we can obtain inequalities for Stolarsky’s ([2],
[12]) extended mean value

Er,s(a, b) =

(

r (as − bs)
s (ar − br)

)
1

s−r

by making the associations f(x) = xs/s, g(x) = xr/r, An = b, A0 = a and
then raising both sides to the power 1/(s-r). For rs > 0

(

bs − us

br − ur

)

br
−ur

br
−ar

(

us − as

ur − ar

)

ur
−ar

br
−ar

≤ bs − as

br − ar
≤
(

bs − us

br − ur

)

bs
−us

bs
−as

(

us − as

ur − ar

)

us
−as

bs
−as

where a < u < b.
If rs < 0, f(x) = xs/s and g(x) = xr/r are still both increasing

functions and we have a similar inequality

(

r (bs − us)

s (ur − ar)

)

br
−ur

br
−ar

(

r (us − as)

s (ur − ar)

)

ur
−ar

br
−ar

≤ r (bs − as)

s (br − ar)
≤
(

r (bs − us)

s (br − ur)

)

bs
−us

bs
−as

(

r (us − as)

s (ur − ar)

)

us
−as

bs
−as

where it is now necessary to include r/s or else reverse the inequality.
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A further application is obtained by setting f(x) = x and g(x) = lnx
above to obtain

(

An −A0

ln(An)− ln(A0)

)ln(An)−ln(A0)

≥
n
∏

i=1

(

Ai −Ai−1

ln(Ai)− ln(Ai−1)

)ln(Ai)−ln(Ai−1)

and

(

An −A0

ln(An)− ln(A0)

)An−A0

≤
n
∏

i=1

(

Ai −Ai−1

ln(Ai)− ln(Ai−1)

)Ai−Ai−1

These two inequalities provide a direct generalization and converse
to the main inequality (3) discussed in this paper

(

c− x
ln c− lnx

)ln c−ln x(
x− a

lnx− ln a

)ln x−ln a

<

(

c− a
ln c− ln a

)ln c−ln a

.
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