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Abstract

An inequality involving the logarithmic mean is established. Specifi-
cally, we show that

In(c/x) In(z/a)

L(e,2) W9 Lz, ) B < L(c,a) 1)
where 0 < a < x < ¢ and L(z,y) = lnz:fnz, 0 < = < y. Then several

generalizations are given.
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1 Introduction

The logarithmic mean

y—x
L =2 ° 9
(y,z) gz 0 SF<Y

has many applications in statistics and economics [8]. It is well known,
and easily established [1,3,6,9]that

G(y,x) < L(y,z) < A(y, x)

where G(y,z) = \/zy is the geometric mean and A(y,z) = (z +y)/2 is
the arithmetic mean. In fact, writing A(y,z) = M;(y,z) where

1/p
yp + P
Mp(yax) = ( D) )

it is known [6] that M, (y,z) < M, (y,x) for pl < p2 It is also known,
[4,5,8,11,13], that
L(y,l‘) < Ml/S(y7x)

On the other hand, Hlder’s inequality states that

My (y1y2, v122) < My(y1, 21) My (y2, 72)

if 1/p+1/q =1 with p,q > 0. . It is thus curious that the logarithmic
mean L(y,z) satisfies the inequality

In(c/x) In(z/a)

L(c,x)™/a L(x,a) ™2 < L(c,a) (2)

where 0 < a < £ < ¢ and it is noted that

In(c/xz)  In(z/a)
In(c/a) + In(c/a)

It is the reverse Holder type inequality (1) which is the subject of
this note and will be established below. (1) arises in a parameter
identification problem for a fractal Michaelis-Mention equation [7].
In the following, use will be made of Jensen’s inequality [10] which
we now state for the reader’s convenience:




1.1. Jensen’s Inequality

1). ifw; >0 Vi=1,2,....n

2). ap,a1,a9,...,a, € R

3). ®:[0,00) — R is a strictly convex function

then
n n n
Dim Wilki
S )@ ( <3 wib(ay)
<i_1 > 2im1 Wi i=1
and the inequality is strict unless ag = a1 = g = -+ = Qp.

2 Main Result

Lemma 2.1. Let g(u) = ;™7 where g(1) = 1. Then ¥ u >0

i). g is a strictly decreasing functin of u

i),

iii). liI{)lJr g(u) =00, lim g(u) =0, lim1 glu) =1
). g(1/u) = ug(u).
Proof:

Set z(u) = 1-1/u—Inu then z'(u) = L (1 — 1) which is positive for 0 <
u < 1 and negative for u > 1. Thus z(u) increase from —oco to 0 at u =1
and then decreases to —oo as u tends to co. Thus ¢g’/(u) is negative except at u = 1.
This establishes (¢). The limits in (ii) can be computed in the usual

fashion using L’hopital’s rule. For (iii) we have

~ In(1/u) ug(u).

o(1/u) = 17 =

0

Lemma 2.2. Let f(x) =z —Inz, then

i). fis decreasing on (0,1) and increasing on (1,00)

i1). lirgl+ f(x) =00, f(1)=1, and lim f(z)= o0

iii). if « >0, x > 0 then f(azx) = f(z) forx = g(a) so that f(ag(a)) =

flg(e)).
Proof:

(i) and (ii) can be established in the usual way. For (iii) we have
flaz)=f(z) = az—In(az)=z-—Inz= (a—Dz=lha=z=g(a).
0

Let y(z) denote the left hand side of (1) and set « =Inc—Ina. Note
that y(x) >0 V a <x <c¢. Then

alny=[lnc—Inz][In(c—2z) —In(lnc —Inz)]+Inz — Ina] [In(z — a) — In(lnx — Ina)]



and so

O‘yy' _ % ln(c — 2) — In(ln¢ — In2)] + [Inc — Inz] [C__lx - mc_i/ﬁw} +
% [In(z —a) —In(lnz —Ina)] + [Inz — Ind L” i a lnxlfclna}
= M = i e
-] s e
or (3)
2V 2 [flglafa)) ~ flo(e/s)) = hia) (4)

Now f(g(a/z)) is an increasing function of x while f(g(c/x)) is a
decreasing function of x so that h(zx) is an increasing function of x.
Clearly ay’/y is zero at exactly one point which implies that y’ is zero
at exactly one point.

Lemma 2.3. y' is zero at the point x = \/ac.

Proof:

Now f(g(c/z)) = f(g(a/z)) = f (%g9(a/z))), from lemma 2.3 (i), so that
g(c/x) = (a/z)g(a/x) = g(x/a) by lemma 2.2 (iii). Thus ¢/z = x/a giving
x = +/ac. O

Theorem 2.1. For all values of 0 < a <z <c

Inc—Inz Inz—Ina Inc—Ina
cC—X r—a < cC—a (5)
Inc—Inz Inz —1Ina Inc—1Ina

Proof:
The results hold iff

c—z T—a c—a
Inc—1 _ Inz —1 _ Inc—1 _
(ne—In) (lncln:c)—’—(nglj na) (lnzlna> <(lnc—Ina) <lnclna>

Set vo = a, v1 =z, zo = cand let w; = Inz; —Inx;_1, o = %
and let ® (z) = —Inx, the result follows from the Jensen’s inequality
with < rather than <.

But

ay’ =L (f(g(a/e)) - flg(e/))]

x
so that y’ is negative on [a, \/ac] and positive on [\/ac, ¢]. Strict inequal-
ity in Theorem 2.4 now follows from the previous results since the

derivative is strictly negative on [a,+/ac] and positive on the interval
[v/ac, ¢]. Thus equality holds only at a and c. O



3 Convexity

Theorem 3.1. The function

Inc—Inz Inz—Ina

cC— T Inc—Ina T — a Inc—Ina
y(@) = <lncln:ﬂ> <1nxlna> (6)

is log-converx, and hence convex, on the interval \/ac.

Proof:
Let w = alny, then w’ = ay’/y and hence from (5) zw’ = f(g(a/x)) —
f(g(c/x)) is an increasing function so that w’ + zw” > 0. Thus zw” >
—w'’. Now on [a,+/ac], w’ <0, and so w” > 0 so that w is convex (and
hence log convex) on [a,+/ac]. O

Lemma 3.1. The curve

Inc—Inz

C—Xx

Inz—Ina

Tr—a

Inc—Ina The—na
yl() = <lncln:c) (11133111(1)

is invariant under the transformation x «— ac/x.

Proof:

Inc—In M)

c— ‘Lf: ﬁ
o (m) (

In( 2€ )—Ina

ac __ ln.c—ln a
“—a
ac

In ( - ) Ina

Inc—In(ac)+Inx In(ac)—Inz—Ina
c(z—a) Tnc—Ina a(c—x) Tnc—Ina
X
lnc—lna—lnc—l—lnz In(ac) —Inz —Ina
Inz—Ina Inc—lna
Tne—lIna a(c—x) Tnc—Ina
_r
lnx—lna Inc—1Inzx
Inz—Ina Inc—Inxz
(C)lnc Ina ( )lnc Ina ( )
y(x).
X
(7)
Now
Inzx —Ilna Inc—1Inz
Inc—Ina Inc—Ina
Thus from (7)
Inz—Ina Inc—Inz Inz—Ina ]_lne-lna
(C)lnc—lna (a)lnc—lna (C)lnr—lna (a) T Tnc—lna
X x x X
Inz—Ina
c\nc—Ina
(£) a
nao—1
(g) Te—Tna L
x
(a) (C)ln(m/a)/ln(c/a)
X a
ax .
—~ =1 since b* = ¢*'"?,
X

(6)



Thus z(x) = y(x) and the lemma is proved. O

4 Generalizations and Applications

The following theorems follow directly from Jensen’s inequality and
are generalizations of Theorem 2.1.

Theorem 4.1. if:

i). ®:[0,00) — R is a function

ii). f,g:[0.00) = R are increasing functions
3). Ap, Ay,..., An

then

1). If @ is convex

(o) —an) & (LEDZLE) < 57 ) — a0y o (LG22 L00))

2). If ® is concave then
(o(4,) — g(ao)) @ (LA ZLE0) o 57 ga) - g @ (L0101

3). If ® is log convex then

M (9(An)—g(Ao)) n M (9(Ai)—g(Ai—1))
® (Q(An) g(Ao)> = gq) (g(Ai) _ )

4). If ® log concave then

f(An) — f(Ao) (9(An)=g(40)) F(A) = (A1) (9(A)—g(Ai—1))
* (Ser=sm) =11 (- )

Proof:
In Jensen’s inequality set w; = g(A;) — g(4;—1) and «; = %
and the result follows. [J

As a first application let M, N : R — R N strictly monotone. Given
any two numbers a and b, there is a number c, according to the mean
value theorem, such that

M(b) — M(a) _ M'(c)
N(b) = N(a)  N'(c)

for some ¢, a < ¢ < b. If ¢ is uniquely determined then it is called
the (ML.N) mean-value mean of a and b [2]. In this case let H be the
inverse of M’/N’ and write



If M and N are both increasing and H is either log-convex or log-
concave, we can apply one of the inequalities in Theorem 4.1 to write
N(A;)—N(A;_1)

M(A,) — M(Ayp) n M(A;) — M(A;_,) YA~
H<NMM—NMM>SEH<NM0<M&AJ

or

N(A)—N(A;—1)
(M(Ai) - M(Ai1)> N{An)=N(4o)
N(A;) — N(Ai—1)

M(An) — M(AO)
i (S =g ) > 1

P

where we have made the associations that ®=H, f=M, g=N, A, =
b, Ao =a

Now specializing to the case of ® (z) (log-concave ¢ ) in theorem
4.1 we obtain

F(An) — f(A0) ﬁ (J;Eﬁ%; :g((ﬁ,i_l))) 2A)—o(Aiop)

and interchanging f and g we can write

n F(AD—F(A_1)
f(An) — f(Ao) < H (f(Az) — f(Ai1)> FAR) = F(Aq)
9(An) —9(Ao) = 7 \9(Ai) —g(Ai-1)

From these expressions we can obtain inequalities for Stolarsky’s ([2],
[12]) extended mean value

r(a® — bs)) A

Ers(a,b) = (3(@" —br)

by making the associations f(x) = z°/s, g(z) = 2" /r, A, =b, Ag = a and
then raising both sides to the power 1/(s-r). For rs > 0

b —u” u”—a” bS —us us—af
b — us T —a’ us — a’ b —a” < bS — a’ < bS — S\ p¥—a® u® — a’ b5 —as
br_ur ur —a’ —br_ar— br_ur ur —a’

where a < u < b.
If rs < 0, f(z) = 2°/s and g(z) = 2" /r are still both increasing
functions and we have a similar inequality

e R e I )

where it is now necessary to include r/s or else reverse the inequality.




A further application is obtained by setting f(z) =« and g(z) = Inz
above to obtain

& In(An)—In(Ao) N ﬁ A — Ay In(A;)—In(A;_1)
In(A,) — In(Ayp) ~ 2 \In(4;) — In(4;-1)

1=

and

A, — Ag An=do < ﬁ A — A Ai iz
ln(An) — IH(AQ) - 1 IH(AZ) — IH(Aifl)

These two inequalities provide a direct generalization and converse
to the main inequality (3) discussed in this paper

Inc—Inz Inz—Ina Inc—Ina
cC—X xr—a < c—a
<lnc—lnx> <lnx—lna> (lnc—lna) '
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