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1. Introduction

The authors have recently shown [7] that three-dimensional dissipative quadratic systems
of ordinary differential equations with a total of only four terms on the right-hand side do
not exhibit chaos. This complements recent papers of Sprott [5, 6] who has given numerous
examples of chaotic three-dimensional quadratic systems with as few as five terms on the right-
hand side, only one of which need be quadratic. We believe that all four-term three-dimensional
quadratic systems (dissipative or not) are nonchaotic. The problem is that there are a huge
number, many hundreds, of different possibilities. A brief discussion of this complexity was
given in the last section of [7].

In order to make further progress on this problem, the next-simplest category, after
dissipative systems, is conservative systems. Indeed, Sprott [6] has also found a chaotic
example of a conservative five-term three-dimensional system with only one nonlinear term
(see also [1]). Again, complementing Sprott’s work, we show in this paper (with one exception
described below) that all conservative three-dimensional quadratic systems with a total of four
terms on the right-hand side are nonchaotic.

The general method is the same as in the previous paper. As before, it turns out that
all such systems (again, with one exception, described below) which are neither integrable,
nor reducible to a two-dimensional system, nor essentially linear, can have only two types
of behaviour. Solutions are either asymptotic to a two-dimensional surface or at least one
component has an infinite limit. In the previous paper if one component had an infinite
limit, the other two components were also shown to have limits. Since the existence of a single
component with an infinite limit implies the system is nonchaotic, we do not carry the argument
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any further in this paper. Of course, both types of behaviour may occur in a single equation.
Initial conditions have no effect on our asymptotic methods and are therefore ignored.

There is no simple systematic method for picking out the conservative systems from the
totality of all systems. As in the first paper, the tedious method of listing all possible systems
was used and then picking out the class (conservative in this case) of particular equations
desired.

As in the first paper, four-term systems can be rescaled to eliminate all parameters and
this is automatically done for each equation, possibly leaving an arbitrary± sign on one term.
This rescaling may (or may not) reverse the time parametert . If time is reversed then it can
be re-reversed simply by multiplying each term on the right-hand side by(−1). Such a sign
reversal does not affect the methods used in this paper and therefore does not affect the results
obtained. Thus, this possible reversal of time will be ignored with no loss of generality.

It is a curious fact that the class of conservative systems, defined by∇ · f = 0, where
ẋ = f (x) is the system in vector form, is much larger than the class of dissipative systems
defined by∇ · f < 0. Furthermore the geometric significance of the conservative property,
that volumes in phase space are conserved along flows, plays no role in the analysis.

The plan of this paper is similar to our previous one. We take up, successively, equations
with either one, two, three or four nonlinear terms, all without constant terms. Then systems
with a constant term are considered separately. Since there are so many more specific
conservative systems than dissipative ones, and since the methods are the same as in the
previous paper, our treatment is much more abbreviated, with more details left to be filled in
by the reader.

The one case which is not rigorously resolved is for the systemẋ = y2 − z2, ẏ = x,
ż = y which has the scalar form

...
z= ż2 − z2. Here we show that any nonoscillatory solution

is unbounded and that there appears, numerically, to be a unique oscillatory (in fact, periodic)
solution.

2. Four-term systems with one quadratic term

The conservative systems with four terms and one quadratic term are:
ẋ = y2 + ky

ẏ = z
ż = x

(2.1)


ẋ = y2 + z

ẏ = x
ż = y

(2.2)


ẋ = y2 + z

ẏ = z
ż = x

(2.3)


ẋ = yz + x

ẏ = −y
ż = x

(2.4)


ẋ = yz + y

ẏ = x
ż = y

(2.5)
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ẋ = yz + y

ẏ = z
ż = x

(2.6)


ẋ = y2

ẏ = x + z

ż = x
(2.7)


ẋ = y2

ẏ = x + z

ż = y
(2.8)


ẋ = yz
ẏ = x + z

ż = x
(2.9)


ẋ = yz
ẏ = x + z

ż = y
(2.10)


ẋ = y2

ẏ = z
ż = x + y

(2.11)

Theorem 1. Systems (2.1)–(2.11) are nonchaotic.

Proof. System (2.4) reduces to a two-dimensional linear system. Systems (2.5) and (2.10)
reduce to the scalar equation

...
z −zż− ż = 0 which is integrable.

All of the remaining systems except (2.9) have scalar forms whose solutions are either
asymptotic to a two-dimensional surface or have at least one component with an infinite limit
as follows:

(2.1)
...
y −y2 − ky = 0 (multiply by ẏ and integrate),

(2.2)
...
z −ż2 − z = 0 (multiply by z̈ and integrate),

(2.3)
...
y −y2 − ẏ = 0 (multiply by ẏ and integrate),

(2.6)
...
y −yẏ − y = 0 (multiply byy and integrate),

(2.7)
...
y −2yẏ − y2 = 0 (integrate),

(2.8)
...
z −ż2 − ż = 0 (integrate),

(2.11)
...
y −y2 − ẏ = 0 (integrate).

For system (2.9) the scalar form is
...
zz = żz2 +z3 + z̈ż. Dividing byz and integrating gives

z̈ = 1

2
z2 +

∫ t

0
z2(s) ds +

∫
z̈ż

z
+ c.

Note thatz̈
z
= y, ż = x andxy = yẏ − ẋ. Thus∫

z̈ż

z
= y2

2
− x = 1

2

(
z̈

z

)2

− ż
and hence we have

z̈− 1

2
z2 − 1

2

(
z̈

z

)2

+ ż = c +
∫ t

0
z2(s) ds.
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Thus the left-hand side above is asymptotic to a two-dimensional surface or elseż(t) → ∞
ast →∞. �

3. Four-term systems with two quadratic terms

The conservative four-term systems with two quadratic terms are:
ẋ = y2 + yz

ẏ = x
ż = y

(3.1)


ẋ = y2 + yz

ẏ = z
ż = x

(3.2)


ẋ = y2 ± z2

ẏ = x
ż = y

(3.3)


ẋ = 2xy + z
ẏ = −y2

ż = x
(3.4)


ẋ = y2 − x
ẏ = xz
ż = z

(3.5)


ẋ = xz + y

ẏ = −yz
ż = x

(3.6)


ẋ = x2 + z

ẏ = −2xy

ż = y
(3.7)


ẋ = y2 + y

ẏ = xz
ż = ±y

(3.8)


ẋ = y2 + y
ẏ = z2

ż = x
(3.9)


ẋ = y2 + z
ẏ = x2

ż = ±x
(3.10)


ẋ = y2 + z
ẏ = x2

ż = ±y
(3.11)
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ẋ = y2 + z

ẏ = ±xz
ż = y

(3.12)


ẋ = y2 + z
ẏ = z2

ż = ±x
(3.13)


ẋ = yz + x
ẏ = x2

ż = −z
(3.14)

Theorem 2. Systems (3.1)–(3.3)+ and (3.4)–(3.13) are not chaotic.

Proof. System (3.4) reduces to a two-dimensional linear system. (3.14) has the scalar form
ẍ = x + ce−t x2 which is equivalent to an Emden–Fowler equation [4, p 400]. The remaining
systems all have scalar forms whose solutions are asymptotic to a two-dimensional surface or
have at least one component with a limit ast →∞ as follows:

(3.1)
...
z − ż2 − zż = 0 (integrate),

(3.2)
...
y − y2 − yẏ = 0 (integrate),

(3.3) +
...
z − ż2 − z2 = 0 (integrate),

(3.5) ÿ − cety2 = 0 (integrate),

(3.6)
...
z − żz2 − ż2 = 0 (integrate),

(3.7)
...
x − 2ẋ2 − 4x2ẋ = 0 (integrate),

(3.8)
...
zz∓ ż2z2 ∓ z2ż∓ żz̈ = 0 (integrate),

(3.9)

(3.10)

(3.11)

(3.13)

 y is monotone and thus has a limit ast →∞.

�
System (3.12) has the scalar formz

...
z ∓ ż2z2 ∓ z3− z̈ż = 0. Dividing byz3, multiplying

by z̈, and integrating leads to

z̈2

2z2
∓ ż3

3z
∓ ż = c +

∫ t

t0

(ż(s))4

3(z(s))2
ds.

To proceed further we consider(3.12)− and(3.12)+ separately and begin with the following

Lemma 1. The scalar form of (3.12)− has no oscillatory solutions.

Proof. Suppose thatz(t1) = z(t3) = 0 with z(t) > 0 for t1 < t < t3 and ż(t2) = 0,
t1 < t2 < t3. Suppose first thaṫz(t1) > 0 and write(
z̈2

2z2
+
ż3

3z
+ ż

) ∣∣∣∣
t2

=
(
z̈2

2z2
+
ż3

3z
+ ż

) ∣∣∣∣
t

+
∫ t2

t

(ż(s))4

3(z(s))2
ds, t1 < t < t2.

Then for the above expression, the left-hand side is finite while fort ↓ t1, the right-hand side
→∞, a contradiction.
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Now suppose thaṫz(t1) = 0. Note thatx(t2) = −z̈(t2)/z(t2) > 0 and also thaṫx(t) > 0
for t1 < t < t3 (sincez > 0 on this interval). Thusx(t) = −z̈(t)/z(t) > 0 for t > t2. Thus
z̈(t) < 0 for t > t2. Thusż(t3) < 0. Considering(

z̈2

2z2
+ ż +

ż3

3z

) ∣∣∣∣
t

=
(
z̈2

2z2
+ ż +

ż3

3z

) ∣∣∣∣
t2

+
∫ t

t2

(ż(s))4

3(z(s))2
ds

the left-hand side→−∞ ast ↑ t3 while the right-hand side remains finite (or possibly→∞)
ast ↑ t3. This proves the lemma. �

Thus for (3.12)− every solutionz(t) is eventually of one sign for larget and

z̈(t)2

2z(t)2
+
ż(t)3

3z(t)
+ ż(t) ↑ L as t →∞.

If L = ∞ then eitherz(t)→ 0 orz(t)→∞ ast →∞. If L <∞, the solution is asymptotic
to a two-dimensional surface.

For (3.12)+ we begin with the following lemma.

Lemma 2. For an oscillatory solution of the scalar form of (3.12)+, x(t) < 0 for large t .

Proof. Supposez(t) is an oscillatory solution. Sincėx(t) > 0 for z(t) > 0, its graph must
have one of two forms shown in figure 1 (recallx = z̈/z).

In the first casex(t) < 0 for all t . It will be shown that the second case is impossible.
If x(t1) > 0 thenx(t) > 0 for t > t1 (slightly) and likewiseż(t) < 0 for t > t1 (slightly).

Figure 1.
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But thenż(t)2 > z(t) for t > t1 by comparison with the equation iṅu(t)2 = u(t), u(t1) = 0,
whose solution isu(t) = − 1

4(t − t1)2 which is parabolic or flat att = t1. Thusx(t) remains
increasing and positive fort > t1, a contradiction.

To show that (3.12)+ is not chaotic, consider first an oscillatory solutionz. Writing
ẋ = y2 + ẏ

x
asxẋ − ẏ = xy2 and integrating gives

x2(t)− y(t) = c +
∫ t

t0

x(s)(y(s))2 ds ↓ L

sincex < 0. If L = −∞ then limt→∞ y(t) = ∞. If L > −∞, then the solution is asymptotic
to a two-dimensional surface. For a nonoscillatory solutionz(t) 6= 0 for t > t0 consider the
earlier expression

z̈2

zz2
− ż3

3z
− ż = c +

∫ t

t0

(ż(s))4

3(z(s))2
ds ↑ L

and apply the same argument as for (3.12)−. This completes the proof of the theorem. �

Of all the four-term conservative systems analysed in this paper system (3.3)− is the only
one which cannot be completely resolved as nonchaotic. Converting to scalar form we obtain
...
z = ż2 − z2.

Lemma 3. Every nonoscillatory solution of
...
z = ż2 − z2 is either asymptotic to a two-

dimensional surface or converges to∞ in norm‖(z, ż, z̈)‖ = ‖(z, y, x)‖ ast →∞.

Proof. Multiplying by z̈ and integrating we obtain

1
2 z̈

2 − 1
3 ż

3 + z2ż = c + 2
∫ t

t0

(ż(s))2z(s) ds.

Supposez > 0 for t > t0. Then

1
2 z̈

2 − 1
3 ż

3 + z2ż ↑ L as t →∞.
If L < ∞, the solution is asymptotic to a two-dimensional surface. IfL = ∞ then
‖(z1ż1z̈)‖ → ∞ ast →∞.

If z < 0 for t > t0, then

1
2 z̈

2 − 1
3 ż

3 + z2ż ↓ L as t →∞.
If L > −∞, then the solution is asymptotic to a two-dimensional surface. IfL = −∞, then
clearlyz(t)→−∞ ast →∞. �

A computer search for oscillatory solutions produces the graphs shown in figures 2 and 3.
These graphs clearly indicate that (3.3)− has a periodic orbit which, moreover, is highly

unstable. In fact it appears from computer analysis that there is a unique periodic orbit and
that all other solutions diverge to±∞. Compare this behaviour with [3].

Another curious fact about system (3.3)− is that it is an example of what is called a
reversible dynamical system. Reversing timet → −t and performing the reflectionz→ −z
leave the system invariant. Such systems are of much current interest [2] but we do not see
how the general theory helps with our specific example.
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Figure 2. Initial conditions:


x = 1.330 754 572 23

y = 0

z = 1

.

Figure 3. Initial conditions:


x = 1.330 754 572 22

y = 0

z = 1

.

4. Four-term systems with three quadratic nonlinearities

The conservative four-term equations with three quadratic nonlinearities are:
ẋ = x2 + yz

ẏ = −2xy

ż = y
(4.1)


ẋ = −2xy + y2

ẏ = y2

ẋ = x
(4.2)
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ẋ = −2xy + yz
ẏ = y2

ż = x
(4.3)


ẋ = −2xy + z2

ẏ = y2

ż = x
(4.4)


ẋ = y2 + yz

ẏ = ±xz
ż = y

(4.5)


ẋ = y2 + yz
ẏ = x2

ż = x
(4.6)


ẋ = y2 + yz
ẏ = x2

ż = y
(4.7)


ẋ = y2 + yz
ẏ = z2

ż = x
(4.8)


ẋ = y2 ± z2

ẏ = x2

ż = x
(4.9)


ẋ = y2 ± z2

ẏ = x2

ż = y
(4.10)


ẋ = y2 ± z2

ẏ = xz
ż = y

(4.11)


ẋ = y2 ± z2

ẏ = z2

ż = x
(4.12)


ẋ = x2 + y
ẏ = z2

ż = −2xz

(4.13)


ẋ = xy + y

ẏ = xz
ż = −yz

(4.14)
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ẋ = xy + z
ẏ = x2

ż = −yz
(4.15)


ẋ = xy + z

ẏ = xz
ż = −yz

(4.16)


ẋ = −2xy + z
ẏ = y2

ż = xy
(4.17)


ẋ = −2xy + z
ẏ = y2

ż = x2
(4.18)


ẋ = y2 + y

ẏ = xz
ż = x2

(4.19)


ẋ = y2 + y

ẏ = xz
ż = y2

(4.20)


ẋ = y2 + y
ẏ = z2

ż = x2
(4.21)


ẋ = y2 + y
ẏ = z2

ż = xy
(4.22)


ẋ = y2 + z
ẏ = x2

ż = xy
(4.23)


ẋ = y2 + z
ẏ = x2

ż = y2
(4.24)


ẋ = y2 + z

ẏ = xz
ż = x2

(4.25)


ẋ = y2 + z

ẏ = xz
ż = y2

(4.26)


ẋ = y2 + z
ẏ = z2

ż = x2
(4.27)
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ẋ = y2 + z
ẏ = z2

ż = xy
(4.28)

Theorem 3. Systems (4.1)–(4.28) are not chaotic.

Proof. First of all, notice that systems (4.2), (4.3), (4.14) and (4.17) are essentially two-
dimensional and/or linear. Then note that systems (4.4), (4.6)–(4.11)+, (4.12), (4.13), (4.15),
and (4.17)–(4.28) all have at least one monotone component which thus has a limit.

The systems with the following scalar forms are easily resolved:

(4.1)

...
z

ż
− 1

2

(
z̈

ż

)2

+ 2żz = 0 (integrate),

(4.5)
...
zz∓ ż2z2 ∓ żz3− z̈ż = 0 (integrate),

(4.16)
...
y + 2z2y = 0 (multiply byy and integrate).

This leaves only system (4.11)− which can be written as{
ẋ = y2 − z2

z̈ = xz.
The Ricatti substitutionu = ż

z
leads to the system{

u̇ = x − u2

ẋ = ce2
∫
u(s) ds(u2 − 1).

Simple graphical analysis of the above(u, x) system shows that limt→∞ x(t) = lim t→∞ u(t) =
∞ sincex(t) is increasing (foru2 > 1) more quickly thanu2(t). This concludes the proof of
the theorem. �

5. Four-term systems, all nonlinear

The conservative systems with four terms, all nonlinear are:
ẋ = x2 ± y2

ẏ = z2

ż = −2zx

(5.1)


ẋ = x2 + yz
ẏ = x2

ż = −2xz

(5.2)


ẋ = x2 + yz

ẏ = −2xy
ż = x2

(5.3)


ẋ = x2 + yz

ẏ = −2xy
ż = y2

(5.4)
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ẋ = x2 + yz
ẏ = z2

ż = −2xz

(5.5)


ẋ = xy + yz

ẏ = ±xz
ż = −yz

(5.6)


ẋ = −2xy + yz
ẏ = y2

ż = x2
(5.7)


ẋ = xy + z2

ẏ = ±x2

ż = −yz
(5.8)


ẋ = xy + z2

ẏ = xz
ż = −yz

(5.9)


ẋ = −2xy + z2

ẏ = y2

ż = x2
(5.10)


ẋ = −2xy + z2

ẏ = y2

ż = xy
(5.11)

Theorem 4. Systems (5.1)–(5.11) are not chaotic.

Proof. System (5.6) reduces to a two-dimensional system. System (5.9) is equivalent to
the scalar equation

...
y + 3yÿ = 0 which is easily seen, by integration, to be asymptotic to a

two-dimensional surface.
All of the remaining systems have at least one monotone component and hence are either

unbounded or asymptotic to a two-dimensional surface. �

6. Four-term systems with one constant term and one nonlinearity

Because there are so many conservative systems with a constant term we also treat these
in separate sections beginning with four-term equations with a constant term and only one
nonlinear term. These are:

ẋ = 1 +yz

ẏ = x
ż = y

(6.1)


ẋ = ±1 +y2

ẏ = z
ż = x

(6.2)
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ẋ = y2 + z

ẏ = x
ż = 1

(6.3)


ẋ = y2

ẏ = x + z

ż = ±1

(6.4)


ẋ = y2

ẏ = 1 + z

ż = ±x
(6.5)


ẋ = yz
ẏ = 1 +x

ż = x
(6.6)


ẋ = y2

ẏ = z
ż = 1 +x

(6.7)


ẋ = yz
ẏ = x
ż = 1 +y

(6.8)

Theorem 5. Systems (6.1)–(6.8) are nonchaotic.

Proof. System (6.1) can be rewritten as the scalar equation
...
z = zż + 1 which integrates

to z̈ = 1
2z

2 + t + c. Thus limt→∞ z̈(t) = ∞ and thus limt→∞ x(t) = lim t→∞(y(t) =
lim t→∞ z(t) = ∞.

System (6.3) can be written asÿ = y2 + t + c and thus is analogous to (6.1).
All of the other systems have scalar forms, the solutions of which are asymptotic to

two-dimensional surfaces:

(6.2)
...
y = y2 ± 1 (multiply by ẏ and integrate),

(6.4) ÿ = y2 ± 1 (multiply by ẏ and integrate),

(6.5)
...
y ∓ y2 = 0 (multiply by ẏ and integrate),

(6.6)
...
zz− z2 − z2ż− z̈ż = 0 (integrate),

(6.7)
...
y − y2 = 0 (multiply by ẏ and integrate),

(6.8)
...
z − zż− z = 0 (multiply by z and integrate).

�

Remark. System (6.2)− has been treated in great detail in [3].
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7. Four-term systems with one constant term and two nonlinearities

The four-term systems with a constant term and two nonlinearities are:
ẋ = y2 + yz

ẏ = x
ż = 1

(7.1)


ẋ = y2 + z2

ẏ = x
ż = 1

(7.2)


ẋ = 1 +y2

ẏ = xz
ż = y

(7.3)


ẋ = ±1 +y2

ẏ = z2

ż = x
(7.4)


ẋ = 1 +yz
ẏ = x2

ż = x
(7.5)


ẋ = 1 +yz
ẏ = x2

ż = y
(7.6)


ẋ = 1 +yz
ẏ = z2

ż = x
(7.7)


ẋ = 1± y2

ẏ = x2

ż = x
(7.8)


ẋ = 1 +yz

ẏ = xz
ż = ±y

(7.9)


ẋ = 1 + z2

ẏ = x2

ż = y
(7.10)


ẋ = z2 ± 1

ẏ = xz
ż = y

(7.11)


ẋ = 1 +y

ẏ = xz
ż = x2

(7.12)
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ẋ = 1 +y

ẏ = xz
ż = y2

(7.13)


ẋ = 1 +y
ẏ = z2

ż = x2
(7.14)


ẋ = 1 +y
ẏ = z2

ż = xy
(7.15)


ẋ = x2 + y

ẏ = 1

ż = −2xz

(7.16)


ẋ = 1 + 2
ẏ = x2

ż = xy
(7.17)


ẋ = y2 + y

ẏ = xz
ż = 1

(7.18)


ẋ = y2 + z

ẏ = 1
ż = x2

(7.19)


ẋ = y2 + z
ẏ = x2

ż = 1

(7.20)


ẋ = y2 + z

ẏ = xz
ż = 1

(7.21)

Theorem 6. Systems (7.1)–(7.21) are nonchaotic.

Proof. Note that systems (7.1)–(7.8), (7.10), (7.11)+, and (7.12)–(7.21) all have at least
one monotone component which hence has a limit ast → ∞. The scalar form of (7.9) is
...
zz∓ z2 − z3ż− z̈ż = 0 which can be directly integrated.

System (7.11)− can be written aṡx = ( ẏ
x
)2 − 1, d

dt (
ẏ

x
) = y and hence

ẍ = 2

(
ẏ

x

)
d

dt

(
ẏ

x

)
= 2yẏ

x

or ẍx = 2yẏ. This integrates to

ẋx − y2 = c +
∫ t

0
(ẋ(s))2 ds ↑ L

ast →∞. Thus either limt→∞ x(t) = ∞ or the solution is asymptotic to a two-dimensional
surface. �
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8. Four-term systems with a constant term and three nonlinear terms

The four-term systems with a constant term and three nonlinear terms are:
ẋ = y2 + yz
ẏ = x2

ż = 1

(8.1)


ẋ = y2 + yz

ẏ = ±xz
ż = 1

(8.2)


ẋ = y2 ± z2

ẏ = x2

ż = 1

(8.3)


ẋ = y2 ± z2

ẏ = xz
ż = 1

(8.4)


ẋ = xy + 1

ẏ = xz
ż = −xz

(8.5)


ẋ = y2 ± 1
ẏ = z2

ż = x2
(8.6)


ẋ = y2 ± 1
ẏ = z2

ż = xy
(8.7)


ẋ = yz + 1
ẏ = x2

ż = xy
(8.8)


ẋ = yz + 1
ẏ = x2

ż = y2
(8.9)


ẋ = ±1 +y2

ẏ = xz
ż = x2

(8.10)


ẋ = ±1 +y2

ẏ = xz
ż = y2

(8.11)


ẋ = x2 + yz

ẏ = −2xy

ż = 1

(8.12)
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ẋ = y2 ± z2

ẏ = 1
ż = x2

(8.13)

Theorem 7. Systems (8.1)–(8.13) are not chaotic.

Proof. All of these systems have at least one monotone term, except (8.5), and hence are not
chaotic.

For system (8.5) we notice that

d

dt
(z + xyz) = ż + ẋyz + xẏz + xyż

= −yz + xzy2 + yz + x2z2 − xzy2 = x2z2

Thus

z + yẏ = c +
∫ t

(x(s))2(z(s))2 ds ↑ L 6∞.

If L = ∞, then, writingz(t) = ce−
∫ t
t0
y)(s) ds , we have

ce
− ∫ t

t0
y(s) ds + y(t)ẏ(t) ↑ ∞ as t →∞.

Clearly we must have
∫ t
t0
y(s) ds →±∞ ast →∞ and thus limt→∞ z(t) = ±∞. If L <∞,

the solution is asymptotic to a two-dimensional surface. �

9. Conclusions

In this paper we have shown that almost all three-dimensional conservative four-term systems
of ordinary differential equations with quadratic nonlinearities are nonchaotic. The lone
exception, system (3.3)−

ẋ = y2 − z2

ẏ = x
ż = y

with scalar form
...
z = ż2 − z2 is a reversible dynamical system which appears numerically to

have a unique unstable periodic orbit with all other solutions being unbounded. It would be
nice to resolve this behaviour analytically.

To go beyond the dissipative and conservative four-term systems appears to be a very
formidable problem because of the sheer number of cases, as discussed in [7].

A more reasonable task would be to perform an exhaustive analysis of three-dimensional
systems with five terms and only one (quadratic) nonlinearity, restricted to the dissipative and
conservative cases. Sprott [5, 6] has given examples of chaotic systems in both cases. On the
other hand the methods of this paper can be used to show that many five-term equations with
only one nonlinearity are nonchaotic. The question is: are Sprott’s examples the only chaotic
ones or are there others as well?
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