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Abstract 

In this paper, we consider certain nonlinear differential equations with 
fixed singularities in the dependent variables which cause derivative 
blowup in the solution to the corresponding initial value problem. We are 
interested in the location and nature of derivative blowups. Some 
theorems and numerical examples are given. 

1. Introduction 

The nonlinear differential equation 

( ) ( )ygxpy =′′  (1.1) 

has been considered by many authors. The special case with ( ) ,nyyg =  n real, is 

called the Emden-Fowler case and many papers have been written concerning this 
case. However, only a few authors were concerned with locations of movable 
singularities to solutions of the corresponding initial value problem (IVP): 
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( ) ( ),ygxpy =′′    ( ) ,00 yxy =    ( ) .00 yxy ′=′  (1.2) 

See, for example, [1], [3], [5], [6] and [8]. These authors assume that ( )yg  has no 

singularity in variable y (such as the Emden-Fowler case). If, however, ( )yg  is 

allowed to have a fixed singularity in y, then derivative blowup is possible without 
blowup in the actual solution ( )( )xy  itself. In [7], Kawarada considered such a case, 

although the nonlinear differential equation is of first order. It has the form 

,1
yAy

−
=′    ( ) ,0 0yy =    .0 Ay <  (1.3) 

The behavior of this IVP, as pointed out in [7], sheds light on the behavior of the 

solution to certain PDEs of importance. Clearly, (1.3) can be written
( )

,1
2yA

y
−

=′′  

as 

( )
,1

2yA
y

−
=′′    ( ) ,0 0yy =    ( ) ,0 0yy ′=′  (1.4) 

where ( ) .1
00
−−=′ yAy  Clearly, ( ) ∞→′′ xy  as −→ cx  for some 0xc >  if .00 >′y  

We shall refer to this occurrence as ‘derivative blowup’ in the sequel. We wish to 
obtain information on the location of c, a point at which a movable singularity 
occurs to the solution. Many papers have been written on existence of blowup in 
PDEs, but no references will be given here. Our primary interest is on the nature and 
location of the blowup. 

2. A Second Order Autonomous Case 

In this section, we shall obtain upper and lower bounds on c, the location of the 
movable singularity of derivative blowup type. Consider the IVP: 

( ) [ ( ) ( ) ],δ−⋅=′′ yAygxpy    ( ) ,00 yxy =    ( ) ,00 yxy ′=′  (2.1) 

with ,0<δ  A real, ,0, 00 yAy ′  ( )yg  is continuous in y, ( ) 0>yg  on [ ),,0 ∞y  

and ( )xp  is continuous and positive on [ ).,0 ∞x  Assume that there exists a 0xc >  

with ( ) .lim ∞=′′−→
xy

cx
 (This would be the case, for example, if there exists 

00 >P  with ( ) .), 00 xxPxp ≥≥  We have the following main result: 
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Theorem 1. Consider IVP (2.1) under the stated conditions above. Let 

( ) ( ) ( ).infinf~
00

wgtpxQ
Awyxtx

L
<<<<

⋅=  (2.2) 

Suppose .1−<δ  Then an upper bound for c is implicitly given by 

( ) ( )
( )∫ ∫≥−−−

+δ
+δ+δ

A

y

c

x
L dxxQdy

yAyA0 0
.~21

11
0

 (2.3) 

If ,1−=δ  then an upper bound for c is implicitly given by 

( ) ( )
( )∫ ∫≥−−−

A

y

c

x
L dxxQ

yALnyALn
dy

0 0
.~2

0
 (2.4) 

Proof. We shall prove (2.3). The proof of (2.4) is similar and is omitted. Then 
multiplication of (2.1) by y′  gives 

( ) ( ) ( ) ( )( ) ( )( ) ( ).tytyAtygtptyty ′−=′′′ δ  

Integrating with respect to t from 0xt =  to xt =  gives 

( )( ) ( ) ( ) ( )( ) ( )( ) ( )∫ ′−=′−′ δx

x
dttytyAtygtpyxy

0

2
0

2
2
1

2
1  

( ) ( )( ) ( )∫ ′−⋅≥ δ
x

x
L dttytyAxQ

0
,~  

using (2.2) given 

( )( ) ( ) ( ) ( )( ) ( )∫ ′−+′≥′ δ
x

x
L dttytyAxQyxy

0

~22
0

2  

( ) ( )( ) ( )∫ ′−≥ δ
x

x
L dttytyAxQ

0

~2  

( ) [( ) ( )( ) ],1
1~2 1

0
δ+δ −−−

+δ
⋅= xyAyAxQL  

from which the result follows, upon letting −→ cx  and integrating once more with 
respect to x. This completes the proof of (2.3). 
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Remark 1. Formulas for lower bounds for c can be found in [6]. First, we need 
the following inequality. See, [9, Chapter X], for example. 

Gruss Inequality. Let ( )xf1  and ( )xf2  be integrable on [ ]., ba  

(a) If ( )xf1  and ( )xf2  are both nondecreasing or both nonincreasing on [ ],, ba  

then 

( ) ( ) ( ) ( ) ( )∫ ∫ ∫×−≥ −
b

a

b

a

b

a
dxxfdsxfabdxxfxf .21

1
21  

(b) If ( )xf1  is nondecreasing and ( )xf2  is nonincreasing on [ ],, ba  then 

( ) ( ) ( ) ( ) ( ) .21
1

21∫ ∫ ∫×−≤ −
b

a

b

a

b

a
dxxfdsxfabdxxfxf  

In the case, where ( )yg  is nondecreasing in y and ( )xp  is nondecreasing in x, 

we present next an alternative upper bound for c, for .1−<δ  

Theorem 2. If, in addition to the conditions of Theorem 1, we also have that 
( )xp  is nondecreasing on [ )∞,0x  and ( )yg  is nondecreasing on [ ],,0 Ay  then an 

upper bound for c is implicitly given by 

( ) ( )
( )∫ ∫≥−−−

+δ
+δ+δ

A

y

c

x
dwwQdy

yAyA0 0
,~1

11
0

 (2.5) 

where 

( )
( ) ( )

.
2

~
0

0
0
xw

duupyg
wQ

w

x
−

=
∫

 

Proof. Proceeding as in the proof of (2.3), 

( ) ( ) ( ) ( )( ) ( ) ( )( ) .δ−′=′′′ uyAuyuygupuyuy  (2.6) 

Integration gives, using the Gruss inequality: 

[ ( )( ) ( ) ]
( )

( )( ) ( )( ) ( )∫
∫

′−⋅
−

≥′−′ δ
t

x

t

x duuyuyAuygxt

duup
yty

0

0 .2
1

0

2
0

2  (2.7) 
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Since ( )( ) ( ),0ygtyg ≥  we obtain 

( ) ( ) [( ) ( )( ) ].1
1~ 11

0
+δ+δ −−−

+δ
⋅≥′ tyAyAdttQty  (2.8) 

Integration of (2.8) produces (2.5). This completes the proof. � 

Finally, we present an ‘obvious’ upper bound for c in Theorem 3 below. We 
shall also consider this upper bound in some numerical examples later. 

Theorem 3. Under the conditions of Theorem 1, an upper-bound for c is 

.
0

0
03 y

yAxc ′
−

+=  (2.9) 

Proof. Since 0≥′′y  on [ ),,0 cx  we have ( )xy′  increasing on [ )cx ,0  and 

( ) ,0 00 Axxyy ≤−+′+  which gives ,3cx ≤  as desired. � 

Numerical examples demonstrate that (2.5) usually provides a better (smaller) 
upper bounds than (2.3) and (2.9), if .1−<δ  However, (2.3) is more generally 
applicable. One numerical example is presented below. 

Example 1. Consider the IVP 

( ) ( ) ,11 22 −−+=′′ yxy    ,1.00 =y    .0.20 =′y  

Then (2.3) gives an upper bound for c of 0.9483, whereas (2.5) gives an upper 
bound of 0.8234. Runge-Kutta fourth order method found .33.0≈c  Expression 
(2.9) gives an upper bound of 0.4500 and is the best. However, for small values 
of ,0y′  (2.5) and (2.3) usually provide better upper bounds for c, if ( )xp  is 

nondecreasing. 

3. Competing Blowup Causes 

Consider the IVP 

( ) ( ) ( ) ,21 δδ ′−−=′′ yByAxpy    ( ) ,00 yxy =    ( ) ,10 yxy =′  (3.1) 

where ,0 Ay <<−∞  .0 0 By <′<  Suppose (3.1) has a solution with derivative 

blowup at ,cx =  i.e., ( ) .lim ∞=′′−→
xy

cx
 It is clear that if ( ) 00 >≥ Pxp  on 

[ ),,0 ∞x  then there will be a derivative blowup, since ( ) 00 >′≥′ yxy  and .0>′′y  



STEVEN G. FROM, JACK HEIDEL and JOHN P. MALONEY 6 

In Section 2, we assumed .02 =δ  Here, we require 01 <δ  and .02 <δ  Allowing 

2δ  to be nonzero and negative allows for a sort of ‘competition’ between the 

( ) 1δ− yA  term and the ( ) 2δ′− yB  term to be the ‘cause’ of the blowup of y ′′  in 

(3.1). No such ‘competition’ occurs in the autonomous case considered earlier in 

Section 2. Does ∞→′′y  as −→ cx  because Ay →  as −→ cx  or By →′  as 

?−→ cx  In addition, what can be said about the locations of c? We aim to answer, 
at least partially, these questions next. 

First, we consider the case ( ) ,1≡xp  to gain some insight into the problem. 

This case also allows us to solve for ( )xy  for some choices of 1δ  and .2δ  We also 

consider a few special cases of an IVP containing powers of y and or ,y′  i.e., the 

IVP 

( ) ( ) ( ) ,nm yByyAyy −βα− ′−′−=′′  (3.2) 

( ) ,00 yxy =  ( ) ,10 yxy =′  ,0>α  ,0>m  ,0>n  ,0>β  ,0 0 Ay <<  ,0 1 By <<  

,m  n  integers. 

Theorem 4. Consider IVP (3.2) with ,010 == yy  .00 =x  Suppose .10 <α<  

Then 

(a) blowup occurs in y ′′  at cx =  because ( ) Axy →  as ,−→ cx  if 

( ) ( ) ( ) ( ) ( ) ( ) ,232
!

121
! 21

β−+β−β−
<

α−+α−α−

β−+α−+

n
Bn

m
Am nm

 

(b) blowup occurs in y ′′  at cx =  because ( ) Bxy →′  as ,−→ cx  if 

( ) ( ) ( ) ( ) ( ) ( ) .121
!

232
! 12

α−+α−α−
<

β−+β−β−

α−+β−+

m
AM

n
Bn mn

 

Proof. We prove the result for 3=m  and 2=n  to ease the laborious algebra 
and the notational complexity, as well as for simplicity and without loss of 
generality, 

( )
( )

( )2
3

yB
y

yA
yy

′−

′

−
=′′

β

α  
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gives 

( )
( ) ( )

.
3

1

2
y

yA
y

y
yBy ′

−
=

′
′−′′

α−β  (3.3) 

Integration of the L.H.S. of (3.3) gives 

( )
( )

( )
( )∫ ∫ ′′
′

′+′β−β=′′
′

′−
−β−β y

y
yyy

y
yB

1

22

1

2 2  

( ) ( ) ( ) .43
2

2

4322

β−
′

+
β−
′

−
β−
′

=
β−β−β− yyByB  (3.4) 

Integration of the R.H.S. of (3.4) gives, upon making the substitution ,yAu −=  

( )
( )∫ ∫ αα

′−−=′
− u

uuAy
yA

y 33
 

( )∫ ′−+−−= α−α−α−α− .33 32123 uuAuuAuA  (3.5) 

Equating (3.4) and (3.5) up to a constant of integration, c, we obtain 

( ) ( ) ( )
β−

′
+

β−
′

−
β−
′ β−β−β−

43
2

2

4322 yyByB  

( ) ( )
α−

−−
α−

−+
α−α−

2
3

1

2213 yAAyAA  

( ) ( )
α−

−−
α−

−+
α−α−

43
3 43 yAyAA  

.c=  (3.6) 

Using ( ) ( ) ,000 =′= yy  we obtain 

( ) ( ) ( ) ( ) .4321
6 4

α−α−α−α−
=

α−Ac  

Thus 

( ) ( ) ( ) ( )
α−
′−+

β−
′

+
β−
′

−
β−
′ α−β−β−β−

143
2

2

134322 yAAyyByB  
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( ) ( ) ( )
α−

−−
α−

−+
α−

−−
α−α−α−

43
3

2
3 4322 yAyAAyAA  

( ) ( ) ( ) ( ) .4321

4

α−α−α−α−
=

α−A  (3.7) 

Suppose ( ) Bxy →′  as −→ cx  with ( ) .Acy <−  Then 

( )
α−

−+
β−

+
β−

−
β−

α−β−β−β−

143
2

2

13444 yAABBB  

( ) ( ) ( )
α−

−−
α−

−+
α−

−−
α−α−α−

43
3

2
3 4322 yAyAAyAA  

( ) ( ) ( ) ( ) .4321
6 4

α−α−α−α−
=

α−A  

But then 

( ) ( ) ( ) ( )
α−

−−
α−

−+
α−

−−
α−

−<
α−α−α−α−

43
3

2
3

10
432213 yAyAAyAAyAA  

( ) ( ) ( ) ( ) ( ) ( ) ( ) .432
2

4321
6 44

β−β−η−
−

α−α−α−α−
=

β−α−

b
BA  

Thus, 

( ) ( ) ( ) ( ) ( ) ( ) ( ) .4321
6

432
2 44

α−α−α−α−
≤

β−β−β−

α−β− AB  

So part (a) is proven. 

Now suppose ( ) Axy →  as −→ cx  with ( ) .Bcy <′ −  Then 

β−
+

β−
−

β−

β−β−β−

43
2

2

444 BBB  

( ) ( ) ( )
β−

′
+

β−
′

−
β−
′

>
β−β−β−

43
2

2

4322 yyByB  

( ) ( ) ( ) ( ) .4321
6 4

α−α−α−α−
=

α−A  
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Thus  

( ) ( ) ( ) ( ) ( ) ( ) ( ) .432
2

4321
6 44

β−β−β−
≤

α−α−α−α−

β−α− BA  

So (b) is proven. � 

Theorem 5. Consider the IVP 

( )
( )

( )
,βα ′−

′

−
=′′

yB
y

yA
yy

nm
 (3.8) 

where ,0, >BA  ,1≥α  ,1<β  m and n are positive integers. Then ( )xy
cx

′′−→
lim  

∞=  occurs because ( ) .lim Bxy
cx

=′−→
 

Proof. Again, for simplicity but without loss of generality, let .2=β=m  Then 

( )
( )

( )
,

2

βα ′−

′

−
=′′

yB
y

yA
yy

n
 

which gives 

( )
( ) ( )

.
12

1

2

α− −
=′′

′
′−

yA
yyy

y
yB

n  (3.9) 

Integrating both sides of (3.9), we obtain 

( )
( )

( ) ( ) ( ) .4
1

3
2

2
432

2

1

2
nnn

n ynyn
Byn

B
y

yyB −−−
−

′
−

+′
−

−′
−

=
′

′′′−∫  (3.10) 

Also, 

( )
( ) ( ) ( ) .32

2
1

3
21

212

α−
−−−

α−
+−

α−
−=

−

α−
α−α−

α∫ yAyAAyAA
yA
yy  (3.11) 

Equating (3.10) and (3.11) up to an arbitrary constant, c, of integration, we have 

( ) nyn
B −′
−

2
2

2  

( ) ( )
n

yyn
B n

n
−
′

+′
−

=
−

−
43

2 4
3  
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( ) ( ) ( ) .32
2

1

3
21

2
CyAyAAyAA +

α−
−−−

α−
+−

α−
−=

α−
α−α−  (3.12) 

Since ,1>α  ( ) Axy
cx

=−→
lim  is not compatible with (3.12), a contradiction. 

Thus, ( ) .lim Bxy
cx

=′−→
 This completes the proof. � 

Theorem 6. Consider the IVP 

( ) ( )
,11

βα ′−
⋅

−
=′′

yByA
y    ( ) ,00 yxy =    ( ) ,10 yxy =′  (3.13) 

,0>A  ,0>B  ,1≥α  ,0>β  .01 >y  Then derivative blowup occurs because 

( ) .lim Bxy
cx

=′−→
 

Proof. Write 

( )
( )

.α
β

−

′
=′′−′′

yA
yyyBy  

Integration of both sides gives, eventually, 

( ) ( ) ( ) .121

12
1 CyAyByBB +

α−
−−=

+β
′−+′−

+β
−

α−+β
+β  (3.14) 

Thus, since ,1>α  ( ) Axy
cx

=−→
lim  is a contradiction to (3.14). � 

Theorem 7. Consider the IVP 

( ) ( )
,11

βα ′−
⋅

−
=′′

yByA
y  

where ,A  ,B  α  and β  are real with ,0>β  ( ) ,00 =y  ( ) .00 =′y  Then blowup 

occurs at ,cx =  where ( ) Bxy
cx

=′−→
lim  provided 

( ) ( ) .21
1 21 +βα−

+β+β
α−< BA  (3.15) 

Proof. Write 

( )
( )

.α
β

−

′
=′′−′′

yA
yyyBy  
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But 

( ) ( ) ( )∫ +β+ββ ′−
+β

+′−
+β

−=′′′′− .2
1

1
21 yByBByyyB  

Then 

( ) ( ) ( ) ,1
1

2
1

1
121 CyAyByBB =−

α−
+′−

+β
+′−

+β
α−+β+β  

where 

.1
1

2
1

1
121 α−+β+β

α−
+

+β
+

+β
−= ABBBC  

Thus, 

( ) ( ) ( ) α−+β+β −
α−

+′−
+β

+′−
+β

− 121
1

1
2

1
1 yAyByBB  

.2
1

1
1

1
1 21 +βα− 







+β
−

+β
−

α−
= BA  

Now suppose By =′  and .Ay <  Then 

( ) ( ) ( )211
1

1
1 2

11
+β+β

−
α−

=−
α−

+β
α−α− BAyA  

which eventually gives 

( )
( ) ( ) .21

1 1
1

2
1 α−+β

α−








+β+β

α−−−= BAAy  

Thus 
( )
( ) ( ) .21

1 1
2

α−
+β

<
+β+β

α− AB  

Now suppose Ay =  and .0 By <′<  Then 

( ) ( ) 21
2

1
10 +β+β ′−

+β
+′−

+β
−> yBByBB  

( ) ( )211
1 2

1
+β+β

−
α−

=
+β

α− BA  
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giving ( )
( ) ( ) ,21

1 2
1

+β+β
α−<

+β
α− BA  as desired. This completes the proof. 

We now consider a case in which c, the blowup point, can be explicitly found as 
a definite integral. 

Theorem 8. Consider the IVP 

( ) ( )
,1

βα ′−

′

−
=′′

yB
y

yA
y  (3.16) 

( ) ,00 =y  ( ) ,00 =′y  0,,, >βαBA  and .10 <α<  Then 

(a) blowup occurs because ( ) Axy →  as ,−→ cx  if 

( ) ( ) α−+β +β>α− 11 11 AB  (3.17) 

and 

(b) blowup occurs because ( ) Bxy →′  as ,−→ cx  if 

( ) ( ) .11 11 α−+β +β>α− AB  (3.18) 

Proof. Write 

( )
( )

.α
β

−

′
=′−′′

yA
yyBy  

Integration gives 

( ) ( )∫ +β
′−−=′−′′

+β
β .1

1yByBy  

Thus 

( ) ( ) ,11

11
CyAyB +

α−
−−=

+β
′−−

α−+β
 

where 

.11

11

+β
−

α−
=

+βα− BAC  

Now suppose ( ) Axy →  as .−→ cx  Then 
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( )
α−

−
+β

=
+β
′− α−+β+β

111

111 AByB  

or 

.1
1 1

1
11 +βα−+β 







α−
+β−−=′ ABBy  

So ( ) ( ) α−+β +β>α− 11 11 AB  implies .By <′  Conversely, suppose ( )xy
cx

′−→
lim  

.B=  Then 

( )
111

111

+β
−

α−
=

α−
− +βα−α− BAyA  

or 

.1
1 1

1
11 α−+βα− 






+β
α−−−= BAAy  

So ( ) ( ) α−+β +β<α− 11 11 AB  implies ( ) .lim Axy
cx

<−→
 � 

Corollary 9. Consider the IVP of Theorem 8. If the IVP blows up because 
( ) ,lim Axy

cx
=−→

 then the blowup point is explicitly given by 

( ) ( )
∫

+βα−+βα−






α−
+β−+−

α−
+β−

=
A

AByAB

dyC
0

1
1

111

.

1
1

1
1

 (3.19) 

Proof. From the proof of Theorem 8, 

( ) ( ) .1111

1111

α−
−

+β
+

α−
−=

+β
′− α−+βα−+β AByAyB  

Then 

( ) .1
1

1
1 1

1
111 +βα−+βα−







α−
+β−+−

α−
+β−=′ AByABy  

So 
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( )
∫ ∫

+βα−+βα−






α−
+β−+−

α−
−β−

′
==

c c

AByAB

dxydxC
0 0

1
1

111

,

1
1

1
1

 

from which (3.19) follows. This completes the proof. � 

Corollary 10. If blowup occurs in (3.16) because ( ) ,lim Bxy
cx

=′−→
 then 

( ) ( )

,

1
1

1
10

1
1

111
∫

+βα−+βα−






α−
+β−+−

α−
−β−

=
V

AByAB

dyC  

where 

.1
1 1

1
11 α−+βα−






+β
α−−−= BAAV  

Proof. From the previous discussion, we see that when ,By =′  then 

,1
1 1

1
11 α−+βα−






+β
α−−−= BAAy  

since 

( )

( )
∫ ∫

+βα−+βα−






α−
+β−−

α−
+β−

′
==

c c

ASByAB

dxxydxC
0 0

1
1

111
1

1
1

1
 

which proves the desired result. � 

We shall now consider nonconstant choices for ( )xp  in (3.1) and a more 

general form for the IVP than was considered in earlier sections. 

Consider the IVP: 

( ) ( ) ( ) ( ) ( ) ,21 δδ ′−−′=′′ yByAygyhxpy  

( ) ,00 yxy =    ( ) ,10 yxy =′    ,01 1 <δ<−    ,02 <δ  

,0 Ay <    ,1 By <    .0>B  (3.20) 

Assume that p, g and h are positive functions of with p, g and h nondecreasing on 
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[ ]cx ,0  and the p, g and h are continuously differentiable on [ ).,0 cx  Clearly, 

blowup in either y or y′  will produce blowup in .y ′′  In order to prove theorems 

concerning the nature of the blowup, we will need an upper bound on c, where either 

( ) Axy
cx

=
−→

lim    or   ( ) .lim Bxy
cx

=′
−→

 

The case where 021 =δ=δ  has been considered in [10], but apparently no 

extensions/generalizations have been considered. 

Lemma 11. In (3.20), an upper bound on C is ( ),,max 21 CCC =∗  where 

,
1

0
01 y

yAxC −
+=  

,
2

1
02 y

yBxC −+=  

and 
( ) ( ) ( ) ( ) ( ) .21 101002

δδ −−= yByAygyhxpy  

Proof. Clearly, for ,0 cxx ≤≤  

( ) ( ).010 xxyyxyA −+≥≥  

For ,cx =  solving for c, we obtain .
1

0
01 y

yAxCC −
+==  Also, ( ) 1yxyB ≥′≥  

( ),02 xxy −+  where ( ),02 xyy ′′=  since ( )( ) ,03 ≥xy  y ′′  being a product of five 

nonnegative nondecreasing differentiable functions of x. � 

Lemma 12. Consider IVP (3.20) and the conditions given there. Suppose 

( ) ( ) ( )
( ) ( )∫ ∫ δ

δ

−
<−

A

y

B

y zBzg
zdzdwwAwhxp

0 1 2
10  (3.21) 

holds. Then an upper bound for c denoted by ∗∗C  is implicitly given by 

( ) ( )
( ) ( )

( )

∫
∫

∫


















−
⋅








−≥

−
δ

δ

B

y

c

xA

y xc

dttp
dwwAwh

zBzg
zdz

1

0

0

1
2

,
0

 (3.22) 

provided (3.22) has at least one solution. 
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Proof. Suppose first that ( ) .lim Axy
cx

=−→
 Then (3.20) gives 

( ) ( )
( )( ) ( )( )

( ) ( )( ) ( )( ) ( )∫ ∫ ′−⋅=
′−′

′′′ δ
δ

x

x

x

x
dttytyAtyhtp

tyBtyg
dttyty

0 0

1
2

.  

Letting ( )xyw =  and ( )xyz ′=  and using the Gruss inequality, 

( ) ( )
( ) ( )

( ) ( )( )

∫
∫

∫
′

δ
δ



















−
⋅








−≥

−

zy

y

x

xxy

y xx

dttp
dwwAwh

zBzg
zdz

1

0

0

1
2

.
0

 (3.23) 

Now let .−→ cx  Then 

( ) ( ) ( ) ( )

( )

∫ ∫
′

δδ −
≥

−

B

y

xy

y zBzg
zdz

zBzg
zdz

1 1 22
 

( ) ( )
( )

.
0

1
0

1

1



















−
⋅








−≥

∫
∫ δ

xc

dttp
dwwAwh

c

xA

y
 (3.24) 

If ( ) Bxy
cx

=′−→
lim  is the cause of the blowup instead, then (3.23) gives instead 

as :−→ cx  

( ) ( )
( ) ( )

( ) ( )

∫
∫

∫


















−
⋅








−≥

−
δ

δ

B

y

c

xcy

y xc

dttp
dwwAwh

zBzg
zdz

1

0

0

1
2

.
0

 (3.25) 

Thus, an upper bound for c is the larger of the two solutions (largest values of c) 
satisfying both (3.22) and (3.25). Clearly, any solution of (3.22) also satisfies (3.25), 
since ( ) .Acy ≤  Thus, (3.22) implicitly defines an upper bound for c, regardless of 

the nature of the blowup, provided (3.22) has at least one solution. But this is the 

case by assumption (3.21), since ( )
( )

.
0

0
0

xc

dttp
xp

c

x
−

≤
∫

 This completes the proof. � 
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Theorem 13. For IVP (3.20), 

(a) if ( ) ( ) ( )
( ) ( )∫ ∫ δ

δ

−⋅
>−

A

y

B

y zBzg
zdzdwwAwhxp

0 1 2
1 ,0  then blowup occurs 

because ( ) .lim Bxy
cx

=′−→
 

(b) if ( ) ( )( )
( ) ( )∫ ∫ δ

δ

−⋅
<−

A

y

B

yu
zBzg

zdzdwwAwhcp
0 1 2

2 ,  where uc  is any upper 

bound for c, then blowup occurs because ( ) .lim Axy
cx

=−→
 (We may use either 

∗= ccu  from Lemma 11 or ∗∗= Ccu  from Lemma 12.) 

Proof. To prove (a), suppose ( ) .lim Bxy
cx

≠′−→
 From (3.20), we have 

( ) ( )
( )( ) ( )( )

( ) ( )( ) ( )( ) ( )∫ ∫ ′−=
′−′

′′′ δ
δ

x

x

x

x
dttytyAtyhtpdt

tyBtyg
tyty

0 0

1
2

.  

Letting ,yz ′=  ,yw =  we get, using the Gruss inequality 

( ) ( )
( ) ( )

( ) ( )( )

∫
∫

∫
′

δ
δ



















−
⋅








−≥

−

xy

y

x

xxy

y xx

dttp
dwwAwh

zBzg
zdz

1

0

0

1
2 0

 

which gives 

( ) ( )
( ) ( )

( ) ( )

∫
∫

∫


















−
⋅








−⋅≥

−
δ

δ

B

y

x

xxy

y xx

dttp
dwwAwh

zBzg
zdz

1

0

0

1
2

.
0

 

Since ( ) ,lim Axy
cx

=−→
 we have, by continuity, for :0 cxx ≤≤  

( ) ( )
( ) ( )

( )

∫
∫

∫


















−
⋅








−≥

−
δ

δ

B

y

x

xA

y xx

dttp
dwwAwh

zBzg
zdz

1

0

0

1
2

.
0

 

Now ( )tp  is nondecreasing, which gives 
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( )
( )

0
0

xx

dttp
xr

x

x
−

=
∫

 is nondecreasing also. 

Thus, for ,0 cxx ≤≤  we have 

( ) ( )
( ) ( )

( )

∫
∫

∫


















−
⋅








−≥

−
δ

δ

B

y

c

xA

y xc

dttp
dwwAwh

zBzg
zdz

1

0

0

1
2 0

 

( ) ( ) ( ),0
0

1 xpdwwAwh
A

y
⋅








−≥ ∫ δ  

a contradiction to our assumption. This proves (a). 

To prove (b), suppose that ( ) .lim Axy
cx

≠−→
 Then 

( ) ( )
( )( ) ( )( )

( ) ( )( ) ( )( ) ( )∫ ∫ ′−=
′−′

′′′ δ
δ

x

x

x

x
dttytyAtyhtpdt

tyBtyg
tyty

0 0

1
2

 

which gives 

( ) ( )
( ) ( ) ( )

( )( )

∫ ∫ δ
δ −≤

−

xy

y

xy

y
dwwAwhxp

zBzg
zdz

1 0

2
2

 

( ) ( ) ( )∫ δ−≤
A

y
u dwwAwhcp

0

2 .  

Let .−→ cx  Then 

( ) ( )
( ) ( ) ( )∫ ∫ δ

δ −≤
−

A

y

A

y
u dwwAwhcp

zBzg
zdz

0 0

2
2

,  

a contradiction. This proves (b). � 

Theorem 14. Suppose 11 −≤δ  instead in IVP (3.20). Then blowup occurs 

( ) .lim Bxy
cx

=′−→
 

Proof. First, assume 11 −<δ  and proceed as in the proof of Theorem 13. 
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Suppose ( ) .lim Bxy
cx

≠′−→
 Since both y and y′  are nondecreasing, the Gruss 

inequality gives, for :0 cxx ≤≤  

( ) ( )
( )( ) ( )( )

( ) ( )( ) ( )( ) ( )∫ ∫ ′−=
′−⋅′

′′′ δ
δ

x

x

x

x
dttytyAtyhtpdt

tyBtyg
tyty

0 0

1
2

.  

So 

( ) ( )
( ) ( )

( ) ( )( )

∫
∫

∫
′

δ
δ



















−
⋅








−≥

−

xy

y

x

xxy

y xx

dttp
dtwAwhdt

zBzg
zdz

1

0

0

1
2

.
0

 

Since ( )xyB ′≥  and the integrand is positive, we get 

( ) ( )
( ) ( )

( ) ( )

∫
∫

∫


















−
⋅








−≥

−
δ

δ

B

y

x

xxy

y xx

dttp
dtwAwh

zBzg
zdz

1

0

0

1
2

.
0

 

Since ( ) ,lim Axy
cx

=−→
 we obtain, upon letting :−→ cx  

( ) ( )
( ) ( )

( )

∫
∫

∫ −
⋅








−⋅≥

−
δ

δ

B

y

c

xA

y xc

dttp
dwwAwh

zBzg
zdz

1

0

0

1
2

.
0

 

The integral on the left exists since .02 <δ  However, the first integral on the 

right does not exist, because ,11 −<δ  a contradiction to our assumption. The 

case 11 −=δ  is similar, since the integral again will not exist. This completes the 

proof. � 

We now present a few numerical examples to illustrate the theorems of this 
section. 

Example 2. Consider the IVP 

( ) ( ) ( ) ,511 2212 −− ′−−+=′′ yyyxy  

( ) ,10
10 =y    ( ) .20 =′y  
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Let 

( ) ( )∫ δ−=
A

y
dwwAwhP

0

1 ,1  

( ) ( )∫ δ−
=

B

y zBzg
zdzP

1 2
.2  

The Runge-Kutta fourth order method found 

,4462.0≈c   ( ) ,0.1=cy    ( ) .0843.2=′ cy  

So blowup occurs because ( ) .1lim ==−→
Axy

cx
 We also have ,3282.11 =P  

,75.242 =P  274.7==∗∗
uCC  from (3.22). Then (3.21) of Lemma 12 fails to hold 

so part (b) of Theorem 13 is not applicable here. ( ∗C  is much worse than ).∗∗C  

However, in the next two examples we shall see that Theorems 13 and 14 will 
predict a priori the nature of the blowup. 

Example 3. Consider the IVP 

( ) ( ) ( ) ,151 2212 −− ′−−+=′′ yyyxy  

( ) ,10
10 =y    ( ) .10

10 =′y  

Then Runge-Kutta fourth order method finds 

,3808.1≈c    ( ) ,4081.0=cy    ( ) ,99993.0=′ cy  

so blowup occurs because ( ) .1lim ==′−→
Bxy

cx
 This is verified by Theorem 13, 

part (a) since ,9049.141 =P  07898.02 =P  and ( ) 210 PPxP >  holds since 

( ) ( ) 100 == PxP  and .21 PP >  

Example 4. Consider the IVP 

( ) ( ) ( ) ,151 2232 −− ′−−+=′′ yyyxy  

( ) ,10
10 =y    ( ) .10

10 =′y  

Then Runge-Kutta finds ,4303.2≈c  ( ) ,5738.0=cy  and ( ) .99991.0=′ cy  Thus 
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blowup occurs because ( ) .1lim ==′→ Bxycx  Thus, Theorem 14 correctly predicts 

the blowup nature, since 1231 −≤−=δ  holds. 

If the integrals defining 1P  and 2P  are not easily found, then the following 

result, which does not require integration, may be useful. 

Theorem 15. Suppose p, h and g in IVP (3.20) are nondecreasing functions of 
x, y and ,y′  respectively. Suppose 01 1 <δ<−  and .02 <δ  Suppose there exists a 

real number θ with 0≥θ  and ,01 ≤δ+θ  21
By >  and 

( ) ( ) ( ) 101 10 yyAyB δ−−θ−=  

( ) ( ) ( ) ( ) ( ) .021 11000 ≥−−+ δδ+θ yBygyhxpyA  (3.26) 

Then blowup occurs because ( ) .lim Bxy
cx

=′−→
 

Proof. Let ( ) ( ) ,yB
yAxww ′−

−==
θ

 .0 cxx <≤  Then 

( ) ( ) ( )( ) ( ),321 xRxRxRxww ⋅+=′=′  

where 

( ) ( ) ( ) ( ),1
1 yyAyBxR ′−−θ′−= −θ  

( ) ( ) ( ) 212
δδ+θ ′−−= yByAphgxR  

and 

( ) ( ) .2
3

−′−= yBxR  

Since 10 δ−≤θ≤  and ,01 1 <δ<−  we have .01 ≤−θ  ,21
By >  ( )xR1  is 

nondecreasing in x. Clearly, ( )xR2  and ( )xR3  are also nondecreasing in x. By 

(3.21), ( ) .00 ≥′ xw  Since ( ) ,0≥′ xw  we have ( )xw  is nondecreasing in x. Since 

( ) ,00 ≥xw  ( )xw  never approaches zero as .−→ cx  Thus, blowup occurs in (3.20) 

because ( ) ,lim Bxy
cx

=′−→
 as claimed. � 
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