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Abstract

In this paper, we consider certain nonlinear differential equations with
fixed singularities in the dependent variables which cause derivative
blowup in the solution to the corresponding initial value problem. We are
interested in the location and nature of derivative blowups. Some
theorems and numerical examples are given.

1. Introduction

The nonlinear differential equation
y" = p(x)g(y) (1.1)

has been considered by many authors. The special case with g(y) = y", n real, is

called the Emden-Fowler case and many papers have been written concerning this
case. However, only a few authors were concerned with locations of movable

singularities to solutions of the corresponding initial value problem (IVP):
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Y =p(x)gy), ¥(xp)=yo. ¥'(x0)= 0. (1.2)

See, for example, [1], [3], [5], [6] and [8]. These authors assume that g(y) has no
singularity in variable y (such as the Emden-Fowler case). If, however, g(y) is

allowed to have a fixed singularity in y, then derivative blowup is possible without

blowup in the actual solution (y(x)) itself. In [7], Kawarada considered such a case,

although the nonlinear differential equation is of first order. It has the form

, 1
Y=g y(0)=yp, ¥y < A4 (1.3)

The behavior of this IVP, as pointed out in [7], sheds light on the behavior of the
1

solution to certain PDEs of importance. Clearly, (1.3) can be written y" = ﬁ s
A-y

as

" 1 !’ !
V'=———., ¥(0)=1y0, ¥(0)=y, (1.4)
(4-y)
where ) =(4—yo) L. Clearly, y"(x)—> o as x— ¢~ for some ¢>x, if yj>0.

We shall refer to this occurrence as ‘derivative blowup’ in the sequel. We wish to
obtain information on the location of ¢, a point at which a movable singularity
occurs to the solution. Many papers have been written on existence of blowup in
PDE:s, but no references will be given here. Our primary interest is on the nature and
location of the blowup.

2. A Second Order Autonomous Case

In this section, we shall obtain upper and lower bounds on c, the location of the
movable singularity of derivative blowup type. Consider the IVP:

v = p(x)g(y) (4= Pl y(xo) =0, ¥'(x0) = ¥p, (2.1)

with 8 < 0, 4 real, yo(4, y5)0, g(») is continuous in y, g(y) >0 on [y, =),
and p(x) is continuous and positive on [xg, o). Assume that there exists a ¢ > x,

with lim  _ »"(x) = 0. (This would be the case, for example, if there exists

Py > 0 with p(x) > Ry, x = xi.) We have the following main result:
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Theorem 1. Consider IVP (2.1) under the stated conditions above. Let

0;(x)= inf p(t)- inf g(w). (2.2)
y0<W<A

Xxo <t<x

Suppose & < —1. Then an upper bound for c is implicitly given by

IA \/ d+1 dy > ch/zéL(x) d. 2.3)
. y)5+1 %0

o V(A=) = (

If & = -1, then an upper bound for c is implicitly given by

IA dy > j :O,/sz(x) dx. (2.4)

vo Ln(4d = yg) - Ln(4 -y

Proof. We shall prove (2.3). The proof of (2.4) is similar and is omitted. Then
multiplication of (2.1) by " gives

Y1)y (1) = p(0) g(r(e) (4 - y(6)° y'(2).

Integrating with respect to ¢ from ¢ = xy to ¢ = x gives

SO =500 = [ p @) - 30y ()

20, [ 4=y y 0,
)
using (2.2) given

G 2 05 + 20, (4= 3Py 0t
X0
220, (4= 0

= 20,00 5 (4= 50! = (4= ()}

from which the result follows, upon letting x — ¢~ and integrating once more with

respect to x. This completes the proof of (2.3).
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Remark 1. Formulas for lower bounds for ¢ can be found in [6]. First, we need
the following inequality. See, [9, Chapter X], for example.

Gruss Inequality. Let f;(x) and f5>(x) be integrable on [a, b].

(@) If fi(x) and f5(x) are both nondecreasing or both nonincreasing on [a, b],

then
b b b
| @Az -0y [ A< | fax

(b) If f1(x) is nondecreasing and f5(x) is nonincreasing on [a, b], then

b b b
[ @AW < @-a [ Al x | pas

In the case, where g(y) is nondecreasing in y and p(x) is nondecreasing in x,

we present next an alternative upper bound for ¢, for § < —1.

Theorem 2. If, in addition to the conditions of Theorem 1, we also have that
p(x) is nondecreasing on [xg, ©) and g(y) is nondecreasing on [y, A], then an

upper bound for c is implicitly given by

4 o0+1 ¢~
dy > w)dw, 2.5
'[yo\/(/l—yo)8+1 —(4-y)°*! g -[XOQ( : 2
where
s pws
_ Xo
O) = |— 22

Proof. Proceeding as in the proof of (2.3),
” ! ’ 6
V') y'(u) = pu)g(y()) y'w)(4 - yw)°. (2.6)
Integration gives, using the Gruss inequality:

jt p(u)du ,

SOOP - 06712 20— [ G-y ywde @)
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Since g(y(¢)) > g(»q), we obtain

Y0 2 B0yl = 3™ = (4= y(0)']. 8

Integration of (2.8) produces (2.5). This completes the proof. [

Finally, we present an ‘obvious’ upper bound for ¢ in Theorem 3 below. We
shall also consider this upper bound in some numerical examples later.

Theorem 3. Under the conditions of Theorem 1, an upper-bound for c is

A-
3 = xg + 20 (2.9)
)

Proof. Since y" >0 on [xy, ¢), we have y'(x) increasing on [x(, ¢) and
Yo + ¥ +0(x — xq) < 4, which gives x < ¢3, as desired. O
Numerical examples demonstrate that (2.5) usually provides a better (smaller)

upper bounds than (2.3) and (2.9), if 6 < —1. However, (2.3) is more generally

applicable. One numerical example is presented below.

Example 1. Consider the IVP

Y =(1+x)1=y)2, yo=0.1 yh=2.0.

Then (2.3) gives an upper bound for ¢ of 0.9483, whereas (2.5) gives an upper
bound of 0.8234. Runge-Kutta fourth order method found ¢ = 0.33. Expression
(2.9) gives an upper bound of 0.4500 and is the best. However, for small values

of yy, (2.5) and (2.3) usually provide better upper bounds for ¢, if p(x) is

nondecreasing.
3. Competing Blowup Causes
Consider the IVP
V= p() (=1 (B =), y(x) =y, V(o) =0, (.1

where —o0 < y5 < 4, 0< yy < B. Suppose (3.1) has a solution with derivative

blowup at x = ¢, ie., limx_)c_ y"(x) = 0. 1t is clear that if p(x)> B >0 on

[xp, ), then there will be a derivative blowup, since y'(x) = yg > 0 and y" > 0.
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In Section 2, we assumed &, = 0. Here, we require 6; < 0 and 3, < 0. Allowing
8, to be nonzero and negative allows for a sort of ‘competition’ between the

(4- »)® term and the (B — 3')®2 term to be the ‘cause’ of the blowup of )" in
(3.1). No such ‘competition’ occurs in the autonomous case considered earlier in
Section 2. Does y" — o as x —> ¢~ because y > A as x > ¢~ or y' —> B as
x — ¢~ ? In addition, what can be said about the locations of ¢? We aim to answer,
at least partially, these questions next.

First, we consider the case p(x) =1, to gain some insight into the problem.
This case also allows us to solve for y(x) for some choices of 3; and &,. We also

consider a few special cases of an IVP containing powers of y and or )', i.e., the

IVP
Y =" (A=) P B - ) (3.2)

y(x0)=yg, V(xg)=y, >0, m>0, n>0, p>0, 0<yy <4, 0<y <B,

m, n integers.

Theorem 4. Consider IVP (3.2) with yy =y, =0, x3=0. Suppose 0<oa<1.
Then

(2) blowup occurs in y" at x = ¢ because y(x) > A as x —> ¢, if

m! Am+1—a n!BrH—Z—B

() 2-a)-(m+1-0a) 2-B)3-B)—(n+2-B)’

(b) blowup occurs in y" at x = ¢ because y'(x) = B as x > ¢, if

al B2 M A
C-BB-P)-n+2-p)  (-0)2-a)—-(m+i-0)

Proof. We prove the result for m = 3 and n = 2 to ease the laborious algebra
and the notational complexity, as well as for simplicity and without loss of
generality,

R G 0 &
(A-2)* (B-y')

y
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7
gives
y”(B _ yr)2 y3 ’
= V. (3.3)
P! (4-y)*
Integration of the L.H.S. of (3.3) gives
J B=yY o I B2 - 2By + ()
P! P!
_ B P 2By P (y)4 P
R T i 1-p (3.9

Integration of the R.H.S. of (3.4) gives, upon making the substitution u = 4 — y,

3 — )’y
J.(Ai}y)a y’:_J. ¢ u“)

I(A3 S 3P 4 3P )y (3.5)
Equating (3.4) and (3.5) up to a constant of integration, ¢, we obtain
AV n3— 4
B ()P 2By P ()P

2-P 3-B 4-P

A3(A y)l o 3A2(A _ y)Z—OL
l-a 2-a

Y O ) eV ) ke
3-a 4-a

=c. (3.6)

Using y(0) = »'(0) = 0, we obtain

6A4—(x

CTl-)C-a)B-0{@E-a)

Thus

B P 280 F )P Ay
2-B 3-B 4-B -«
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C3AA- )T 3AA- )T (A=)
2-a 3-a 4-aqa

A4—OL
T -2 -0)B-w)@E-a) 3.7)

Suppose y'(x) = B as x = ¢~ with y(c”) < A. Then

4-B 4B paP B, N-a
B 2B BYP  A(4-y)

2B 3-p 4-PB -«
3 (A=) 34U (A=)
2-a 3-a 4—-q
6A4—0L

T—)2-0)B-a)@d-a)

But then

A3(A _ )1—(1 3A2(A— )2—0( 3A(A— )3—0( (A— )4—(1
T Tt e o7 e
~ 644 - 24P
C(1-)2-0)B-a)(d-a) (2-m)B-PB)(4-B)

Thus,

24P - 644
2-BpB-P@-p " (1-a)2-a)B-a)(4-0a)

So part (a) is proven.
Now suppose y(x) — 4 as x = ¢~ with y'(c”) < B. Then

B*P apth  piP
2-B 3-p 4-P

B )P 2P ()P
2-B 3-B  4-p

>

B 644
T (l-a)2-a)B3-a)(4-a)
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Thus

644 2B* B
—)C-a)G-a)(-0) - C-PG-PE-p)

So (b) is proven. 0

Theorem 5. Consider the IVP

"_ ym (y!)n 38
(A4-y)* (B-yP’ G

y

where A, B> 0, a>1, B<1, mandn are positive integers. Then limx_w_ y"(x)

=00 occurs because lim _ _ y'(x) = B
xX—>c

Proof. Again, for simplicity but without loss of generality, let m = B = 2. Then

Y= y2 0"
(A=) (B-yP
which gives
(B - y')z "_ yzyl . (39)
oy (4-p)*

Integrating both sides of (3.9), we obtain

(B-y'Yy" B’ 2n_ 2B 3 1 o a4
J' e = (- (g . (3.10)
Also,
2.1 2 3o
yy A Jea, 24, 9o (4-y)

(4-p)* l1-o
Equating (3.10) and (3.11) up to an arbitrary constant, ¢, of integration, we have

BZ
2

_ 2B e, )Y
_3—n(y) * 4—n
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4 o | 24 1 (A—y)*
:_l—(x,(A_y) a+m(z4—y) a—%-}-c. (312)

Since o > 1, lim _ _ y(x) = A is not compatible with (3.12), a contradiction.

Thus, limx_)c_ y'(x) = B. This completes the proof. 0

Theorem 6. Consider the IVP
" _ 1 ) 1
(4-y)* (B-y)P

A>0, B>0, a=>1, B>0, y;>0. Then derivative blowup occurs because

y y(x0) = yo.  ¥'(x0) = 15 (3.13)
lim (x) = B.

Proof. Write

V(B -yPy=—L .
(4-y)

Integration of both sides gives, eventually,

By g, By P (4-y)e
g By e = (3.14)
Thus, since a. > 1, lim  _ y(x) = A4 is a contradiction to (3.14). 0

Theorem 7. Consider the IVP
" _ 1 ) 1
(4-»* B-yF

where A, B, o and B are real with B >0, y(0)=0, y'(0)=0. Then blowup

¥

occurs at x = ¢, where lim ___ _ y'(x) = B provided

l-oa B+2

1-a
S SV (3

(3.15)

Proof. Write

V(B -y Py = —L
(4-»)*
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But
I(B e oy Jpe U G RS
B+1 B+2
Then
B BTN ¥ B S T N, S S 2RIy B A
g1 BV g BV Ay =G
where
_ B o4 L p+2 | S
C B+1B +B+2B +—1_aA .
Thus,

B ,
g BT

_ 1 e (11 B+2
_l—ocA (B+1 B+2)B :

Now suppose ' = B and y < A. Then

, 1 -
B yP a4y

1 o _ 1 g B2
SEerrs RO M et v Y (o3

which eventually gives
1
y=Ad- g (- a)BB+2 -
B+1DP+2)

Thus
(1-a)BP*2

ST o gl
B+1DE+2)
Now suppose y = 4 and 0 < ' < B. Then

_B_
B+1

L

0>- B+2

(B _ y!)ﬁ"‘l i B(B _ y')ﬁ+2

LAl—OC _—BB+2
1-a B+1)P+2)

11
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(1- o)BP*?
B+DE+2)’

giving 4'7% <

as desired. This completes the proof.

We now consider a case in which ¢, the blowup point, can be explicitly found as

a definite integral.

Theorem 8. Consider the IVP

’

S y
(A4-)* (B-y)

y(0)=0, y(0)=0, 4, B,0,B>0 and 0 < o< 1. Then

y

(a) blowup occurs because y(x) — A as x —> ¢, if
1-o)B*! > B+1)4¢
and
(b) blowup occurs because y'(x) > B as x —> ¢, if
1-a)BP* > B+1)4""%

Proof. Write

np_ oV
y'(B-Y) ST

Integration gives

rﬁ+1
np _ !B__(B_y)
Thus
LBy -
B+1 l-a ’
where
Al—a BB-H
“1-a B+l

Now suppose y(x) = 4 as x — ¢~. Then

(3.16)

(3.17)

(3.18)
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(B_yr)ﬁ+l - BB+1 ~ Al—(x
B+1 B+l 1-«a

or

1

v _ o (Bl BH1 1-a B+l
v =B (B o4 )

So (1-0)B**!' > (B+1) 4™ implies y’'<B. Conversely, suppose lim

= B. Then

(A_y)l—(x ~ Al—(x ~ BB+1
l-aa  1-a PB+1

or

— lal(XB+11(x
y—A(A BlB)

So (1-a)BP*! < (B+1)4""% implies lim  _ y(x) < 4.
xX—>cC

13

V)

O

Corollary 9. Consider the IVP of Theorem 8. If the IVP blows up because

lirnx_)c_ y(x) = A, then the blowup point is explicitly given by

A4
C=I dy :

0 1
B+l d—a | Bl BA1i—a [(B+D)
B [ Ly g Bl

1-

Proof. From the proof of Theorem 8§,

(B_y!)ﬁ+1 ~ (A_y)l—(l . Bﬁ+1 - A]—OL
B+1 —  1-« B+1 1-a

Then

1
yrzB_|:B+l(A_y)1—(l+BB+l B+1Al (x:lﬁ+1
l-a '

So

(3.19)
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c C ’
C= J. dx = J. ydx 1
0 0 —
[B=1,, o pp+l_ BH1 1o |+l
B [I_Q(A D Sty
from which (3.19) follows. This completes the proof. 0

Corollary 10. If blowup occurs in (3.16) because lim _ _ y'(x) = B, then

V
0
B -

B-1,, Jl-a B+l B+1 1-o|(B+D)
Pty g B

1-a

where

1
_ | e _1—0o gt fi-a
oa-[ae o T

Proof. From the previous discussion, we see that when y’ = B, then

1

K »
since
c-[a-] V()
1
0 0 —
Bl yapghit _BH1 gi-a B
B [I_Q(A s Bl g

which proves the desired result. O

We shall now consider nonconstant choices for p(x) in (3.1) and a more

general form for the IVP than was considered in earlier sections.

Consider the IVP:
¥ = p(x)h(») () (4= »)°1 (B - »)*2,
y(xo) = yo,  V(xg) =y, -1<8 <0, 8 <0,
Vo< A, v <B, B>0. (3.20)

Assume that p, g and & are positive functions of with p, g and /4 nondecreasing on
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[x9, c] and the p, g and h are continuously differentiable on [xg, ¢). Clearly,
blowup in either y or y" will produce blowup in y". In order to prove theorems

concerning the nature of the blowup, we will need an upper bound on ¢, where either

lim y(x)=4 or lim y'(x)=B.

X—>cC xX—>cC
The case where 8; = 8, =0 has been considered in [10], but apparently no

extensions/generalizations have been considered.
Lemma 11. In (3.20), an upper bound on Cis C* = max(C), C,), where

A-
C1=Xo+ yO’
34

C2=X0+B_yl,
Y2

and
v2 = p(xo)h(y0) &) (4 - ) (B - »)*2.

Proof. Clearly, for xj) < x < ¢,

A2 y(x) 2 yo + yi(x - xp).

. . A-
For x = ¢, solving for ¢, we obtain C = C} = xy + 5 20 Also, B > y'(x) = y;
1

+ yo(x — xp), where y, = y"(xg), since y(3)(x) >0, y" being a product of five

nonnegative nondecreasing differentiable functions of x. 0

Lemma 12. Consider IVP (3.20) and the conditions given there. Suppose

X 4 w —w)ldw < BZ;JZ
p(xp) yoh( ) (4 - w)ld jyl T (3.21)

holds. Then an upper bound for ¢ denoted by C** is implicitly given by

J’BZ;'IZ > UA;,(W)(A - w)&dw]. M , (3.22)

neglB-2%2 Uy € =X

provided (3.22) has at least one solution.
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Proof. Suppose first that lim _ _ y(x) = A. Then (3.20) gives

J. : g(y'(y,’)()tg ;’Et)y(?(tt))az = I: p(OR(()) - (4 - y(©)> y'(t) .

Letting w = y(x) and z = y'(x) and using the Gruss inequality,

) ' (¢)dt
O »(x) s ) LO”
— = > h(w) (4 - w)ldw |- | =20 |, 3.23
e [ e o B

Now let x — ¢~ . Then

J‘B zdz > J‘y'(x) zdz
ng@)B-22 In glz)(B-2)%

\Y

(3.24)

J I:O p(t)dt

4 5
( h(w) (4 = w))ldw .
0

b

If limx_)c_ y'(x) = B is the cause of the blowup instead, then (3.23) gives instead

as x > c¢
‘ (t)dt
. - —w)d ) LL
I w g(z)(B - 2)® Z(J'yo h(w) (4 — w)°ldw e | (3.25)

Thus, an upper bound for ¢ is the larger of the two solutions (largest values of c¢)
satisfying both (3.22) and (3.25). Clearly, any solution of (3.22) also satisfies (3.25),
since y(c) < 4. Thus, (3.22) implicitly defines an upper bound for ¢, regardless of

the nature of the blowup, provided (3.22) has at least one solution. But this is the

‘ p(t)dt

case by assumption (3.21), since p(xg) < xg—x. This completes the proof. [1
-0
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Theorem 13. For IVP (3.20),

(a) if p(Xo)J;: h(w) (4 - w)ldw > JB zdz

— 5 then blowup occurs
N g(z)- (B - 2)™

because lim _ _y (x) = B.

B zdz
M g(z)-(B-2)%2

bound for c, then blowup occurs because limx_)c_ y(x) = A. (We may use either

A
(b) i ple, )'[yo h(w)(A—w)*2dw < I where ¢, is any upper

c, = c" from Lemma 11 or ¢, = C** from Lemma 12.)

Proof. To prove (a), suppose lim _ _ y'(x) # B. From (3.20), we have

RO .
'[XO g(y'([)) (B _ yv(t))Bz dt = J‘xop(t)h(y(t)) (A Y(l)) y(t)dt.

Letting z = ', w = y, we get, using the Gruss inequality

j y'(X)L N (j y(x) How) (A — ) dw) . M
0

>
n o g(2)(B-2) *T X

which gives

jBLz Uy(X)h(w)~(A—w)81de~ M .

v g(z)(B - 2)™ Y0 =%
Since lim y(x) = 4, we have, by continuity, for xy < x < ¢:

xp(t)dt
IBL > ( Ah(w)(A - w)slde- Io_ _
Yo

» g(z) (B —2)” *T X

Now p(¢) is nondecreasing, which gives
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X . .
r(x) = —%—— is nondecreasing also.
=

Thus, for xy < x < ¢, we have

J‘BLZ[IAh(w)(A—w)SIdw) M

n g(z)(B - z)® 0 c—Xxp

> [ j ! h(w) (4 — w)! dw] - p(xp),

Yo
a contradiction to our assumption. This proves (a).

To prove (b), suppose that lim _ _ y(x) # A. Then

P .
'[XO g(y()) (B - y'(1)™ d"LOP(f)h(y(t))(A 20O (1) dt

which gives

y(x)z—dz . ¥(x) . e
Jyl 2(2)(B - 2)%2 < pl )Iyo h(w)(4—-w)2d

A
< ple,) I h(w) (4 = w)®2 dw.
Yo
Let x = ¢~. Then

A ad [ g
Iyo 2(z)(B - 2)® < pl u)jyoh( ) (A4 — w)2dw,

a contradiction. This proves (b).

0

Theorem 14. Suppose 8, < —1 instead in IVP (3.20). Then blowup occurs

lim (x) = B.

Proof. First, assume §; < —1 and proceed as in the proof of Theorem 13.
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Suppose limx_)c_ y'(x) # B. Since both y and y' are nondecreasing, the Gruss

inequality gives, for xy < x < ¢

‘[: g(y’(t)?( t(szi( ?}'(1))52 dt = J: POA((©) (4= y(O) y' () dt.

So
X
p(t)dt

Iy'(*);fzd, > [ | " ) (- W)Sldzj- IO— :

n o g(z)(B-2)> 0 * =%

Since B > y'(x) and the integrand is positive, we get

j‘xp(t)dt

X0

Pl (Y e wp )
fng&XB_Zfzz(jm o) (4 = )P || 20—

Since lim _ _ y(x) = A, we obtain, upon letting x — ¢ :

" p)di
J.Bz;dz > ( Ah(w)-(A - W)SIdW).Lo_

ng)B-2% Wy ¢ =X

The integral on the left exists since 8, < 0. However, the first integral on the
right does not exist, because J&; < —1, a contradiction to our assumption. The
case 8y = —1 is similar, since the integral again will not exist. This completes the

proof. [

We now present a few numerical examples to illustrate the theorems of this
section.

Example 2. Consider the IVP
V= () (=) P - )

W0)= 35, Y(0)=2
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Let

A= yAh(w)(A— W),

_ B zdz
e e

The Runge-Kutta fourth order method found
c~ 04462, y(c)=1.0, '(c)=2.0843.
So blowup occurs because lim  _ y(x) =4 =1. We also have B =1.3282,

P, =24.75, C*™ = C, = 7.274 from (3.22). Then (3.21) of Lemma 12 fails to hold

so part (b) of Theorem 13 is not applicable here. (C* is much worse than C**.)

However, in the next two examples we shall see that Theorems 13 and 14 will
predict a priori the nature of the blowup.

Example 3. Consider the IVP
V=)= ) -7
NS
Then Runge-Kutta fourth order method finds
c~ 13808, y(c)=0.4081, y'(c)=0.99993,

so blowup occurs because lim | _ ¥'(x) = B = 1. This is verified by Theorem 13,

part (a) since P =14.9049, P, =0.07898 and P(xy)B > P, holds since
P(XO):P(O):I andPl >P2.

Example 4. Consider the [VP

¥ = 2y -y P - )2,

»—l_
(=]

¥0)= 75, ¥(0) =

Then Runge-Kutta finds ¢ ~ 2.4303, y(c) = 0.5738, and y'(c) = 0.99991. Thus



ON THE LOCATION AND NATURE OF DERIVATIVE BLOWUPS ... 21

blowup occurs because lim,_, . y'(x) = B = 1. Thus, Theorem 14 correctly predicts

the blowup nature, since 8; = —3/2 < -1 holds.

If the integrals defining A and P, are not easily found, then the following

result, which does not require integration, may be useful.

Theorem 15. Suppose p, h and g in IVP (3.20) are nondecreasing functions of
x,y and y', respectively. Suppose —1 < 8; < 0 and 8, < 0. Suppose there exists a

real number O with © 2 0 and 6+ 3, <0, y; > g and

0= (=0)(B - y)(4- )y

+ (4= y0)"* 0 pxg) h(yo) g(3) (B — 31)%2 2 0. (3.26)

Then blowup occurs because lim _ _ y'(x) = B.

0
Proof. Let w = w(x) = %, X9 £ x < c. Then

w' = w(x) = (R(x) + Ry(x)) - Rs(x),
where
Ri(x) = (B - y)0(4 - y)" ' (=),
Ry(x) = phg(4 - y)**%1(B - )™
and
Ry(x) = (B - y)2.
Since 0<0<-8 and -1<8 <0, we have 6-1<0. >§,

nondecreasing in x. Clearly, R,(x) and R;(x) are also nondecreasing in x. By

Ri(x) is

(3.21), w'(xg) = 0. Since w'(x) = 0, we have w(x) is nondecreasing in x. Since

w(xp) = 0, w(x) never approaches zero as x — ¢~ . Thus, blowup occurs in (3.20)

because lim  _ y'(x) = B, as claimed. 0
X—>cC
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