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Abstract

Here we propose six open problems in dynamical systems and chaos theory. The first

open problem is concern with rigorous proof of a collection of quadratic ODE systems being

non-chaotic. The second problem is for a universal definition of non-chaotic solutions. The

third problem is about the number of systems that can have chaotic solutions when the

right hand sides are polynomials. The fourth problem is: topologically how complicated

a 2D invariant manifold has to be to contain and/or attract chaotic solutions. The fifth

open problem is to show that a specific system has a solution with a fractal demension on

one of the Poincaré sections. The sixth problem is on rigorous proof of existence of chaotic

solutions of some sysyems which exhibit chaos in numerical solutions.

1 First Open Problem

Several years ago Zhang and Heidel ( [10] (1999) and [23] (1997)) showed that (almost) all

dissipative and conservative three dimensional autonomous quadratic systems of ordinary

differential equations with at most four terms on the right hand sides of the equations are

non-chaotic. The sole exception is the system





x′ = y2 − z2

y′ = x

z′ = y

(1.1)

which does however appear numerically to have a single unstable periodic solution and

is therefore conjectured to also be non-chaotic. The above system is equivalent to the third

order or jerk equation z′′′ = z′2 − z2. Very recently Malasoma [14] has shown that every jerk

equation z′′′ = j(z, z′, z′′) where j is a quadratic polynomial with at most two terms, with
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the sole exception of (1.1), is non-chaotic. Thus carefully determining the behavior of solu-

tions of equation (1.1) becomes an interesting problem instead of just being a passing curiosity.

Recently Heidel and Zhang ( [11] (2008) and [25]) showed that dissipative and conservative

three dimensional autonomous quadratic systems of ordinary differential equations with five

terms and one nonlinear term on the right hand sides of the equations have one sysyem and

four systems respectively that exhibit chaos. Most systems in [11] (2008) and [25] are proved

to be non-chaotic. The remaining 20 systems which are listed here are proved to be non-

chaotic when the parameter in each of the systems is in certain range. Extensive computer

simulations indicate that there are no chaotic attractors in these systems. We conjecture that

they are non-choatic systems.

Dissipative systems:





x′ = ±x + y + Az

y′ = xz

z′ = y

(1.2)





x′ = y2 ± x

y′ = x + Az

z′ = y

(1.3)





x′ = y2 + Az

y′ = x± y

z′ = x

(1.4)





x′ = y2 + Az

y′ = ±y + z

z′ = x

(1.5)





x′ = z2 ± x

y′ = x + Az

z′ = y

(1.6)





x′ = yz ± x

y′ = x + Az

z′ = y

(1.7)
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



x′ = yz + Ay

y′ = ±y + z

z′ = x

(1.8)





x′ = yz + Az

y′ = x± y

z′ = x

(1.9)





x′ = yz + Az

y′ = ±y + z

z′ = x

(1.10)





x′ = ±x + z

y′ = Ay + z

z′ = xy

(1.11)





x′ = ±x + y + A

y′ = xz

z′ = y

(1.12)





x′ = ±x + z + A

y′ = xz

z′ = y

(1.13)





x′ = yz + A

y′ = x± y

z′ = x

(1.14)





x′ = yz + A

y′ = ±y + z

z′ = x

(1.15)





x′ = yz ± x

y′ = z + A

z′ = x

(1.16)
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



x′ = ±x + z

y′ = x + A

z′ = xy

(1.17)





x′ = ±x + z

y′ = z + A

z′ = xy

(1.18)

conservative systems:





x′ = yz + Ay A < 0, for +, A > 0, for −
y′ = ±x + z

z′ = x

(1.19)





x′ = y + z

y′ = −x + Az

z′ = xy

(1.20)





x′ = yz + A A < 0

y′ = x± z

z′ = x

(1.21)

2 Second Open Problem

Ever since the chaotic attractor in the Lorenz equations ([13], 1963) was discovered, chaos the-

ory has become a popular branch in dynamical systems which attracts many mathematicans

in the area. The central problems in chaos theory have been the definition, the mathemati-

cal properties, and analytic proof of existence of chaotic solutions, and discovery of possible

chaotic systems and possible geometric patterns of chaos by numerical simulations. It is well

known that among the central problems giving a universal definition of chaos in mathematical

sense for the solutions of dynamical systems is difficult because of the complexity of chaotic

solutions. There are numerous definitions of chaos. Each definition emphasizes certain as-

pect(s) of a solution. As definitions of one phrase or terminology in Mathematics, at least

mathematical equivalence or relation between each pair of defintions need to be investigated.

Therefore none of them can be a general definition at this point. In [1] (1996) Brown and

Chua listed nine definitions of chaos.

Here we list some definitions of Chaos:
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1. It has a horseshoe map (Ozorio de Almeida, 1988)

2. It has positive Kolmogorov entropy (Schuster, 1988)

3. It has a positive topological entropy (Katok, 1980)

4. It has a positive Lyapunouv exponent (Gulick, 1992)

5. Its sequences have positive algorithmic complexity (Ford, 1986)

6. It has a dense set of periodic orbits, is topologically transitive, and has sensiive dependence

on initial conditions (Devaney, 1989)

7. It has sensitive dependence on initial conditions and is topologically transitive (Wiggins,

1992)

8. The power spectral density of related time-series has a component which is absolutely

continuous with respect to Lesbegue measure (Bergé et al, 1984)

9. A statistically oriented definition of Shil’nikov (1994)

10. It has an attractor with fractal dimension.

Giving a universal definition of non-chaotic solutions is another way to define chaotic so-

lutions. It is known that it is also very difficult. In [11](2007) we gave a conjecture on the

criterion recognizing non-chaotic behavior:

Consider the autonomous system

x′ = f(x), x ∈ RN , t ∈ [0, ∞) (2.1)

where ′ =
d

dt
, f : RN → RN is continuous. Let x(0) = x0, and xj , x0j and fj , j = 1, 2, ..., N

be the components of x, x0 and f respectively.

Criterion 1 An N dimensional system (2.1) with no cluster points in the set of isolated

fixed points has no bounded chaos if for any of its solutions there are N − 2 components

xnk
(t),nk ∈ 1, ..., N and k = 1, ..., N − 2, such that for each of the N − 2 components only the

following cases can happen:

as t →∞ or t → −∞,

(i) It tends to a finite limit.

(ii) It is a periodic or asymptotic to a periodic function.

(iii) It is unbounded.

there exists an ω, |ω| < ∞, such that,

(iv) It is unbounded, t → ω,

(v) It is bounded but dose not have a limit, t → ω,

(vi) It is bounded and has a limit, t → ω, but not defined at t = ω.

When N = 3 this criterion has been widely accepted. For N > 3 it still needs verification.
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Even if this criterion is very useful, it misses countless types of nonchaotic solutions. This

open problem is to give a universal definition of nonchaotic solutions.

3 Third Open Problem

It is well known that three-dimensional quadratic autonomous systems are the simplest type

of ordinary differential equations in which it is possible to exhibit chaotic behavior. Lorenz

equations ([13], 1963) and Rössler system ([15], 1976) both with seven terms on the right-hand

side do exhibit chaos for certain parameter values. By computer simulation in [18] (1994),

[19] (1997), [20] (2000), and [21] (2000) J. C. Sprott found numerous cases of chaos in systems

with five or six terms on the right-hand side. Heidel and Zhang showed in [23] (1997) and

[10] (1999) that three-dimensional quadratic autonomous conservative and dissipative systems

with four terms on the right hand side have no chaos. So among three-dimensional quadratic

autonomous conservative and dissipative systems chaotic systems must have at least five terms

on the right hand side. In [11] (2007) the authors proved a general theorem in determining

a non-chaotic solution and showed that among all three-dimensional quadratic autonomous

conservative systems with five terms on the right hand side and one nonlinear term there is

at most one of them that can have chaotic solutions. In [25] the authors show that there are

only four of them that exhibit chaos.

Let P (x) =
∑
|α|6k Aαxα be a polynomial, where x ∈ RN and N > 1 is an integer,

α = (α1, ..., αN ) and each of the αi is a nonnegative integer, xα = xα1
1 ...xαN

N , the order of the

multi-index α is denoted by |α| = α1 + ...+αN and Aα ∈ R. Consider the autonomous system

x′i = Pi(x) =
∑

|αi|6k

Aαixαi
, i = 1, 2, ..., N (3.1)

1. For a given k and N = 3 after eliminating equivalent systems under the scalar trans-

formations

x1 = aX1, x2 = bX2, x3 = cX3, t = δτ

where a, b, c and δ are nonzero real numbers and third-order permutation groups Pg, where

Pg has six elements

P1 =




1 0 0

0 1 0

0 0 1


 P2 =




0 1 0

1 0 0

0 0 1


 P3 =




0 0 1

0 1 0

1 0 0




P4 =




1 0 0

0 0 1

0 1 0


 P5 =




0 1 0

0 0 1

1 0 0


 P6 =




0 0 1

1 0 0

0 1 0




which systems in the form of (3.1) have chaotic solutions and how many systems are chaotic?

Among those chaotic systems how many of them are conservative, and how many of them are

dissipative?
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2. For any given integer N > 3 and k after eliminating equivalent systems under the scalar

transformations

x1 = a1X1, x2 = a2X2, ..., xn = anXn, t = δτ

and nth-order permutation groups Pg, where Pg has m = n! elements

P1 =




1 0 . . . 0

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1




P2 =




0 1 . . . 0

0 0 . . . 1
...

...
. . .

...

1 0 . . . 0




... Pm =




0 . . . 0 1

0 . . . 1 0
...

. . .
...

...

1 . . . 0 0




which systems in the form of (3.1) have chaotic solutions and how many systems are chaotic?

Among those chaotic systems how many of them are conservative, and how many of them are

dissipative?

3. More generally for a given N ≥ 3 after eliminating equivalent systems under affine

transformations

x′ = Ay + b, t = δτ, ′ =
d

dt

where

x =




x1

x2

...

xn




y =




y1

y2

...

yn




A =




a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann




b =




b1

b2

...

bn




which systems in the form of (3.1) have chaotic solutions and how many systems are chaotic?

Among those chaotic systems how many of them are conservative, and how many of them are

dissipative?

4. A related open problem is what types of chaotic attractors can the systems (3.1) have?

Two examples of ”types” of attractors are Lorenz attractor and Rössler attractor.

4 Fouth Open Problem

Consider x′ = f(x), x ∈ R3, where f(x) are polynomials or f ∈ Cn(R3), where n is a

nonnegative integer. If a solution of the system is asymptotic to a 2D Cr, r ≥ 1 an integer,

invariant manifold, can the solution be chaotic ? If such chaotic solutions exists, topologically

how complicated the 2D manifold has to be ?

What we mean by a manifold being complicated topologically is that for example a torus

can be considered more complicated than a plane.

In particular, can a quadratic differential equation system on a torus exhibit chaos? In

general can a solution of a system on a torus be more complicated than a filling curve ?
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The following four figures are from [11]. Figure 1 shows an orbit of system (4.1). It appears

that the solution approaches a 2D surface which is topologically more complicated than a torus.

From figure 2 and figure 4 even if they are not Poincaré section of one solution, one can still

tell from them that there are solutions in both cases that approach very complicated surfaces.

x′ = y2 − z + A , y′ = z, z′ = x (4.1)

x′ = y, y′ = −x + yz, z′ = 1− y2 (4.2)

-0.2

-0.1

0

0.1

0.2

0.3

Z

-0.2 -0.1 0 0.1 0.2 0.3
X

Figure 1: (4.1)’s “chaotic” orbit, x(0) =

0.0428571, y(0) = −0.105714,

z(0) = −0.102325, A = −0.0125

-0.2

-0.1

0

0.1

0.2

0.3

Z

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Y

Figure 2: (4.1)’s Poincaré section at x = 0

with 10 different initial conditions

0.01 6 x 6 0.12, y = −0.105714,

z = −0.102325 and A = −0.0125

5 Fifth Open Problem

From figure 2, and figure 3 it appears that system (4.1) has at least one solution such that it

intersects the Poincaré section x = 0 into a set with ”thickness”. Similarly from figure 4, it

appears that system (4.2) has at least one solution that intersects the Poincaré section z = 0

into a set also with ”thickness”. This open problem is to show that these sets have fractal

dimensions. A further question is to show that this system is chaotic.

6 Sixth Open Problem

Chaotic solutions were proved to exists in some famous systems such as Lorenz equations

([8](1994), [9]), and Chua’s circuit with peice-wise nonlinearity ([3], 1986). It is well known

that rigorous proof of existence of chaotic solutions in a dynamical system is generally very

difficult. In a Chua’s curciut with smooth nonlinearity, there appears not only butterfly-like
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-0.2

-0.1

0

0.1

0.2

0.3

Z

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Y

Figure 3: (4.1)’s Poincaré section at x = 0

with initial condition x(0) = 0.01,

y(0) = −0.105714, z(0) = −0.102325,

A = −0.0125

-4

-2

0

2

4

-4 -2 0 2 4

Figure 4: Poincaré section of (4.2) at z = 0

with 37 different initial conditions

−2.5 6 x(0) 6 2.5, 1.25 6 y(0) 6 5.25,

z(0) = 0

chaotic attractors, but also ”small” chaotic attractor around equilibria for certain parameter

regime. It appears that the ”small” chaotic attractor is of Rossler-type. There has been no

one who proved the existence of such small chaotic attractors.

Sprott discovered numerous ODE systems having chaos ([18](1994)). Among them the

following four systems are later studied in our work on three dimensional dissipative au-

tonomous quadratic systems with five terms with one nonlinear term on the right hand sides

of the equations. The attractor are all Rossler type. The open problems are to prove rigorously

the existence of chaotic solutions in the systems:





x′ = y2 − x + Az,

y′ = x

z′ = y

(6.1)





x′ = yz − x + Ay,

y′ = z

z′ = x

(6.2)





x′ = yz + Az ,

y′ = x− y

z′ = y

(6.3)
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



x′ = y2 + Az,

y′ = x− y

z′ = y

(6.4)

Other systems that Sprott discovered chaotic solutions include the following systems. The

parameter values when the system exhibit chaos are given in [18] (Sprott, 1994). Again we

are seeking for rigorous proof of the existence of chaotic solutions.





x′ = yz

y′ = x−Ay, A = 1

z′ = 1− xy

(6.5)





x′ = yz

y′ = x−Ay, A = 1

z′ = 1− x2

(6.6)





x′ = −y

y′ = x + z

z′ = xz + Ay2, A = 3

(6.7)





x′ = yz

y′ = x2 − y, A = 4

z′ = 1−Ax

(6.8)





x′ = y + z

y′ = −x + Ay, A = 0.5, B = 1

z′ = x2 −Bz

(6.9)





x′ = Ax + z

y′ = xz −By, A = 0.4, B = 1

z′ = −x + y

(6.10)





x′ = −y + z2

y′ = x + Ay, A = 0.5, B = 1

z′ = x−Bz

(6.11)





x′ = Ay

y′ = x + z, A = −0.2, B = 1

z′ = x + y2 −Bz

(6.12)
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



x′ = Az

y′ = By + z, A = 2, B = −2

z′ = −x + y + y2

(6.13)





x′ = xy −Az

y′ = x− y, A = 1, B = 0.3

z′ = x + Bz

(6.14)





x′ = y + Az

y′ = Bx2 − y, A = 3.9, B = 0.9

z′ = 1− x

(6.15)





x′ = −z

y′ = −x2 − y, A = 1.7, B = 1

z′ = A(1 + x) + y

(6.16)





x′ = Ay

y′ = x + z2, A = −2, B = −2

z′ = 1 + y + Bz

(6.17)





x′ = y

y′ = x−Az, A = 1, B = 2.7

z′ = x + xz + By

(6.18)





x′ = Ay + z

y′ = Bx + y2, A = 2.7, B = −1

z′ = x + y

(6.19)





x′ = −z

y′ = x− y, A = 3.1, B = 0.5

z′ = Ax + y2 + Bz

(6.20)





x′ = A− y

y′ = B + z, A = 0.9, B = 0.4

z′ = xy − z

(6.21)





x′ = −x + Ay

y′ = Bx + z2, A = −4, B = 1

z′ = 1 + x

(6.22)
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