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Non-chaotic behaviour in three-dimensional quadratic
systems
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Abstract. It is shown that three-dimensional dissipative quadratic systems of ordinary
differential equations with a total of four terms on the right-hand side of the equations do
not exhibit chaos. This complements recent work of Sprott who has given many examples of
chaotic quadratic systems with as few as five terms on the right-hand side of the equations.
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1. Introduction

How complicated must an ordinary differential equation be in order to exhibit chaotic
behaviour? The Poincaré–Bendixson theorem shows that chaos does not exist in a two-
dimensional autonomous system (or second-order equation) [9]. The three-dimensional
Lorenz equations [4],

ẋ = −σx + σy
ẏ = rx − xz − y
ż = xy − bz

do exhibit chaos for certain values of the parametersσ , b, and r. So does the Rossler
system [6],

ẋ = −y − z
ẏ = x + ay
ż = b + xz − cz

again for certain parameter values. Likewise for a number of other three-dimensional
systems [2, 3].

Very interesting investigations have recently been carried out by Sprott [7, 8] raising the
question as to whether a total of seven terms on the right-hand side of a three-dimensional
system is really necessary. Sprott first performed a computer search on the entire class of
three-dimensional quadratic systems and found numerous cases of chaos in systems with
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six terms on the right-hand side with only one nonlinear (quadratic) term. He also found
numerous examples of chaotic five-term systems with two nonlinear terms. In a follow-
up study Sprott examined five-term systems with only one nonlinear term and found two
examples of chaotic systems. No chaotic systems were found with either just three or four
terms with no limit on the number of (quadratic) nonlinearities.

Sprott’s work raises an obvious question: What is the behaviour of solutions of three-
dimensional systems when there are less than five terms? If such systems cannot exhibit
chaos, why is this so? The purpose of this paper is to examine these questions. We are able
to resolve the issue for all dissipative four-term equations (three-term equations are trivial
in this respect). Our methods may extend to include all four-term equations which are not
necessarily dissipative. The increase in complexity is thereby non-trivial and is discussed
in section 7. Thus, we restrict our attention to dissipative systems partly for convenience
but also because it is dissipative systems which are most likely to arise in applications.
Also it is for dissipative systems where chaos, when it exists, has one of its most graphic
manifestations, the strange attractor.

It turns out that the most complicated four-term three-dimensional dissipative systems
(which are neither integrable nor reducible to two-dimensional systems) exhibit only two
different types of behaviour. Solutions are either asymptotic to a two-dimensional surface or
they have a limit (that is, converge to an equilibrium point) which may be infinite. Neither
type of behaviour is chaotic. This paper is largely based on the thesis of Zhang [10] which
also contains other approaches which will be developed in future work.

The plan of the paper is as follows. After quickly disposing of three-term systems,
we take up in turn, four-term equations with either one, two, or three nonlinear terms, all
without constant terms. Systems with four nonlinear terms cannot be dissipative. Then
equations with constant terms are considered in a separate section.

In each section we begin by listing all possible equations in the appropriate category
which are not permutationally equivalent to each other, nor which reduce to two-dimensional
systems or linear systems. These lists of equations were obtained by the ‘brute force’
method of listing all possible combinations of variables in a systematic way and then simply
pulling out all of the non-trivial dissipative systems. The reader can easily reconstruct these
exhaustive lists of equations although the process is tedious.

Our analysis of establishing the two basic types of non-chaotic behaviour shows in
every case that a particular equation has only these two types of behaviour. However, some
equations may have both types of behaviour simultaneously and thus further analysis, if
even possible, is required to determine when this dichotomy occurs. It will depend, of
course, on dividing the three-dimensional(x, y, z) space into different subregions of initial
conditions for each of the two different types of behaviour.

2. Three-term dissipative systems

We mention in passing that three-term three-dimensional dissipative systems are trivially
non-chaotic. Typical examples are


ẋ = −x
ẏ = xz
ż = y2
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which is solvable [5] and both
ẋ = −x
ẏ = xz
ż = xy

and


ẋ = −x
ẏ = xz
ż = x2

which reduce to two-dimensional autonomous systems.

3. Four-term dissipative systems with one nonlinearity

Consider the 4− 1 case for which a typical example is
ẋ = ayz − bx
ẏ = cx b > 0

ż = dy.
(3.1)

We now show that all four parameters can be eliminated by making the transformation
x ′ = αx, y ′ = βy, z′ = γ z, t ′ = δt . Thus

ẋ = δ

α

dx ′

dt ′
ẏ = δ

β

dy ′

dt ′
ż = δ

γ

dz′

dt ′

which gives the new system

dx ′

dt ′
= aα

δβγ
y ′z′ − b

δ
x ′

dy ′

dt ′
= cβ

δα
x ′

dz′

dt ′
= dγ

δβ
y ′.

We now set aα
δβγ
= b

δ
= cβ

δα
= dγ

δβ
= 1, thusδ = b > 0 (so that time is not reversed) and we

can solve to find

β = ac

b2
α = ac2

db2
γ = ac

bd
.

Thus (3.1) is transformed into

dx ′

dt ′
= y ′z′ − x ′

dy ′

dt ′
= x ′

dz′

dt ′
= y ′

and all four arbitrary parametersa, b, c, d are removed by rescaling. All 4− 1 equations
can be rescaled in the same way. A complete list of the dissipative equations in the 4− 1
case (eliminating equivalent, two-dimensional, and linearly reducible systems) is:

ẋ = y2− x
ẏ = z
ż = x

(3.2)
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ẋ = y2+ z
ẏ = x
ż = −z

(3.3)


ẋ = yz − x
ẏ = x
ż = y

(3.4)


ẋ = y2

ẏ = x + z
ż = −z

(3.5)


ẋ = y2

ẏ = z − y
ż = x

(3.6)


ẋ = y2

ẏ = z
ż = x − z

(3.7)


ẋ = yz
ẏ = x
ż = x − z

(3.8)


ẋ = yz
ẏ = x
ż = y − z.

(3.9)

Theorem. None of the systems (3.2)–(3.9) are chaotic.

Proof. For (3.2)ẏ = z, ÿ = ż = x, and
...
y = ẋ = y2− x = y2− ÿ. This third-order scalar

equation integrates to

ÿ + ẏ = c +
∫ t

0
(y(s))2 ds.

Thus ÿ(t) + ẏ(t) is monotone increasing and has a limitL 6 ∞. If L < ∞, then
ÿ(t) + ẏ(t) → S whereS is the two-dimensional surface (in{(x1, x2, x3)} = R3 phase
space)x3 + x2 − L = 0. Thus, any attractor fory(t) is two dimensional and therefore not
chaotic. IfL = ∞, then ẏ(t) → ∞ as t → ∞ and hencey(t), z(t), x(t) all → ∞ as
t →∞. Thus all three components of (3.2) have a limit ast →∞ and so the solution is
not chaotic.

For (3.3) a similar process yields

ÿ(t) = y2(t)+ ce−t .
Sinceÿ(t)− y2(t)→ 0 ast →∞, any attractor fory(t) is a solution ofü = u2 and hence
two-dimensional.

For (3.4) the scalar equation is
...
z + z̈ − żz = 0 which can be integrated to a second-

order equation and thus is non-chaotic. For (3.5) the scalar equationÿ(t) = y2(t)+ ce−t is
obtained, exactly the same as (3.3). For (3.6) the scalar equation is

...
y+ ÿ = y2, the same as

for (3.2). For (3.7), the scalar equation is again
...
y + ÿ = y2. For (3.8), the scalar equation
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is
...
yy + ÿy = ẏÿ + y2ẏ which integrates to

yÿ + yẏ − ẏ
2

2
− y

3

3
= c +

∫ t

0
(ẏ(s))2 ds.

Thusyÿ+yẏ− ẏ2

2 − y3

3 → L 6∞ ast →∞. If L <∞, the attractor is a two-dimensional
surface. IfL = ∞ theny(t)→−∞ as t →∞. ż = x − z leads to

z̈+ ż+ (−y)z = 0

which (since−y(t)→ ∞) is a super critical damped second-order linear equation and so
z(t), ż(t)→ 0 ast →∞. Thusx(t)→ 0 ast →∞ and(x, y, z) has a limit ast →∞.

For (3.9) the scalar equation is
...
z + z̈ = zż+ z2 which integrates to

z̈+ ż− z
2

2
= c +

∫ t

0
(z(s))2 ds

and z̈(t) + ż(t) − (z(t))2

2 → L 6 ∞ as t → ∞. If L < ∞, a two-dimensional surface is
obtained as usual. IfL = ∞ then z(t) → ±∞ as t → ∞. If z(t) → −∞, ż(t) → ∞,
a contradiction. Ifz(t) → ∞, then ż(t) → ∞ and y(t) → ∞. Thus ẋ(t) → ∞ and so
x(t)→∞, (x, y, z) has a limit and there is no chaos. �

4. Four-term dissipative systems with two nonlinearities

Now turning to the case of four-term dissipative systems with two nonlinearities, we again
begin by discussing what happens when the equations are rescaled to eliminate the arbitrary
parameters. This time consider the typical example

ẋ = ayz − bx
ẏ = cxz b > 0

ż = dy.
The same substitutionx ′ = αx, y ′ = βy, z′ = γ z, t ′ = δt leads to

dx ′

dt ′
= αa

δβγ
y ′z′ − b

δ
x ′

dy ′

dt ′
= cβ

δαγ
x ′z′

dz′

dt ′
= dγ

δβ
y ′.

We again takeδ = b > 0 and time is not reversed. Setting the other coefficients equal to 1
and solving, we obtain

α = dc

b2
β2 = acd2

b4
γ 2 = ac

b2
.

This requires thatac > 0, or conversely we can only rescale to 1 within a± sign for one
of the nonlinear terms. The above system is thus rescaled to

dx ′

dt ′
= y ′z′ − x ′

dy ′

dt ′
= ±x ′z′

dz′

dt ′
= y ′
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placing the± sign on the equation with only one term. The analysis of the different 4− 2
cases may be affected by a± sign on one of the terms. Thus, both signs are indicated
below when the minus sign cannot be transformed away. The 4−2 cases can now be listed
(eliminating equivalent, linear and two-dimensional systems):


ẋ = y2+ yz
ẏ = x
ż = −z

(4.1)


ẋ = y2+ z2

ẏ = x
ż = −z

(4.2)


ẋ = y2− x
ẏ = xz
ż = ±y

(4.3)


ẋ = y2− x
ẏ = xz k < 1

ż = kz
(4.4)


ẋ = y2− x
ẏ = z2

ż = x
(4.5)


ẋ = y2+ y
ẏ = xz
ż = −z

(4.6)


ẋ = y2+ z
ẏ = x2

ż = −z
(4.7)


ẋ = y2+ z
ẏ = xz
ż = −z

(4.8)


ẋ = yz − x
ẏ = x2

ż = ±x
(4.9)


ẋ = yz − x
ẏ = x2

ż = y
(4.10)


ẋ = yz − x
ẏ = x2 k < 1

ż = kz
(4.11)
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ẋ = yz − x
ẏ = ±xz
ż = y

(4.12)


ẋ = yz − x
ẏ = z2

ż = ±x
(4.13)


ẋ = ±y − x
ẏ = xz
ż = x2

(4.14)


ẋ = ±y − x
ẏ = xz
ż = y2

(4.15)


ẋ = y − x
ẏ = z2

ż = x2

(4.16)


ẋ = y − x
ẏ = z2

ż = xy.
(4.17)

Theorem. Systems (4.1)–(4.17) are not chaotic.

Proof. System (4.1) reduces to the scalar equationÿ(t) = (y(t))2 + ce−t y(t). It is
clear that if y(t) is unbounded then limt→∞ y(t) = ±∞, limt→∞ ÿ(t) = ∞ and thus
limt→∞ x(t) = limt→∞ ẋ(t) = ∞. Thus (x, y, z) has a limit ast → ∞. On the other
hand, if y(t) is bounded then̈y(t)− y2(t)→ 0 and thus the attractor fory(t) is on a two
dimensional surface. So there is no chaos.

System (4.2) reduces töy(t) = y2(t)+ ce−2t and thusÿ(t)− y2(t)→ 0 ast →∞ and
any attractor fory(t) is two dimensional.

For system (4.3) with a plus sign we obtain

zz̈− ż2+ zż = c +
∫ t

0
(ż(s))2 ds +

∫ t

0
z2(s)(ż(s))2 ds

which has a monotone left-hand side. Now consider the minus sign case which is quite
complicated. Note that eitherx(t) is negative and increasing orx becomes and remains
positive.

Case 1.x(t) ↑ L 6 0 (x(t) is monotone increasing toL). Here the argument is similar
to previous cases. First supposez0 > 0. Thusẏ starts out negative. Ify0 > 0, thenż starts
out negative. Ify becomes negative first, thenz remains positive and hencey remains
negative. Hencey(t) ↓ K and z(t) ↑ M as t → ∞. If z becomes negative first theny
remains positive,z remains negative, andy(t) ↑ K, z(t) ↓ M as t →∞. If y0 < 0 thenż
starts out positive, andy(t) ↓ K, z(t) ↑ M ast →∞. Now supposez0 < 0 so thatẏ starts
out positive. Ify0 > 0 thenż starts out negative; hencey(t) ↑ K, z(t) ↓ M as t →∞. If
y0 < 0, thenż starts out positive. Ify becomes positive beforez, thenz remains negative,
y remains positive and soy(t) ↑ K, z(t) ↓ M as t →∞. If z becomes positive first, then
y remains negative,z remains positive and soy(t) ↓ K, z(t) ↑ M as t →∞.
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Case 2.x(t) is positive for t > 0. We first establish the following.

Lemma.

ẏ2

x2
+ y

2

x2
+ ln x = c −

∫ t

0

(
ẋ(s)

x(s)

)2

ds ↓ L.

Proof. Sinceż+ y = 0 andz = ẏ

x
we have

d

dt

(
ẏ

x

)
+ y = 0.

Thus we can write
ẏ

x

d

dt
(
ẏ

x
)+ yẏ

x
= 0

or

1

2

(
ẏ

x

)2

+ y2

2x
+
∫ t

0

y2(s)

2

ẋ(s)

x2(s)
ds = c

or

ẏ2

x2
+ y

2

x
= c −

∫ t

0

ẋ(s)

x2(s)
(ẋ(s)+ x(s)) ds

or

ẏ2

x2
+ y

2

x
+ ln x = c −

∫ t

0

(
ẋ(s)

x(s)

)2

ds

which proves the lemma. �
If L = −∞, then clearlyx(t) → 0 as t → ∞. But | ln x|/x → ∞ as x ↓ 0 and

thus alsoy(t) → 0 as t → ∞. Since z̈ + xz = 0, z(t) is either monotone for larget
or oscillatory, depending on how quicklyx(t) → 0 [1]. Even if it is oscillatory,z(t) is
asymptotic to the linex = 0, y = 0.

If L > −∞, then writingy2 = ẋ+x andẏ2 = (ẍ+ ẋ)2/4(ẋ+x)2, the above expression
becomes

(ẍ + ẋ)2
4x2(ẋ + x)2 +

ẋ + x
x
+ ln x ↓ L

and, as before, the solutionx(t) is asymptotic to a two-dimensional surface in phase space
and therefore non-chaotic.

System (4.4) has the scalar form̈y(t)+ (1− k)ẏ(t) = cekt (y(t))2. Thus eithery(t) has
a two-dimensional attractor ory(t) → ±∞ as t → ∞. Then limt→∞ x(t) = ∞ also so
(x, y, z) has a limit ast →∞.

Because of the two squared terms, system (4.5) is easy to resolve. Sincey(t) is
increasing we havey(t) → L 6 ∞. If L 6 0, ẋ(t) + x(t) → L2 and x(t) → L2.
Thus ż > 0 andz(t) has a limit ast →∞. Since all three components(x, y, z) have limits
at∞, there is no chaos. IfL > 0, the argument is similar.

System (4.6) has the scalar form̈y(t)+ ẏ(t) = ce−t (y(t))2 + ce−t y(t) or et ÿ(t)ẏ(t)+
et (ẏ(t))2 = c(y(t))2ẏ(t)+ cy(t)ẏ(t) which integrates to

c
(y(t))3

3
+ c (y(t))

2

2
− et

(ẏ(t))2

2
= c1+

∫ t

0
es
(ẏ(s))2

2
ds

which means thatc3(y(t))
3 + c

2(y(t))
2 − et

2 (ẏ(t))
2 ↑ L 6 ∞ as t → ∞. If L = ∞ then

y(t)→±∞ ast →∞ depending upon whetherc is positive or negative. Thusx(t)→∞
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as t →∞ and so(x, y, z) has a limit att = ∞. If L <∞, then the attractor fory lies on
the two-dimensional surface determined by

c

3
(y(t))3+ c

2
(y(t))2− e−t

2
(ẏ(t))2 = L

(recall that a first-order non-autonomous equation is equivalent to a second-order
autonomous equation).

For system (4.7)z(t) = ce−t → 0 ast →∞ andy(t)→ L 6∞ as t →∞. If L 6= 0
then x(t) → ∞ as t → ∞. SupposeL = 0, then limt→∞ ẋ(t) = 0 and any attractor for
the system lies on a surfacex(t) = constant.

System (4.8) can be rewritten as the scalar equationÿ(t)+ ẏ(t) = ce−t (y(t))2+ c2e−2t

which integrates to

ẏ(t)+ y(t)+ c
2

2
e−2t = c1+ c

∫ t

0
e−s(y(s))2 ds.

Thusẏ(t)+y(t)→ L ast →∞. If L = ±∞, theny(t)→±∞ ast →∞ andx(t)→∞
as t →∞. If L is finite the attractor fory(t) lies on a one-dimensional surface.

System (4.9) with the plus sign leads to

zz̈− z2+ zż = c + 2
∫ t

ż2(s) ds +
∫ t

z2(s)ż2(s) ds ↑ L

which is treated in the now familiar way. With the minus sign, the above argument breaks
down and a different approach is needed. Observe first thaty is increasing.

Case 1. y ↑ L 6 0. First supposex0 = x(0) > 0. Thenż starts out negative. Ifz0 > 0
then ẋ also starts out negative. Ifx becomes negative beforez then ż becomes positive
andz remains positive. Sincex, once negative, remains negative, thenẋ remains negative,
ż remains positive and hence(x, y, z) all have limits ast → ∞. Now suppose thatz
becomes negative beforex, then x and ẋ remain positive, hencėz remains negative and
again(x, y, z) all have limits ast →∞. If z0 < 0 thenż < 0 andz < 0 as long asx > 0.
But x cannot become negative. Henceż remains negative,z(t) ↓ K and x(t) → LK or
t →∞. If x0 < 0, similar arguments show that(x, y, z) all have limits ast →∞.

Case 2.y(t) ↑ L > 0. Then z̈+ ż+yz = 0 which is essentially a positively damped linear
harmonic oscillator. Thusz(t), ż(t)→ 0 ast →∞, and hence alsox(t)→ 0 ast →∞.

For system (4.10) there is only one sign to consider and the discussion is brief.y(t) ↑ L
and t → ∞. If L 6 0 thenz(t) ↓ K and hencex(t) → LK as t → ∞. If L > 0, then
z(t) ↑ K andx(t)→ LK as t →∞.

System (4.11) has the scalar form̈x(t)+ (2− k)ẋ(t)− kx(t) = cekt (x(t))2. Since the
linear homogeneous part of this equation has a characteristic equation with real roots, then
use of the variation of parameters formula shows that all solutionsx(t) of the nonlinear
equation have a limit at∞. Sincey(t) is non-decreasing for allt , then(x, y, z) has a limit
as t →∞.

System (4.12) can be rewritten in scalar form asz
...
z+zz̈− żz̈∓z3ż = 0 which integrates

to

zz̈− ż2+ zż∓ z
4

4
= c ±

∫ t

0
z2(s) ds ↑ L 6∞.

If L < ∞, the solution is asymptotic to a two-dimensional surface and there is no chaos.
ClearlyL = ∞ is impossible.
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Consider system (4.13) with the plus sign. We obtain

zz̈− ż2+ zż = c + 2
∫ t

0
ż2(s) ds +

∫ t

0
z4(s) ds

and the usual monotonicity argument applies. For the minus sign, the equation is almost
identical to (4.2) and the same argument applies to show that(x, y, z) all have limits.

For system (4.14) with a plus sign we obtain

xẋ − ẋ2+ xẋ = c + 2
∫ t

0
(ẋ(s))2 ds +

∫ t

0
x4(s) ds

for which the left-hand side is monotone increasing. With a minus sign in (4.14) a similar
argument will apply.

For system (4.15) with the plus sign we obtain

xẍ − ẋ2+ xẋ = c +
∫ t

0
(ẋ(s))2 ds +

∫ t

0
x2(s)(ẋ(s)+ x(s))2 ds

and so again the monotonicity of the left-hand side eliminates the possibility of chaos. With
a minus sign the above argument breaks down and so we proceed as follows.z is monotone
increasing toL.

Case 1. L 6 0. Suppose first thatx0 > 0. Then ẏ starts out negative. Ify0 > 0 then
ẋ also starts out negative. Ifx becomes negative beforey thenx remains negative andy
remains positive. Thusy(t) increases toK, x(t)→−K and so(x, y, z) all have limits as
t → ∞. If y becomes negative beforex, thenx must remain positive. Hencey(t) again
decreases toK, x(t)→ −K and (x, y, z) all have limits ast →∞. If y0 < 0, then both
y and ẏ remain negative sincex must remain positive. Againy(t) ↓ K, andx(t)→ −K
as t → ∞. Now suppose thatx0 < 0. Thenẏ starts out positive. Ify0 > 0, then bothx
and y remain positive,y(t) ↑ K, x(t) → −K as t → ∞. If y0 < 0 then ẋ(t) starts out
positive. If x becomes positive beforey theny remains negative andx remains positive.
Thusy(t) ↑ K, x(t) → −K as t → ∞. If y becomes positive beforex, thenx remains
negative, hencey remains positive,y(t) ↑ K, x(t)→−K as t →∞.

Case 2. L > 0. Then we obtainẍ + ẋ + zx = 0 with z(t) ↑ L > 0. Again we have
a positively damped harmonic oscillator and sox(t), ẋ(t) → 0 as t → ∞. Thus also
y(t)→ 0.

For system (4.16) there is only one sign and two squared terms. Hencez(t) ↑ L,
y(t) ↑ K andx(t)→ K and so(x, y, z) has a limit ast →∞.

Finally, for system (4.17)̇y > 0 and soy(t)→ L as t →∞. Thus alsox(t)→ L as
t → ∞. If L 6= 0 thenz(t) → ∞ as t → ∞ and soL = ∞. Now suppose thatL = 0.
Then y(t) < 0 for all t . x0 = x(0) > 0. If x(t) > 0 for all t > 0 then ż(t) 6 0 for all
t > 0 andz(t) has a limit ast → ∞. Supposex(t0) = 0 for somet0. Then ẋ(t0) < 0
and x(t) becomes negative. Sincėx(t) < 0 for x(t) > y(t) then x(t1) = y(t1) for some
t1 > t0. Thenx(t) 6 y(t) < 0 for t > t1. Thus ż(t) > 0 for t > t0 andz(t) has a limit at
∞. If x0 = x(0) 6 0 a similar argument applies. Thus(x, y, z) all have the limit 0 or∞
as t →∞.

This disposes of all 4− 2 dissipative cases and proves the theorem for this section.

5. Four-term dissipative systems with three nonlinear terms

The next case is the four-term dissipative systems with three nonlinear terms. The four
arbitrary parameters are once again removed by the scaling transformationx ′ = αx, y ′ = βy,
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z′ = γ z, t ′ = δt . Again in certain cases we can only rescale to 1 within a± sign. The
4− 3 cases are (eliminating equivalent, two-dimensional, and essentially linear systems):


ẋ = x2+ yz
ẏ = −2xy

ż = −z
(5.1)


ẋ = y2+ yz
ẏ = x2

ż = −z
(5.2)


ẋ = y2+ yz
ẏ = ±xz
ż = −z

(5.3)


ẋ = y2± z2

ẏ = x2

ż = −z
(5.4)


ẋ = y2± z2

ẏ = xz
ż = −z

(5.5)


ẋ = xy − x
ẏ = xz
ż = −yz

(5.6)


ẋ = y2− x
ẏ = xz
ż = x2

(5.7)


ẋ = y2− x
ẏ = xz
ż = y2

(5.8)


ẋ = y2− x
ẏ = z2

ż = x2

(5.9)


ẋ = y2− x
ẏ = z2

ż = xy
(5.10)


ẋ = yz − x
ẏ = x2

ż = ±xy
(5.11)
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ẋ = yz − x
ẏ = x2

ż = y2

(5.12)


ẋ = yz − x
ẏ = ±xz
ż = y2

(5.13)


ẋ = y2+ yz
ẏ = −y
ż = x2.

(5.14)

Theorem. Systems (5.1)–(5.14) are not chaotic.

Proof. System (5.1) can be rewritten as the scalar equationẍ+ ẋ = 2x3+x2 which, when
multiplied by ẋ, integrates to

− 1
2 ẋ

2+ 1
2x

4+ 1
3x

3 = c +
∫ t

0
(ẋ(s))2 ds ↑ L.

If L = ∞ then limt→∞ x(t) = ±∞. Thus limt→∞ y(t) = ∓∞ and since limt→∞ z(t) = 0,
(x, y, z) has a limit att = ∞. If L < 0, then any attractor forx(t) lies on a two-dimensional
surface.

System (5.2) can be rewritten as the two-dimensional (non-autonomous) system,ẋ =
y2+ ce−t y, ẏ = x2. Thus limt→∞ y(t) = L 6∞. If L = ∞, then also limt→∞ x(t) = ∞.
If L < ∞ then limt→∞ ẋ(t) = L2. If L 6= 0, then limt→∞ x(t) = ∞. If L = 0, then
lim t→∞ ẋ(t) = 0 and any attractor for(x(t), y(t), z(t)) lies on a two-dimensional surface
x = constant.

Consider system (5.3) with a plus sign and takez(t) = c1e−t where c1 > 0. The
equivalent scalar equation is̈y(t) + ẏ(z) = ce−t (y(t))2 + c2e−2t (y(t))2. Thus if y(t) is
bounded, then limt→∞(ÿ(t) + ẏ(t)) = 0 and any attractor fory(t) is two dimensional.
Supposey(t) is unbounded and not eventually monotone. Rewrite (5.3) in the form{

ẋ(t) = (y(t))2+ ce−t y(t)
ẏ(t) = cx(t)e−t .

Clearly y(t) in this case can never become positive. Alsoẋ(t) > 0 except for 0> y(t) <

−ce−t . Thus lim supt→∞ y(t) = 0 and lim inft→∞ y(t) = −∞. To have bothx(t) 6 0 and
ẋ(t) 6 0 requires−ce−t 6 y(t) 6 0 and ẏ(t) 6 0. If y(t) 6 −ce−t < 0, thenx(t) < 0,
ẋ(t) > 0, and ÿ(t) = ce−t ẋ(t) − ce−t x(t) > 0. Thus lim inft→∞ y(t) = −∞ leads to a
contradiction. Ifz(t) is negative or (5.3) has a minus sign in the second equation, similar
arguments can be made. Thus (5.3) has no chaotic behaviour.

If system (5.4) has a plus sign, then all three variablesx(t), y(t), z(t) are monotone
and have a limit. Consider (5.4) with the minus sign which can be rewritten as{

ẋ(t) = (y(t))2− c2e−2t

ẏ(t) = (x(t))2.
Suppose limt→∞ y(t) = L. If L 6= 0, then limt→∞ x(t) = ∞. If L = 0, then
limt→∞ ẋ(t) = 0 and so any attractor for (5.4) lies on a surfacex(t) = constant.
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System (5.5) can be rewritten as the scalar equationÿ(t)+ ẏ(t) = ce−t (y(t))2± c3e−3t

which integrates to

ẏ(t)+ y(t) = c1+
∫ t

0
ce−s(y(s))2 ds ∓ c

3

3
e−3t .

Thus ẏ(t) + y(t) has a limitL as t → ∞. If L = ±∞, then limt→∞ y(t) = ±∞ and
limt→∞ x(t) = ∞. If L is finite, thenẏ(t) + y(t) converges toL as t → ∞ and any
attractor fory(t) is two dimensional.

For system (5.6) the equivalent scalar equation isÿ(t)+ ẏ(t) = 0 and thus (5.6) reduces
to a linear system which cannot be chaotic.

For system (5.7) limt→∞ z(t) = L 6 ∞ and x(t) is increasing whenx(t) < 0. Thus
either limt→∞ x(t) = K exists orx(t) is eventually positive.y(t) is monotone in either
case and hence has a limit ast →∞. Thus(x, y, z) all have limits att = ∞.

Systems (5.8)–(5.10) and (5.12) are similar to system (5.7) and hence non-chaotic.
System (5.11) leads toxẋ ∓ zż + ẏ = 0 which is integrable. System (5.13) leads to
xẋ ∓ yẏ = −x2 which integrates to

x2∓ y2 = c − 2
∫ t

0
(x(s))2 ds.

Thus limt→∞(x(t))2 ∓ (y(t))2 = L > −∞. If L = −∞, then limt→∞ y(t) = ±∞. Since
limt→∞ z(t) exists, then(x, y, z) all have limits at infinity. IfL > −∞, then either both
x(t) and y(t) (and z(t)) have limits at infinity or any attractor for the system lies on a
two-dimensional surface. Thus system (5.13) is non-chaotic.

System (5.14) can be rewritten as the systemẋ = ce−t z + c2e−2t , ż = x2. Thus
limt→∞ z(t) = L. If L 6= 0, x(t) is eventually monotone and has a limit att = ∞.
If L = 0, then limt→∞ ẋ(t) = 0 and any attractor for(x(t), y(t), z(t)) lies on a two-
dimensional surfacex = constant. �

6. Four-term dissipative systems with constant terms

We now discuss four-term dissipative systems with constant terms. Clearly the equations
already discussed would be simplified if any term were replaced by a constant and are thus
still not chaotic. It is easily verified by inspecting the list of 4− 1 and 4− 2 systems that
there are no non-trivial dissipative systems when any term is replaced by a constant. For
4−3 systems there are the following non-trivial dissipative cases when one term is replaced
by a constant:

ẋ = ±1+ y2

ẏ = xz
ż = −z

(6.1)


ẋ = 1+ yz
ẏ = x2

ż = −z
(6.2)


ẋ = 1− x
ẏ = xz
ż = y2

(6.3)
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ẋ = y2− x
ẏ = xz
ż = 1

(6.4)


ẋ = yz − x
ẏ = x2

ż = 1.

(6.5)

Systems (6.1) and (6.2) have the familiar behaviourz(t) = ce−t → 0 as t → ∞ and
thus any attractor lies in the planez = 0.

For system (6.3)x(t) → 1, z(t) ↑ L as t → ∞ and thus bothx(t) and z(t) are
eventually of one sign. Thusy(t) is monotone and has a limit ast →∞.

For system (6.4)z(t) → +∞ as t → ∞ and so is eventually positive.x(t) is
either negative and increasing to a limit or eventually becomes positive. Thusx(t) is
also eventually of one sign. Thusy(t) is monotone and has a limitL as t → ∞. Thus
x(t)→ L as t →∞ and so(x, y, z) has a limit ast →∞.

For system (6.5)z(t)→+∞ ast →∞. Also y(t) ↑ L ast →∞. Thusy(t)z(t)→ K

as t →∞ and alsox(t)→ K as t →∞. Thus(x, y, z) has a limit att = ∞.

7. Generalizations and conclusions

The arguments employed for four-term dissipative equations will carry over to most, but
not all, non-dissipative equations. However, there are many more cases to consider. A
partial analysis of this complexity has been carried out by Zhang [10]. Just the 4− 1 case
alone has 810 different patterns. After eliminating equivalent systems (by permutingx, y, z)
there are still 138 different types of 4− 1 equations. It turns out that 101 of these can be
completely integrated, thereby eliminating the possibility of chaos. Of the remaining 37
patterns, 13 are essentially second-order autonomous systems and hence non-chaotic. Out
of the remaining 24 cases eight are dissipative (analysed in section 3) and the remaining 16
are not dissipative. Many of these 16 cases are easily treated by our methods but not all.
For example the system

ẋ = xz + z
ẏ = x
ż = y

is equivalent to the scalar equation
...
z = zz̈+z which is difficult to analyse. Also, the system

ẋ = x2+ y
ẏ = z
ż = x

is equivalent to the scalar equation
...
y = ÿ2+ y, again hard to analyse.

For four-term equations with two nonlinearities there are 477 systems not
permutationally equivalent. Of these, 134 are neither solvable, two-dimensional, nor
reducible to linear systems. The 17 dissipative cases are treated in section 4. Two examples
of non-dissipative cases that are hard to analyse are

ẋ = xy + y2

ẏ = z
ż = x
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which is equivalent to
...
y = yÿ + y2 and

ẋ = x2+ y
ẏ = yz
ż = x

which is equivalent to
...
z = zżz̈+ zz̈− zż2.

Not surprisingly four-term equations with three nonlinear terms can be even more
complicated. For example

ẋ = x2+ xy
ẏ = yz
ż = x

reduces to the scalar equation
...
yy2 = 3yẏÿ − 2ẏ3+ y2ÿ − yẏ2 and the system

ẋ = xy + xz
ẏ = xy
ż = y

reduces to
...
zż = z̈ż2+ zżz̈+ z̈2.

Of course there are no four-term dissipative systems with four nonlinear terms. Without
the assumption of dissipativity there seems little hope of analysing the many complicated
systems which could arise.

It is very interesting that Sprott [8] has recently found an example of a five-term
equation with only one nonlinearity which is both dissipative and chaotic. His example
...
z + Az̈− ż2+ z = 0 is the scalar form of

ẋ = y2− z
ẏ = x − Ay
ż = y.

Many five-term equations with just one nonlinearity are amenable to the methods of this
paper but clearly not all. It would be interesting to see how many distinct cases of dissipative
5− 1 chaos can exist.

We are also currently trying to extend this analysis to four-term conservative systems.
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[6] Rössler O E 1976 An equation for continuous chaosPhys. Lett.57A 397
[7] Sprott J C 1994 Some simple chaotic flowsPhys. Rev.E 50 R647
[8] Sprott J C 1997 Simplest dissipative chaotic flowPhys. Lett.A 228 271
[9] Wiggins S 1990Introduction to Applied Nonlinear Dynamical Systems and Chaos(New York: Springer)

[10] Zhang F 1996 Chaotic behavior in three dimensional quadratic systemsThesisUniversity of Nebraska at
Omaha, Omaha


