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Abstract. It is shown that three-dimensional dissipative quadratic systems of ordinary

differential equations with a total of four terms on the right-hand side of the equations do

not exhibit chaos. This complements recent work of Sprott who has given many examples of
chaotic quadratic systems with as few as five terms on the right-hand side of the equations.
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PACS number: 0545

1. Introduction

How complicated must an ordinary differential equation be in order to exhibit chaotic
behaviour? The PoincarBendixson theorem shows that chaos does not exist in a two-
dimensional autonomous system (or second-order equation) [9]. The three-dimensional
Lorenz equations [4],

X =—-ox+oy

Y=rx—xz—Yy

z=xy—bz
do exhibit chaos for certain values of the parameters, andr. So does the Rossler
system [6],

X=—-y—2z

y=x+ay

Z=b+xz—cz
again for certain parameter values. Likewise for a number of other three-dimensional
systems [2, 3].

Very interesting investigations have recently been carried out by Sprott [7, 8] raising the

guestion as to whether a total of seven terms on the right-hand side of a three-dimensional

system is really necessary. Sprott first performed a computer search on the entire class of
three-dimensional quadratic systems and found numerous cases of chaos in systems with
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six terms on the right-hand side with only one nonlinear (quadratic) term. He also found

numerous examples of chaotic five-term systems with two nonlinear terms. In a follow-

up study Sprott examined five-term systems with only one nonlinear term and found two
examples of chaotic systems. No chaotic systems were found with either just three or four
terms with no limit on the number of (quadratic) nonlinearities.

Sprott’s work raises an obvious question: What is the behaviour of solutions of three-
dimensional systems when there are less than five terms? If such systems cannot exhibit
chaos, why is this so? The purpose of this paper is to examine these questions. We are able
to resolve the issue for all dissipative four-term equations (three-term equations are trivial
in this respect). Our methods may extend to include all four-term equations which are not
necessarily dissipative. The increase in complexity is thereby non-trivial and is discussed
in section 7. Thus, we restrict our attention to dissipative systems partly for convenience
but also because it is dissipative systems which are most likely to arise in applications.
Also it is for dissipative systems where chaos, when it exists, has one of its most graphic
manifestations, the strange attractor.

It turns out that the most complicated four-term three-dimensional dissipative systems
(which are neither integrable nor reducible to two-dimensional systems) exhibit only two
different types of behaviour. Solutions are either asymptotic to a two-dimensional surface or
they have a limit (that is, converge to an equilibrium point) which may be infinite. Neither
type of behaviour is chaotic. This paper is largely based on the thesis of Zhang [10] which
also contains other approaches which will be developed in future work.

The plan of the paper is as follows. After quickly disposing of three-term systems,
we take up in turn, four-term equations with either one, two, or three nonlinear terms, all
without constant terms. Systems with four nonlinear terms cannot be dissipative. Then
equations with constant terms are considered in a separate section.

In each section we begin by listing all possible equations in the appropriate category
which are not permutationally equivalent to each other, nor which reduce to two-dimensional
systems or linear systems. These lists of equations were obtained by the ‘brute force’
method of listing all possible combinations of variables in a systematic way and then simply
pulling out all of the non-trivial dissipative systems. The reader can easily reconstruct these
exhaustive lists of equations although the process is tedious.

Our analysis of establishing the two basic types of non-chaotic behaviour shows in
every case that a particular equation has only these two types of behaviour. However, some
equations may have both types of behaviour simultaneously and thus further analysis, if
even possible, is required to determine when this dichotomy occurs. It will depend, of
course, on dividing the three-dimensioral y, z) space into different subregions of initial
conditions for each of the two different types of behaviour.

2. Three-term dissipative systems

We mention in passing that three-term three-dimensional dissipative systems are trivially
non-chaotic. Typical examples are
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which is solvable [5] and both

x:—x Xz—x
y =xz and Yy =xz
=Xy z=x?

which reduce to two-dimensional autonomous systems.

3. Four-term dissipative systems with one nonlinearity

Consider the 4- 1 case for which a typical example is
X =ayz —bx
y=cx b>0 3.1)
z=dy.
We now show that all four parameters can be eliminated by making the transformation
X' =ax,y =By, =yz,t' =68t. Thus
. sdx . sdy . 8d
Tew YT TTyw
which gives the new system

dx' aox ,, ,
@ =y’ 5"
bt _ B,

dr’  Sa

dz’ dy ,

dr ~ s

We now set% = § =P =4 =1 thuss = b > 0 (so that time is not reversed) and we

can solve to find e
ac aCZ ac
P “Tar VT
Thus (3.1) is transformed into
dx/
dr’
dy”
dr’
dz’ ,
dr =y
and all four arbitrary parametets b, ¢, d are removed by rescaling. All 4 1 equations
can be rescaled in the same way. A complete list of the dissipative equations in-the 4
case (eliminating equivalent, two-dimensional, and linearly reducible systems) is:

! ’
=yz —x

x=y>—x
y =1z (3.2)

z=x
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x=y* 47

y=x (3.3)
==z

X=yz—x

y=x 3.4)
z=y

)'c:yz

y=x+z2 (3.5)
Z=-z

)'c:yz

j=z—y (3.6)
=X

)&:yz

y=z 3.7
I=x—-2z

X =yz

y=x (3.8)
I=Xx—-2z

X =yz

y=x 3.9
Z=y—2.

Theorem. None of the systems (3.2)—(3.9) are chaotic.

Proof. For (3.2)y =z, % =z =x, andy = x = y2—x = y?— j. This third-order scalar
equation integrates to

y+y‘=c+/ (y(s))? ds.
0

Thus 3(t) + y(#) is monotone increasing and has a lindit < oco. If L < oo, then
j(t) + y(t) — S where S is the two-dimensional surface (if(x?, x2, x3)} = R® phase
spacey®+ x? — L = 0. Thus, any attractor foy(z) is two dimensional and therefore not
chaotic. If L = oo, theny(t) — oo ast — oo and hencey(t), z(t), x(¢) all - oo as
t — oo. Thus all three components of (3.2) have a limittas- co and so the solution is
not chaotic.

For (3.3) a similar process yields

§(t) = y(t) + ce ™.

Sincej(t) — y?(t) — 0 ast — oo, any attractor fory(¢) is a solution ofii = u? and hence
two-dimensional.

For (3.4) the scalar equation 5+ Z — zz = 0 which can be integrated to a second-
order equation and thus is non-chaotic. For (3.5) the scalar equtipe= y2(r) + ce™ is
obtained, exactly the same as (3.3). For (3.6) the scalar equation is= y?, the same as
for (3.2). For (3.7), the scalar equation is again- j = y2. For (3.8), the scalar equation
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is yy + ¥y = y¥ + y?y which integrates to
-2 3

. .y yo ' 2
y+yy—"5 =5 =c+ [ () 0s.
2 3 o

Thusyj+yy— %2 —L; — L < oo ast - oo. If L < oo, the attractor is a two-dimensional

surface. IfL = oo theny(t) - —o0 ast — oco. z =x — z leads to
Z4+74+(=y)z=0

which (since—y(t) — o00) is a super critical damped second-order linear equation and so
z(t), z(t) - 0 ast — oo. Thusx(t) — 0 ast — oo and (x, y, z) has a limit ag — oc.
For (3.9) the scalar equation is+ 7 = zZ + z2 which integrates to

ZZ t
Z+Z’——=c+/ (z(s))%ds
2 0

andz() + z(t) — LQ)Z — L < oo ast — oo. If L < o0, a two-dimensional surface is
obtained as usual. If = oo thenz(t) - +o0 ast — oo. If z(t) - —o0, 2(t) = oo,
a contradiction. Ifz(r) — oo, thenz(t) — oo and y(t) — oo. Thusx(t) — oo and so
x(t) — oo, (x, y,z) has a limit and there is no chaos. O

4. Four-term dissipative systems with two nonlinearities

Now turning to the case of four-term dissipative systems with two nonlinearities, we again
begin by discussing what happens when the equations are rescaled to eliminate the arbitrary
parameters. This time consider the typical example

X =ayz —bx

y =cxz b>0
z=dy.

The same substitution’ = ax, y/ = By, 7/ = yz, t' = &t leads to
dx oaoa ,, b,
- = — —X
d By C T s
d_ B
d’  Say
dz’  dy ,
a7 = spg)-
dr 3B

We again také = b > 0 and time is not reversed. Setting the other coefficients equal to 1
and solving, we obtain

dc 2 acd? , ac

» T T

This requires thatic > 0, or conversely we can only rescale to 1 withiatasign for one

of the nonlinear terms. The above system is thus rescaled to

o =

dx’
@ — y/Z/ —x
d !
dz’

/

dar =7
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placing the+ sign on the equation with only one term. The analysis of the different4
cases may be affected byda sign on one of the terms. Thus, both signs are indicated
below when the minus sign cannot be transformed away. Fh& dases can now be listed
(eliminating equivalent, linear and two-dimensional systems):

X =y>4yz

y=x (4.1)
2=z

X =y?4 72

y=x (4.2)
=—z

¥=y2—x

y=xz (4.3)
z==y

x=y>—x

y=xz k<1 4.4)
z=kz

x=y>—x

y=z° (4.5)
=X

x=y+y

y=2xz (4.6)
Z=-z

)'c:yz—i-z

y = x? 4.7)
Z=-z

X=y"+z

y=xz (4.8)
==z

X=yz—x

y=x2 (4.9)
7==x

X=yz—x

y =x? (4.10)
1=y

X=yz—x

y=x2 k<1 (4.11)
z=kz
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X=yz—x

y = %xz (4.12)
t=y

X=yz—x

y =22 (4.13)
7==x

xX=xy—x

y=xz (4.14)
z = x?

X==xy—x

y=xz (4.15)
i =y?

X=y—x

y=z° (4.16)
z = x2

X=y—x

y =72 (4.17)
Z=xy.

Theorem. Systems (4.1)—(4.17) are not chaotic.

Proof. System (4.1) reduces to the scalar equatign = (y(1))?> + ce 'y(r). It is
clear that if y(+) is unbounded then lim o, y(#r) = 400, lim,_ . ¥(t) = oo and thus
lIM; 500 x(#) = liMm;, o x(t) = 0co. Thus(x,y,z) has a limit ast — oco. On the other
hand, if y(¢) is bounded therii(r) — y2(t) — 0 and thus the attractor for(z) is on a two
dimensional surface. So there is no chaos.

System (4.2) reduces tir) = y2(t) + ce~% and thusj(r) — y?(t) — 0 ast — oo and
any attractor fory(z) is two dimensional.

For system (4.3) with a plus sign we obtain

i—i24zi=c+ / (2(s))%ds + f 22(s)(2(s))% ds
0 0

which has a monotone left-hand side. Now consider the minus sign case which is quite
complicated. Note that either(s) is negative and increasing ar becomes and remains
positive.

Case 1.x(t) 1+ L < 0 (x(t) is monotone increasing toL). Here the argument is similar
to previous cases. First suppage> 0. Thusy starts out negative. Ifp > 0, thenz starts
out negative. Ify becomes negative first, thenremains positive and henoe remains
negative. Hence(r) | K andz(t) + M ast — oo. If z becomes negative first then
remains positivez remains negative, and(r) + K, z(t) | M ast — oo. If yg < 0 thenz
starts out positive, and(¢) | K, z(t) + M ast — oco. Now suppose, < 0 so thaty starts
out positive. Ifyg > 0 thenz starts out negative; hengdr) 4+ K, z(t) | M ast — oo. If
yo < 0, thenz starts out positive. Ify becomes positive beforg thenz remains negative,
y remains positive and so(¢) 1+ K, z(t) | M ast — oo. If z becomes positive first, then
y remains negative; remains positive and so(¢) | K, z(¢t) 1 M ast — oc.
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Case 2.x(t) is positive for t > 0. We first establish the following.

-2 2 t . 2
ey _ x(s)
;—}—;—i_lnx—c '/O (x(s)) dS\LL.

Proof. Sincez +y =0 andz = ? we have

d /s
dt( >+y—0

Thus we can wrlte

Lemma.

- =0
x dt(x)
or
1 / y2(s) X(S)
2 2 xz(S)
or
-2 2 t
y ooy xe)
2 + L= c /0 2(s) (x(s) + x(s)) ds
or
o2 2 t . 2
y—2+y—+|nx=c—/ (x(s)) ds
x x o \x(s)
which proves the lemma. O
If L = —o0, then clearlyx(r) — 0 ast — oo. But|Inx|/x - co asx | 0 and

thus alsoy(r) — 0 astr — oco. SinceZ + xz = 0, z(¢) is either monotone for large
or oscillatory, depending on how quickly(r) — 0 [1]. Even if it is oscillatory,z(z) is
asymptotic to the linec =0, y = 0.
If L > —oo, then writingy? = x +x andy? = (¥ +x)?/4(x +x)?, the above expression
becomes
(45?2  X+x
4x2(x + x)?
and, as before, the solutior(r) is asymptotic to a two-dimensional surface in phase space
and therefore non-chaotic.

System (4.4) has the scalar forty) + (1 —k)y(¢) = c€'(y(t))2. Thus eithery(t) has
a two-dimensional attractor or(t) — oo ast — oo. Then lim_ » x(#) = oo also so
(x,y,z) has a limit ag — oo.

Because of the two squared terms, system (4.5) is easy to resolve. Jinces
increasing we have(r) — L < oco. If L < 0, x(r) + x(t) — L? andx(r) — L2
Thusz > 0 andz(z) has a limit ag — oo. Since all three componengs, y, z) have limits
at oo, there is no chaos. It > 0, the argument is similar.

System (4.6) has the scalar forur) + y(t) = ce(y(t))% + ce'y(t) or €3(1)y(t) +
€ (y(1))? = c(y(1))?y(t) + cy(t)y(¢) which integrates to

(y@®)? (y(®)? (v ®)? _ /’ (7(5))?

e +c > e , = + [ € > ds

which means that (y(1))% + ()2 — £(3(1))2 + L < oo ast — oo. If L = co then
y(t) — +oo ast — oo depending upon whetheris positive or negative. Thus(t) — oo

+Inx | L
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ast — oo and so(x, y, z) has a limit atr = co. If L < oo, then the attractor fop lies on
the two-dimensional surface determined by

SO+ ()P - %(y‘(r))2 —L

(recall that a first-order non-autonomous equation is equivalent to a second-order
autonomous equation).

For system (4.7} (1) =ce" - 0 ast - ocandy(t) > L < oo ast —> oo. If L#£0
thenx(t) — oo ast — oo. Supposel = 0, then lim_ ., x(¢) = 0 and any attractor for
the system lies on a surfaaér) = constant.

System (4.8) can be rewritten as the scalar equatioy+ y(1) = ce”' (y(1))? + c?e%
which integrates to

2 t
y@) + y(@) + %e—zf =c1+ c/ e (y(s))? ds.
0
Thusy()+y() — L ast — oo. If L = o0, theny(t) — +oo ast — oo andx(t) — oo
ast — oo. If L is finite the attractor fow(¢) lies on a one-dimensional surface.
System (4.9) with the plus sign leads to

t t
i—2+zi=c+ 2/ z%(s) ds +/ Z2(s)z%(s)ds 1 L

which is treated in the now familiar way. With the minus sign, the above argument breaks
down and a different approach is needed. Observe firstthgincreasing.

Case 1.y * L < 0. First suppose;g = x(0) > 0. Thenz starts out negative. lfg > 0
then x also starts out negative. i becomes negative befotethenz becomes positive
andz remains positive. Since, once negative, remains negative, theremains negative,
z remains positive and hende, y, z) all have limits ast — oco. Now suppose that
becomes negative before thenx and x remain positive, hencé remains negative and
again(x, y, z) all have limits ag — oo. If zo < 0 thenz < 0 andz < 0 as long asc > 0.
But x cannot become negative. Henggemains negative;(t) | K andx(t) — LK or

t — oo. If xg < 0, similar arguments show thét, y, z) all have limits ag — oo.

Case 2.y(t) 1+ L > 0. Thenz +z+ yz = 0 which is essentially a positively damped linear
harmonic oscillator. Thus(z), z(r) — 0 ast — oo, and hence als®(r) — 0 ast — oo.

For system (4.10) there is only one sign to consider and the discussion is)krieft L
andt — oo. If L < 0thenz(r) | K and hencex(tr) - LK ast — oo. If L > 0, then
z(t) + K andx(t) > LK ast — oc.

System (4.11) has the scalar fotiw) + (2 — k)x(t) — kx(t) = c€7(x(¢))%. Since the
linear homogeneous part of this equation has a characteristic equation with real roots, then
use of the variation of parameters formula shows that all solutigns of the nonlinear
equation have a limit ato. Sincey(r) is non-decreasing for ail then(x, y, z) has a limit
ast — oo.

System (4.12) can be rewritten in scalar formydsr z7 — 27 7232 = 0 which integrates
to
Z4
1=
If L < oo, the solution is asymptotic to a two-dimensional surface and there is no chaos.
Clearly L = o is impossible.

t
i—7%4z2zF ci/zz(s)dngoo.
0
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Consider system (4.13) with the plus sign. We obtain

t t
zi—zz—i-zizc—i—Z/ Zz(s)ds+/ z%(s) ds
0 0

and the usual monotonicity argument applies. For the minus sign, the equation is almost
identical to (4.2) and the same argument applies to show(ihat, z) all have limits.
For system (4.14) with a plus sign we obtain

t t
XX —x’+xx=c+ 2/ (x(s))%ds + / x*(s) ds
0 0

for which the left-hand side is monotone increasing. With a minus sign in (4.14) a similar
argument will apply.
For system (4.15) with the plus sign we obtain

x¥— i xi=c +/ (x(s))%ds + / x2(s) (% (s) + x(s5))? ds
0 0

and so again the monotonicity of the left-hand side eliminates the possibility of chaos. With
a minus sign the above argument breaks down and so we proceed as fallswyaonotone
increasing toL.

Case 1. L < 0. Suppose first thatg > 0. Theny starts out negative. I§, > O then
x also starts out negative. i becomes negative befosethenx remains negative and

remains positive. Thus(z) increases t&, x(t) - —K and so(x, y, z) all have limits as
t — oo. If y becomes negative before thenx must remain positive. Hencg(r) again
decreases t&, x(r) - —K and(x, y, z) all have limits as — oo. If yg < 0, then both
y andy remain negative since must remain positive. Agaim(¢) | K, andx(t) -» —K

ast — oo. Now suppose thaty < 0. Theny starts out positive. Ifyg > 0, then bothx

and y remain positive,y(¢) * K, x(t) > —K ast — oo. If yg < 0 thenx(z) starts out
positive. If x becomes positive before then y remains negative and remains positive.
Thusy(t) * K, x(t) > —K ast — oo. If y becomes positive before, thenx remains
negative, hence remains positivey(¢t) 1+ K, x(t) —-> —K ast — oo.

Case 2. L > 0. Then we obtain + x + zx = 0 with z(r) 4 L > 0. Again we have
a positively damped harmonic oscillator and @), x(t) — 0 ast — oo. Thus also
y(t) — 0.

For system (4.16) there is only one sign and two squared terms. Hence L,
y(t) » K andx () - K and so(x, y, z) has a limit ag — oo.

Finally, for system (4.17y > 0 and soy(t) — L ast — oo. Thus alsax(t) — L as
t — oo. If L # 0 thenz(t) - oo ast — oo and soL = co. Now suppose that. = 0.
Theny(t) < 0 for all z. xg = x(0) > 0. If x(r) > 0 for all r > 0 thenz() < 0 for all
t > 0 andz(z) has a limit asxt — oco. Supposex(tg) = 0 for somery. Thenxi(g) < 0
and x(r) becomes negative. Sinagr) < 0 for x(¢r) > y() thenx (1) = y(#;) for some
t1 > to. Thenx() < y(t) <0 forr > 1. Thusz(r) > 0 for ¢t > 75 andz(¢) has a limit at
oo. If xg = x(0) < 0 a similar argument applies. Thgs, y, z) all have the limit 0 orco
ast — oo.

This disposes of all 4- 2 dissipative cases and proves the theorem for this section.

5. Four-term dissipative systems with three nonlinear terms

The next case is the four-term dissipative systems with three nonlinear terms. The four
arbitrary parameters are once again removed by the scaling transformatiomx, y' = By,
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7 = yz, ' = ét. Again in certain cases we can only rescale to 1 withiit aign. The
4 — 3 cases are (eliminating equivalent, two-dimensional, and essentially linear systems):

x=x24yz

y=—2xy (5.1)
Z=-z

X =y"+yz

y=x2 (5.2)
Z=-z

X = y2—|—yz

y = +xz (5.3)
2=-z

X = yZ:I:z2

y=x2 (5.4)
2=z

X = yZ:i:z2

y=xz (5.5)
2=z

X=xy—x

y=xz (5.6)
S

x=y>—x

y=2xz (5.7)
2 =x?

x=y>—x

y=2xz (5.8)
7 =1y>2

x=y>—x

y=2z° (5.9)
Z=x?

x=y>—x

=72 (5.10)
=Xy

X=yz—x

y=x2 (5.11)
7 =+xy
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X=yz—x

y=x2 (5.12)
7 =y>2

X=yz—x

y = txz (5.13)
7 =1y>2

X =y>4yz

y=-y (5.14)
z=x2

Theorem. Systems (5.1)—(5.14) are not chaotic.

Proof. System (5.1) can be rewritten as the scalar equatign = 2x3+ x2 which, when
multiplied by x, integrates to

t
—%x2+ %x‘l—i— %xs =c+/ (x(s))%ds 1 L.
0

If L =00 then lim_ . x(t) = +00. Thus lim_  y(t) = Foo and since lim. », z(t) = 0,
(x,y,z)hasalimitat = co. If L < 0, then any attractor for(z) lies on a two-dimensional
surface.

System (5.2) can be rewritten as the two-dimensional (non-autonomous) system,
y2+cely, y=x2 Thus lim_, y(t) = L < oco. If L = oo, then also lim_, ., x(¢) = oco.

If L < oo then lim_x(t) = L2 If L # 0, then lim_, o x(¢) = oco. If L = 0, then
lim,_, - x() = 0 and any attractor fofx(z), y(z), z(t)) lies on a two-dimensional surface
x = constant.

Consider system (5.3) with a plus sign and take) = ci;e’ wherec; > 0. The
equivalent scalar equation i&7) + y(z) = ce ' (y(1))? + c2e % (y(t))2. Thus if y(z) is
bounded, then lim, . (¥(¢) + y(t)) = 0 and any attractor foy(¢) is two dimensional.
Supposey(t) is unbounded and not eventually monotone. Rewrite (5.3) in the form

X(1) = (@) +cey()
y(t) = cx(r)e™’.

Clearly y(¢z) in this case can never become positive. Algp) > 0 except for 0> y(r) <
—ce . Thus limsup, ., y(#) =0 and liminf_, o y(r) = —oco. To have bothx(s) < 0 and
x(t) < 0 requires—ce™ < y(r) < 0andy(t) < 0. If y(t) < —ce’ < 0, thenx(r) < 0,
x(@) > 0, andy(r) = ce'x(t) — ce 'x(t) > 0. Thus liminf_ o y(#) = —oc leads to a
contradiction. Ifz(¢) is negative or (5.3) has a minus sign in the second equation, similar
arguments can be made. Thus (5.3) has no chaotic behaviour.

If system (5.4) has a plus sign, then all three variabhlg3, y(¢), z(t) are monotone
and have a limit. Consider (5.4) with the minus sign which can be rewritten as

X(1) = (y)* - e ?
V(1) = (x(1))2

Suppose lim,y@®) = L. If L # 0, then lim_,x(t) = oo. If L = 0, then
lim,_, - x(z) = 0 and so any attractor for (5.4) lies on a surfage) = constant.
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System (5.5) can be rewritten as the scalar equation+ y(r) = ce ™" (y(1))? £ e
which integrates to

3

Thus y(t) + y(¢) has a limitL ast — oo. If L = o0, then lim_ « y(t) = o0 and
liMm, . x() = oco. If L is finite, theny(z) + y(t) converges toL ast — oo and any
attractor fory(z) is two dimensional.

For system (5.6) the equivalent scalar equatioj(i$ + y(+) = 0 and thus (5.6) reduces
to a linear system which cannot be chaotic.

For system (5.7) lim, o z(t) = L < oo andx(¢) is increasing when(t) < 0. Thus
either lim_ o x(t) = K exists orx(¢) is eventually positive.y(t) is monotone in either
case and hence has a limitas> co. Thus(x, y, z) all have limits atr = oco.

Systems (5.8)—(5.10) and (5.12) are similar to system (5.7) and hence non-chaotic.
System (5.11) leads tex F zz + y = 0 which is integrable. System (5.13) leads to
xX F yy = —x? which integrates to

t 3
yo) +y@t)=c +f ce*(y(s))%ds T S
0

Fy?=c— 2/ (x(s))? ds.
0

Thus lIM_ o (x())?> F (y(#))?> = L > —oo. If L = —oo0, then lim_, o, y(t) = Zo0. Since
lim,_ z(t) exists, then(x, y, z) all have limits at infinity. If L > —oo, then either both
x(t) and y(t) (and z(z)) have limits at infinity or any attractor for the system lies on a
two-dimensional surface. Thus system (5.13) is non-chaotic.

System (5.14) can be rewritten as the systerma= ce 'z + c?e %, 7 = x°. Thus
lim,,z(t) = L. If L # 0, x(z) is eventually monotone and has a limit at= oo.
If L = 0, then lim_ . x(r) = 0 and any attractor fo(x(¢), y(t), z(¢)) lies on a two-
dimensional surface = constant. O

6. Four-term dissipative systems with constant terms

We now discuss four-term dissipative systems with constant terms. Clearly the equations
already discussed would be simplified if any term were replaced by a constant and are thus
still not chaotic. It is easily verified by inspecting the list of41 and 4— 2 systems that

there are no non-trivial dissipative systems when any term is replaced by a constant. For
4— 3 systems there are the following non-trivial dissipative cases when one term is replaced
by a constant:

X =41+y?

y=2xz (6.1)
Z=-z

x=14yz

y=x2 (6.2)
Z=-z

x=1—x

y=2xz (6.3)
=7
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x=y>—x

y=xz (6.4)
z=1

X=yz—x

§ = x2 (6.5
z=1

Systems (6.1) and (6.2) have the familiar behavipy = ce™* — 0 ast — oo and
thus any attractor lies in the plane= 0.

For system (6.3x(r) — 1, z(t) + L astr — oo and thus bothx(r) and z(r) are
eventually of one sign. Thus(z) is monotone and has a limit as—> oo.

For system (6.4 (1) — +o0 ast — oo and so is eventually positive.x(r) is
either negative and increasing to a limit or eventually becomes positive. ¥auss
also eventually of one sign. Thugt) is monotone and has a limit ast — oo. Thus
x(t) - L ast — oo and so(x, y, z) has a limit ag — oo.

For system (6.5} (1) — 400 ast — oo. Alsoy(¢) 1+ L ast — oco. Thusy(t)z(t) —> K
ast — oo and alsox(r) — K ast — oo. Thus(x, y, z) has a limit atr = cc.

7. Generalizations and conclusions

The arguments employed for four-term dissipative equations will carry over to most, but
not all, non-dissipative equations. However, there are many more cases to consider. A
partial analysis of this complexity has been carried out by Zhang [10]. Just-thg dase

alone has 810 different patterns. After eliminating equivalent systems (by permutng)

there are still 138 different types of-41 equations. It turns out that 101 of these can be
completely integrated, thereby eliminating the possibility of chaos. Of the remaining 37
patterns, 13 are essentially second-order autonomous systems and hence non-chaotic. Out
of the remaining 24 cases eight are dissipative (analysed in section 3) and the remaining 16
are not dissipative. Many of these 16 cases are easily treated by our methods but not all.
For example the system

X=xz+7z2
y=x
t=y
is equivalent to the scalar equation= zZ+z which is difficult to analyse. Also, the system
x=x%4y
y=2
=X

is equivalent to the scalar equati®n= j° + y, again hard to analyse.

For four-term equations with two nonlinearities there are 477 systems not
permutationally equivalent. Of these, 134 are neither solvable, two-dimensional, nor
reducible to linear systems. The 17 dissipative cases are treated in section 4. Two examples
of non-dissipative cases that are hard to analyse are

X =xy+y°
y=z

I=x
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which is equivalent t6/ = yy + y? and

x=x24y
y=yz
I=x

which is equivalent t&¢ = zz7 + z7 — z22.

Not surprisingly four-term equations with three nonlinear terms can be even more
complicated. For example

X =x2+xy
y=yz
Z=x

reduces to the scalar equatign® = 3yy3 — 2y% + y? — yy? and the system

X =Xxy+xz
y =Xy
7=y

reduces tac; = 722 + 727 + 72

Of course there are no four-term dissipative systems with four nonlinear terms. Without
the assumption of dissipativity there seems little hope of analysing the many complicated
systems which could arise.

It is very interesting that Sprott [8] has recently found an example of a five-term
equation with only one nonlinearity which is both dissipative and chaotic. His example
7 + A7 — 2?24z = 0 is the scalar form of

)'c=y2—z
y=x—Ay
Z=y.

Many five-term equations with just one nonlinearity are amenable to the methods of this
paper but clearly not all. It would be interesting to see how many distinct cases of dissipative
5— 1 chaos can exist.

We are also currently trying to extend this analysis to four-term conservative systems.

Acknowledgment

The authors wish to thank the referee for many helpful comments.

References

[1] Hartman P 1964rdinary Differential EquationgNew York: Wiley)

[2] Hoover W G 1995 Remark on ‘Some simple chaotic floviAlys. RevE 51 759

[3] Jacksm E A 1990Perspective of Nonlinear Dynamiesl 2 (Cambridge: Cambridge University Press)

[4] Lorenz E N 1963 Deterministic nonperiodic flod: Atmos. Sci20 130

[5] Polyann A D and Zaitsg V F 1995Handbook of Exact Solutions for Ordinary Differential EquatigB®ca
Raton, FL: Chemical Rubber Company)

[6] Rossle O E 1976 An equation for continuous cha@kys. Lett57A 397

[7] Sprot J C 1994 Some simple chaotic flow#hys. RevE 50 R647

[8] Sprot J C 1997 Simplest dissipative chaotic fl®hys. LettA 228271

[9] Wiggins S 1990introduction to Applied Nonlinear Dynamical Systems and CHatsw York: Springer)

[10] Zhang F 1996 Chaotic behavior in three dimensional quadratic systéesisUniversity of Nebraska at

Omaha, Omaha



