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Abstract

In this paper we apply Theorem 2.1 in [Heidel J, Zhang F. Nonchaotic and chaotic behaviour in the three-dimen-
sional quadratic systems: five-one conservative cases, in press] to some simple chaotic jerk functions listed in [Sprott JC.
Simple chaotic systems and circuits. Am J Phys 2000;68(8):758–63; Sprott JC. Algebraically simple chaotic flows. Int J
Chaos Theory Appl 2000;5(2):1–20] to locate the parameter regions at which they are nonchaotic. We show that for
each of the twenty chaotic systems studied here there are some nonchaotic parameter regions. This indicates that
our theorem will help reduce the amount of work searching for parameters causing chaos. We also generalize Theorem
2.1 to include systems with exponential functions.
� 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Recently progress in determining a system of ODEs being nonchaotic has been made [15]. The authors proved a
general theorem, which provides sufficient conditions for solutions in 3D autonomous systems to be nonchaotic. Sys-
tematic studies of nonchaotic behavior of nonlinear ODEs trace back to work in 1997 [14] (see also [2]), in which was
proposed a new idea for determining if a 3D autonomous system is nonchaotic. In [15] the idea was generalized to a
theory. In this paper we apply the theorem to locate nonchaotic parameter and/or initial conditions regions in some
chaotic systems. These systems include the Lorenz system [5], the Rössler equations [7] and some equations in jerk
dynamics in the form x000 = J(x00,x 0,x), where J(x00,x 0,x) is called a jerk function and the equation is called a jerk equa-
tion, see [4,13].

Here we list the 20 chaotic autonomous systems and jerk functions we will study in this paper as follows:
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(A) Quadratic jerk equations

Lorenz equation

x0 ¼ rxþ ry

y0 ¼ �xzþ rx� y

z0 ¼ xy � bz

8><
>: ð1:1Þ

where r, r, and b are constants. The equations have chaos when r = 10, r = 28, and b = 8/3.
Rössler equation

x0 ¼ �y � z

y0 ¼ xþ ay

z0 ¼ bþ xz� cz

8><
>: ð1:2Þ

where a, b, and c are constants. The system is chaotic when a = b = 0.2 and c = 5.7.

x000 þ ax00 � x02 þ x ¼ 0 ð1:3Þ
x000 þ ax00 � xx0 þ x ¼ 0 ð1:4Þ
x000 þ ax00 þ x0 ¼ GðxÞ ð1:5Þ

where G(x) is a second-degree (or higher) polynomial such as x2 � b or x(x � b).

x000 þ axx00 � x02 þ x ¼ 0 ð1:6Þ

x000 ¼ �x00 � ax0 � bx2 þ b
4

ð1:7Þ

x000 ¼ �x00 � ax0 � bxþ xx0 ð1:8Þ
x000 ¼ �ax00 þ bx0 þ cx2 þ xx0 � 1 ð1:9Þ
x000 ¼ ax00 þ bx0 þ cx2 þ xx00 � 1 ð1:10Þ
x000 ¼ ax0 þ bx2 þ x02 � xx00 ð1:11Þ
x000 ¼ ax00 þ bx0 þ cx2 þ dx02 þ exx0 þ xx00 � 1 ð1:12Þ
x000 ¼ ax00 þ bx0 þ x2 � 1 ð1:13Þ
x000 ¼ ax00 þ bxþ xx0 � 1 ð1:14Þ

(B) Cubic jerk equations and other types

x000 þ x00 þ ðT � Rþ Rx2Þx0 þ Tx ¼ 0 ð1:15Þ
x000 ¼ �ax0 � ðx� x3Þ ð1:16Þ
x000 ¼ �ax00 þ bx0 � x3 � x ð1:17Þ
x000 þ x00 þ x2x0 þ ax ¼ 0 ð1:18Þ
x000 ¼ �ax00 � ex0 � x ð1:19Þ
x000 ¼ �ax00 � bx0 þ x� ex ð1:20Þ

In systems (1.3)–(1.17), (1.19), (1.20), a, b, c, d, e, R, and T are constants.
Sprott [12] gave some parameter values at which the systems are chaotic. For the reader’s convenience we list some

of them here. (1.3) and (1.4), a = 2.017; (1.6), a = 0.645; (1.9), a = 0.6, b = �3, c = 5; (1.10), a = �0.6, b = �2, c = 3;
(1.11), a = 0.5, b = �1; (1.12), a = �1, b = 1, c = 2, d = �3, e = 1; (1.13), a = �0.5, b = �1.9; (1.14), a = �1.8, b = �2;
(1.16), a = 3.7; (1.17), a = 0.6, b = 2.8. The remaining systems (1.5), (1.7), (1.8), (1.15), (1.18), (1.19), and (1.20) can also
be found in [12]. Also see [8,10,11].

Sprott [9] discovered that Eq. (1.3) is the simplest dissipative chaotic jerk function and showed that for a = 2.017, and
initial conditions (x,x 0,x00) = (0,0,�1), the Lyapunov exponents (base-e) are (0.0550,0,�2.0720) and Kaplan–Yorke
dimension is DKY = 2.0265. The range of a over which chaos occurs is quite narrow (2.0168. . . < a < 2.0577. . .). Eq.
(1.15) is known as the Moore–Spiegel oscillator and it is chaotic when T = 6 and R = 20, see [6,3].
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We recall Theorem 1.2 in [15] in the following.
Consider the autonomous system

x0 ¼ f ðxÞ; x 2 RN ; t 2 R ð1:21Þ

where 0 ¼ d
dt, f : RN ! RN is continuous. Let x(0) = x0, and xj, x0j and fj, j = 1,2, . . . ,N be the jth components of x, x0 and

f, respectively. Since we consider only bounded chaos in this paper, for convenience we call bounded chaos simply chaos.
Let P(x) = RaAax

a be a polynomial, where x 2 RN , N P 1 is an integer, a = (a1, . . . ,aN), and each of the ai’s is a non-
negative integer, xa ¼ xa1

1 . . . xaN
N , the order of the multi-index a is denoted by jaj = a1 + � � � + aN and Aa 2 R. By the fun-

damental theorem of algebra, every polynomial in the above form can be factored as the product of irreducible
polynomials with real coefficients. Therefore for some m 6 maxjaj

P ðxÞ ¼ Pm
j¼1P jðxÞ; ð1:22Þ

where Pj(x)’s are irreducible polynomials and the zero set fx 2 RN jP ðxÞ ¼ 0g of P(x) is the union of the zero sets of
Pj(x), j = 1, . . . ,m. The zero set of each of the Pj(x) consists of a finite number of connected components and each
of them has dimension at most N � 1 in RN . We call each connected component of an irreducible polynomial a simple

surface, a connected component that consists of more than one component of irreducible polynomials a complex sur-

face. In this paper we also call a connected component an isolated surface.
For N = 3 an isolated surface can consist of a finite number of two-dimensional simple surfaces that are joined by a

finite number of one-dimensional curves and/or points. From now on we consider the case N = 3 and make the follow-
ing assumptions on system (1.21):

(H1) System (1.21) is equivalent to

F þðx00j ; x0j; xjÞ ¼ Cþ þ
Z t

0

Gþðx00j ðsÞ; x0jðsÞ; xjðsÞÞds; 0 ¼ d

dt
ð1:23Þ

for some integer 1 6 j 6 3 and equivalent to

F �ð€xj; _xj; xjÞ ¼ C� þ
Z s

0

G�ð€xjðsÞ; _xjðsÞ; xjðsÞÞds; � ¼ d

ds
; s ¼ �t ð1:24Þ

for some integer 1 6 j 6 3, where C± are constants and G±(y) P 0, for all y 2 R3.
(H2) Each of the functions f(y) in (1.21), F±(y), G±(y) in (2.5) and (1.28), y 2 R3 is either a polynomial or a rational

expression such that each of the simple surfaces is homeomorphic to a plane or a sphere or a subset of a plane or a
sphere. Let

G�ðyÞ ¼ R�0 ðyÞ
Q�0 ðyÞ

; F �ðyÞ ¼ R�ðyÞ
Q�ðyÞ

and f ðyÞ ¼ rðyÞ
qðyÞ

where R±(y), Q±(y), r(y) and q(y) are polynomials. We assume that Q�0 ðyÞ > q0 > 0, jQ±(y)j > Q1 > 0, and
jq±(y)j > q1 > 0 for some positive constants q0, Q1, and q1.

Theorem 1.1 [15]. Let N = 3. Under hypotheses (H1) and (H2) system (1.21) has no bounded chaos.

Next we extend theorem 1.1 in the following way. Let f be in the following form:

P eðxÞ ¼ RaeRbBbxb
Aaxa: ð1:25Þ

for some m 6 maxjaj and k 6 maxjbj and

P eðxÞ ¼ Pm
j¼1P ejðxÞ; ð1:26Þ

where the Pej(x)’s are in the form (1.25) and irreducible. The zero set fx 2 RN jP eðxÞ ¼ 0g of Pe(x) is the union of the zero

sets of Pej(x), j = 1, . . . ,m. The zero set of each of the Pej(x) consists of a finite number of connected components and each of

them has dimension at most N � 1 in RN . Here we consider the case N = 3.

We make the following assumptions on system (1.21):

(A1) System (1.21) is equivalent to

F þðx00j ; x0j; xj; eKþ
1 ; . . . ; eKþ

nþ Þ ¼ Cþ þ
Z t

0

Gþðx00j ðsÞ; x0jðsÞ; xjðsÞ; eHþ
1 ; . . . ; eHþ

mþ Þds; ð1:27Þ

for some integer 1 6 j 6 3, where 0 ¼ d
dt, and equivalent to

F �ð€xj; _xj; xj; eK�
1 ; . . . ; eK�n� Þ ¼ C� þ

Z s

0

G�ð€xjðsÞ; _xjðsÞ; xjðsÞ; eH�
1 ; . . . ; eH�m� Þds; ð1:28Þ
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for some integer 1 6 j 6 3, where � ¼ d
ds ; s ¼ �t, C± are constants, K�k� , H�i� are polynomials in ðx00j ; x0j; xjÞ and G±(y) P 0

for all y 2 R3þm� .

(A2) Each of the functions f(y) in (1.21), y 2 R3, F±(y), y 2 R3þn� , G±(y), y 2 R3þm� and K�k�ðyÞ and H�i�ðyÞ, y 2 R3 in

(1.27) and (1.28), is either a polynomial or a rational expression such that each of the simple surfaces is homeomorphic to a

plane or a sphere or a subset of a plane or a sphere. Let

G�ðyÞ ¼ R�0 ðyÞ
Q�0 ðyÞ

; F �ðyÞ ¼ R�ðyÞ
Q�ðyÞ

and f ðyÞ ¼ rðyÞ
qðyÞ

where R±(y), Q±(y), r(y) and q (y) are polynomials. We assume that Q�0 ðyÞ > q0 > 0, jQ±(y)j > Q1 > 0, and

jq±(y)j > q1 > 0 for some positive constants q0, Q1, and q1.

Theorem 1.2. Let N = 3. Under hypotheses (A1) and (A2) system (1.21) has no bounded chaos.

The proof is the same as that of Theorem 1.1 in [15].

2. Quadratic jerk equations

First we determine nonchaotic parameter regions of the Lorenz equations and Rössler equation.
Consider the Lorenz equations

x0 ¼ rxþ ry

y0 ¼ �xzþ rx� y

z0 ¼ xy � bz

8><
>: ð2:1Þ

where r, r, and b are constants.

Theorem 2.1. If (1) r P 0, 0 6 b 6 2r + 2, r 6 1 or r P 0, b 6 0, r P 1.

(2) r 6 0, b P max{2r + 2,0}, r 6 1 or r 6 �1; or 2r + 2 6 b 6 0, r P 1, then the Lorenz system (2.1) is not chaotic.

Proof. From the first equation of (2.1), we have

x00 ¼ �rx0 þ ry0 ¼ �rx0 þ rð�xzþ rx� yÞ

x00 ¼ �rx0 þ ry0 ¼ �rx0 þ r �xzþ rx� x0

r
� x

� �

x000 ¼ �rx00 þ r �x0z� xz0 � x00

r
� x0 þ rx0

� �

x000 ¼ �rx00 � rx0zþ rxðxy � bzÞ � x00 � rx0 þ rrx0

Multiply both sides of the equation by x. We have

xx000 ¼ �rxx00 � rx0xzþ rx3 1

r
x0 þ x

� �
� brx2z� xx00 � rxx0 þ rrxx0

Since rxz = �x00 � rx 0 + r rx � x 0 � rx

xx000 ¼ �rxx00 � x0ð�x00 � rx0 þ rrx� x0 � rxÞ þ x3x0 þ rx4 � bxð�x00 � rx0 þ rrx� x0 � rxÞ � xx00 � rxx0 þ rrxx0

Integrating this equation, we obtain

xx00 � 1

2
x02 � 1

2
bðrþ 1Þx2 � 1

2
x02 � ðb� r� 1Þxx0 � 1

4
x4 ¼ C þ

Z t

0

ðrx4 � ðb� 2r� 2Þx02 þ brð1� rÞx2Þds

where C is a constant and t P 0. We need to calculate the following inequalities:

r P 0

b� 2r� 2 6 0

brð1� rÞP 0

8><
>: or

r 6 0

b� 2r� 2 P 0

brð1� rÞ 6 0

8><
>:

For the first set of inequalities, we obtain condition (1)

F. Zhang et al. / Chaos, Solitons and Fractals 36 (2008) 862–873 865
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r P 0

0 6 b 6 2rþ 2

r 6 1

8><
>: or

r P 0

b 6 0

r P 1

8><
>:

For the second set, we obtain condition (2)

r 6 0

b P maxf2rþ 2; 0g
r 6 1

8><
>: or

r 6 �1

2rþ 2 6 b 6 0

r P 1

8><
>:

When condition (1) or (2) is satisfied, r x4 � (b � 2r � 2)x 02 + br(1 � r)x2 P 0 or 60. By Theorem 1.1, the Lorenz sys-
tem is not chaotic under condition (1) or (2). h

Note that Lorenz equation has chaos when r = 10, r = 28, and b = 8/3. An interesting condition (r P 0,
0 6 b 6 2r + 2 and r 6 1) obtained by Theorem 2.1 shows a parameter region where the Lorenz equations do not exhibit
chaos.

Consider the Rössler equations

x0 ¼ �y � z

y0 ¼ xþ ay

z0 ¼ bþ xz� cz

8><
>: ð2:2Þ

where a, b, and c are constants.

Theorem 2.2. If (c + 1)2 � 4ab 6 0, the Rössler system (2.2) is not chaotic.

Proof. From the second equation of (2.2), we have

y000 � ay00 ¼ x00 ¼ �y0 � z0

y000 � ay00 ¼ �y � b� xzþ cz

Since x = y 0 � ay, we have z = �y � x 0 = �y � y00 + ay 0. Thus

y000 � ay00 ¼ �y � b� ðy0 � ayÞð�y � y00 þ ay 0Þ þ cð�y � y00 þ ay0Þ
y000 � ay00 ¼ �y � bþ yy 0 þ y0y00 � ay02 � ay2 � ayy 00 þ a2yy0 � cy � cy 00 þ acy 0

thus

y000 � ay00 ¼ ð�1� cÞy � bþ ð1þ a2Þyy 0 þ y0y00 � ay2 � aðyy 0Þ0 � cy 00 þ acy0

y00 � ay 0 ¼ 1

2
ð1þ a2Þy2 þ 1

2
y02 � ayy 0 � cy0 þ acy �

Z t

0

ðay2 þ ð1þ cÞy þ bÞdsþ A

where A is a constant and t P 0. When condition (c + 1)2 � 4ab 6 0 is satisfied, ay2 + (1 + c)y + b P 0 or 60. By The-
orem 1.1 the Rössler system is not chaotic under the given conditions.

Next we are going to determine nonchaotic parameter regions of some simple chaotic jerk functions which were
discovered by Sprott and others. h

Consider equation

x000 þ ax00 � x02 þ x ¼ 0 ð2:3Þ

Theorem 2.3. If a < 0, Eq. (2.3) is not chaotic.

Proof. Multiply both sides of Eq. (2.3) by x00. We have

x00x000 þ ax002 � x02x00 þ xx00 ¼ 0

Integrate the equation to get

1

2
x002 � 1

3
x03 þ xx0 ¼ C þ

Z t

0

ðx02 � ax002Þds

where C is a constant and t P 0. When a < 0, x
02 � ax002 P 0. By Theorem 1.1 this equation is not chaotic. h
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Consider equation

x000 þ ax00 � xx0 þ x ¼ 0 ð2:4Þ

Theorem 2.4. If a < 0, Eq. (2.4) is not chaotic.

Proof. Multiply both sides of Eq. (2.4) by x.
We have

xx000 þ axx00 � x2x0 þ x2 ¼ 0

Integrate the equation to get

xx002 � 1

2
x02 þ axx0 � 1

3
x3 ¼ C þ

Z t

0

ðax02 � x2Þds

where C is a constant and t P 0. When a < 0, ax
02 � x2

6 0. By Theorem 1.1 this equation is not chaotic. h

Consider the equation

x000 þ ax00 þ x0 ¼ GðxÞ ð2:5Þ

where G(x) is a second-degree (or higher) polynomial such as x2 � b or x(x � b). a and b are constants. We have the
following theorem.

Theorem 2.5. If G(x) > 0, aGx(x) P 0, or axG(x) P 0 and a 5 0, Eq. (2.5) is not chaotic.

Proof. If G(x) > 0 integrate Eq. (2.5) to get

x00 þ ax0 þ x ¼
Z t

0

GðxÞdsþ C

where C is a constant and t P 0. By theorem, this equation is not chaotic.
If aGx(x) P 0, multiply both sides of Eq. (2.5) by x00. We have

x00x000 þ ax002 þ x0x00 ¼ GðxÞx00

Integrate the equation to get

1

2
x002 þ 1

2
x02 � GðxÞx0 ¼ C �

Z t

0

ðax002 þ x02GxðxÞÞds

where C is a constant and t P 0. Since aGx(x) P 0, ax002 + x 02Gx (x) P 0 or 60. By the theorem, this equation is not
chaotic.

If axG(x) P 0, and a 5 0, multiply both sides of Eq. (2.5) by x. We have

xx000 þ axx00 þ xx0 ¼ GðxÞx

Integrate the equation to get

xx00 � 1

2
x02 þ axx0 þ 1

2
x2 ¼ C þ

Z t

0

ðax02 þ xGðxÞÞds

where C is a constant and t P 0. Since axG(x) P 0, ax
02 + xG(x) P 0 or 60. By Theorem 1.1, this equation is not cha-

otic. This completes the proof of the theorem. h

For example: Let G1(x) = x2 � b and G2(x) = x3 � b.
If we take b < 0, G1(x) = x2 � b P 0, then this equation is not chaotic.
If a > 0 and G2x(x) = 3x2, then ax 02 + Gx(x)x

02 = ax002 + 3x2x 02 P 0. So this equation is not chaotic either.
Note that our theorem cannot deal with the case G(x) = x(x � b).
Consider the following equation:

x000 þ axx00 � x02 þ x ¼ 0 ð2:6Þ

Theorem 2.6. (1) If a = �2, or

(2) If a < 0 and x00ð0ÞP � 1
a, x(0), x0ð0Þ 2 R, Eq. (2.6) is not chaotic.

F. Zhang et al. / Chaos, Solitons and Fractals 36 (2008) 862–873 867
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Proof. (1) Multiply both sides of Eq. (2.6) by x 0. We have

x0x000 þ axx0x00 � x03 þ xx0 ¼ 0

Integrate the equation to get

xx00 �
Z t

0

x002 dsþ
Z t

0

axx0x00 ds�
Z t

0

x03 dsþ 1

2
x2 ¼ C

SinceZ t

0

xx0x00 ds ¼ 1

2
xx02 � 1

2

Z t

0

x03 ds

we have

xx00 þ a
2

xx02 þ 1

2
x2 ¼ C þ

Z t

0

x002 dsþ a
2
þ 1

� � Z t

0

x03 ds

where C is a constant and t P 0. When a = �2, by Theorem 1.1, this equation is not chaotic.

(2) Multiply both sides of Eq. (2.6) by integration factor e
a
R t

0
x ds

. We have

e
a
R t

0
x dsx000 þ axe

a
R t

0
x dsx00 � x02e

a
R t

0
x ds þ xe

a
R t

0
x ds ¼ 0

and so

e
a
R t

0
x dsx00 þ 1

a
e

a
R t

0
x ds

� �0
¼ x02e

a
R t

0
x ds

Integrate the equation to get

x00ðtÞ ¼ � 1

a
þ x00ð0Þ þ 1

a
þ
Z t

0

x02e
a
R s

0
xðsÞ ds

ds
� �

e
�a
R t

0
x ds

where C is a constant and t P 0. Since a < 0 and x00ð0ÞP � 1
a, x(0), x0ð0Þ 2 R, so x00(t) > 0. The equation is not

chaotic. h

Consider the equation

x000 ¼ �x00 � ax0 � bx2 þ b
4

ð2:7Þ
Theorem 2.7. If a < 0 and b 2 R, Eq. (2.7) is not chaotic.

Proof. Multiply both sides of Eq. (2.7) by x 0. We have

x0x000 ¼ �x0x00 � ax02 � bx2x0 þ b
4

x0

Integrate the equation to get

x0x00 þ 1

2
x02 þ b

3
x03 � b

4
x ¼ C þ

Z t

0

ðx002 � ax02Þds

where C is a constant and t P 0. When a < 0, x002 � ax 02 P 0. By Theorem 1.1 this equation is not chaotic. h

Consider equation

x000 ¼ �x00 � ax0 � bxþ xx0 ð2:8Þ

Theorem 2.8. If b < 0 and a 2 R, Eq. (2.8) is not chaotic.

Proof. Multiply both sides of Eq. (2.8) by x. We have

xx000 ¼ �xx00 � axx0 � bx2 þ x2x0

Integrate the equation to get
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xx00 � 1

2
x02 þ a

2
x2 þ xx0 � 1

3
x3 ¼ C þ

Z t

0

ðx02 � bx2Þds

where C is a constant and t P 0. When b < 0, x
02 � bx2 P 0. By Theorem 1.1 this equation is not chaotic. h

Consider equation

x000 ¼ �ax00 þ bx0 þ cx2 þ xx0 � 1 ð2:9Þ

Theorem 2.9. If c < 0 or c = 0.5 and a; b 2 R, Eq. (2.9) is not chaotic.

Proof. Integrate Eq. (2.9) to get

x00 þ ax0 � bx� 1

2
x2 ¼ C þ

Z t

0

ðcx2 � 1Þds

where C is a constant and t P 0. When c < 0, a; b 2 R, cx2 � 1 < 0. By the theorem, this equation is not chaotic.
Multiply both sides of Eq. (2.9) by x00 and integrate to get

1

2
x002 � b

2
x02 � cx2x0 þ x0 ¼ C �

Z t

0

x002 dsþ ð1� 2cÞ
Z t

0

xx0x00 ds

When c = 0.5 and a; b 2 R, by Theorem 1.1 this equation is not chaotic. h

Consider equation

x000 ¼ ax00 þ bx0 þ cx2 þ xx00 � 1 ð2:10Þ

Theorem 2.10. If c < 0 and a; b 2 R, Eq. (2.10) is not chaotic.

Proof. Integrating Eq. (2.10), we have

x00 � ax0 � bx� xx0 ¼ C þ
Z t

0

ðcx2 � x02 � 1Þds

where C is a constant and t P 0. When c < 0, a; b 2 R, cx2 � x 02 � 1 < 0. By Theorem 1.1 this equation is not
chaotic. h

Consider equation

x000 ¼ ax0 þ bx2 þ x02 � xx00 ð2:11Þ

Theorem 2.11. If b > 0 and a 2 R, Eq. (2.11) is not chaotic.

Proof. Integrate Eq. (2.11) to get

x00 � axþ xx0 ¼ C þ
Z t

0

ðbx2 þ 2x02Þds

where C is a constant and t P 0. When b > 0, a 2 R, bx2 + 2x 02 P 0. By Theorem 1.1 this equation is not chaotic. h

Consider the equation

x000 ¼ ax00 þ bx0 þ cx2 þ dx02 þ exx0 þ xx00 � 1 ð2:12Þ

Each of e = 0 or e 5 0 present a different chaotic jerk function.

Theorem 2.12. If (1) c 6 0, d 6 0, and a; b 2 R; or (2) c 6 0, d = 1 and a; b; e 2 R, Eq. (2.12) is not chaotic.

Proof. Integrate Eq. (2.12) to get

x00 � ax0 � bx� xx0 � e
2

x2 ¼ C þ
Z t

0

ðcx2 þ dx02 � x02 � 1Þds

where C is a constant and t P 0.
(1) When c 6 0, d 6 0, or (2) When c 6 0, d = 1, a; b; e 2 R, cx2 + dx 02 � x 02 � 1 < 0. By Theorem 1.1 the equation is

not chaotic. h
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Consider equation

x000 ¼ ax00 þ bx0 þ x2 � 1 ð2:13Þ
Theorem 2.13. If b > 0, Eq. (2.13) is not chaotic.

Proof. Multiply both sides of Eq. (2.13) by x 0. We have

x0x000 ¼ ax0x00 þ bx02 þ ðx2 � 1Þx0

Integrate the equation to get

x0x00 � a
2

x02 þ 1

3
x3 þ x ¼ C þ

Z t

0

ðx002 þ bx02Þds

where C is a constant and t P 0. When b > 0, x002 + bx 02 P 0. By Theorem 1.1 this equation is not chaotic. h

Consider equation

x000 ¼ ax00 þ bxþ xx0 � 1 ð2:14Þ

Since we can not deal with the jerk function using the main theorem in [15], we are going to study the function by an-
other method. Let P0 = (x(0),y(0), z(0)) be initial values.

Theorem 2.14. If b > 0, a > 0 and xð0Þ > 1
b, y(0), z(0) > 0, then Eq. (2.14) is not chaotic.

Proof. We rewrite Eq. (2.14) as a system

x0 ¼ y

y0 ¼ z

z0 ¼ azþ bxþ xy � 1

8><
>:

and note that

�xx0 ¼ �xy; �ay0 ¼ �az

Adding the last three equations, we have

z� ay � 1

2
x2

� �0
¼ bx� 1

When b > 0, a > 0 and we choose xð0Þ > 1
b, y(0) > 0, z(0) > 0, then

x0ð0Þ > 0; y0ð0Þ > 0; z0ð0Þ ¼ azð0Þ þ bxð0Þ þ xð0Þyð0Þ � 1 > 0; and z� ay � 1

2
x2

� �0
ð0Þ ¼ bxð0Þ � 1 > 0:

Therefore there exists a g > 0 such that when t 2 (0,g), z� ay � 1
2
x2

� �0 ¼ bx� 1 > 0, x 0 > 0, y 0 > 0, and z 0 = az +
bx + xy � 1 > 0.

Suppose that there is a finite T > g such that xðT Þ ¼ 1
b. This implies that there exists a t* 2 (g,T) such that

x 0(t*) = y(t*) = 0. Thus there exists a t** 2 (g, t*] such that y0(t**) = z(t**) = 0. Since z� ay � 1
2 x2

� �0 ¼ bx� 1 > 0, for
t 2 (g, t**], z� ay � 1

2 x2 % and �ay � 1
2 x2 &. Hence z% for t 2 (g, t**]. This contradicts z(t**) = 0. Thus

z� ay � 1
2 x2

� �0 ¼ bx� 1 > 0, x0 > 0, y 0 > 0 and z0 > 0, for all t > 0. Hence this equation is not chaotic under the
given conditions. h

3. Cubic jerk equations and other types

Consider equation

x000 þ x00 þ ðT � Rþ Rx2Þx0 þ Tx ¼ 0: ð3:1Þ

Theorem 3.1. If T < 0 and R 2 R, Eq. (3.1) is not chaotic.

Proof. Multiply both sides of Eq. (3.1) by x. We have
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xx000 þ xx00 þ ðT � Rþ x2Þxx0 þ Tx2 ¼ 0:

Integrating the equation to get

xx00 � 1

2
x02 þ xx0 þ T � R

2
x2 þ R

4
x4 ¼ C þ

Z t

0

ðx02 � Tx2Þds

where C is a constant and t P 0. When T < 0, x
02 � Tx2 P 0. By Theorem 1.1 this equation is not chaotic. h

Consider equation

x000 ¼ �ax0 � ðx� x3Þ ð3:2Þ

Theorem 3.2. If a < 0, Eq. (3.2) is not chaotic.

Proof. Multiply both sides of Eq. (3.2) by x 0. We have

x0x000 ¼ �ax02 � ðx� x3Þx0

Integrate the equation to get

x0x00 � 1

2
x2 � 1

4
x4

� �
¼ C þ

Z t

0

ðx002 � ax02Þds

where C is a constant and t P 0. When a < 0, x
002 � ax 02 P 0. By Theorem 1.1 this equation is not chaotic. h

Consider equation

x000 ¼ �ax00 þ bx0 � x3 � x ð3:3Þ

Theorem 3.3. If a < 0, Eq. (3.3) is not chaotic.

Proof. Multiply both sides of Eq. (3.3) by x00. We have

x00x000 ¼ �ax002 þ bx0x00 � x03x00 � xx00

Integrate the equation to get

1

2
x002 � b

2
x02 þ 1

4
x04 þ xx0 ¼ C þ

Z t

0

ðx02 � ax002Þds

where C is a constant and t P 0. When a < 0, x
02 � ax002 P 0. By Theorem 1.1 this equation is not chaotic. h

Consider equation

x000 þ x00 þ x2x0 þ ax ¼ 0 ð3:4Þ

Theorem 3.4. If a < 0, Eq. (3.4) is not chaotic.

Proof. Eq. (3.4) can be written as

x0 ¼ y

y0 ¼ z

z0 ¼ �z� x2y � ax

8><
>:

which leads to

xz0 ¼ �xz� x3y � ax2

zx0 ¼ zy

� yy 0 ¼ �zy

x3x0 ¼ x3y

xy 0 ¼ xz

yx0 ¼ y2
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Add the above six equations and integrate to get

xzþ xy � 1

2
y2 þ 1

4
x4 ¼ C þ

Z t

0

ðy2 � ax2Þds

where C is a constant and t P 0. When a < 0, y2 � ax2 P 0. By Theorem 1.1 this equation is not chaotic. h

The following jerk functions are of exponential types
Consider equation

x000 ¼ �ax00 � ex0 � x ð3:5Þ

Theorem 3.5. If a < 0, Eq. (3.5) is not chaotic.

Proof. Multiply both sides of Eq. (3.5) by x00. We have

x00x000 ¼ �ax002 � ex0x00 � xx00

Integrate the equation to get

1

2
x002 þ ex0 þ xx0 ¼ C þ

Z t

0

ðx02 � ax002Þds

where C is a constant and t P 0. When a < 0, x 02 � ax002 P 0. By Theorem 1.2 this equation is not chaotic. h

Consider equation

x000 ¼ �ax00 � bx0 þ x� ex ð3:6Þ

Theorem 3.6. If b < 0, Eq. (3.6) is not chaotic.

Proof. Multiply both sides of Eq. (3.6) by x 0. We have

x0x000 ¼ �ax0x00 � bx02 þ xx0 � exx0

Integrate the equation to get

x0x00 þ a
2

x02 � 1

2
x2 � ex ¼ C þ

Z t

0

ðx002 � bx02Þds

where C is a constant and t P 0. When b < 0, x
002 � bx 02 P 0. Again by Theorem 1.2 this equation is not chaotic. h

4. Conclusion

Our study in this paper indicates that our theorem in [15] can be applied to a large number of chaotic ODEs and jerk
functions to determine nonchaotic parameters. However we can not provide a clear cut between chaotic and nonchaotic
parameter regions. This is of course very difficult. There are also coupled chaotic jerk dynamical systems, such as

x000 þ ax00 þ x0 ¼ x2 � bx

x000 þ ax00 � xx02 þ x3 ¼ 0

for which our theory can not produce useful result.
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