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Abstract 

The solution to a deceptively simple combinatorial problem on bit strings results in the 

emergence of a fractal related to the Sierpinski Gasket. The result is generalized to higher 

dimensions and applied to the study of global dynamics in Boolean network models of 

complex biological systems. 
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1. INTRODUCTION  

The relationship between combinatorics and fractal geometry1 is beautifully illustrated by 

construction of the Sierpinski Gasket from Pascal’s Triangle by reducing the binomial 

coefficients modulo two.2 In this paper we show how a relatively simple combinatorial 

problem on comparing two bit strings of length m leads to the construction of a fractal 

that is an interesting variant of the Sierpinski Gasket. Moreover, by generalizing the 

combinatorial problem to comparing k bit strings of length m, we construct a sequence of 

higher-dimensional fractals. An unexpected consequence of this generalized fractal 

construction is a direct link to the global dynamical behaviors arising in the study of 

certain classes of Boolean network models of complex biological systems.  

 Consider the following simple combinatorial question: Given two bit strings of 

length, say 4, written as rows of a 42×  matrix, how many distinct columns are there? 

The columns are bit strings of length 2, and there are 4 possible column types, namely, 

00, 01, 10, and 11. For example, the two bit strings, 0011 and 1011, written as rows in the 

following 42×  matrix: ��
�

�
��
�

�

1011

0011
 contain 3 distinct columns, denoted by  01, 00, and 11 

(the last column 11 is a duplicate). Now define the pairing number of any two bit strings 

of length m as the number of distinct columns in the matrix representation of the bit 

strings. Thus, the pairing number ranges from 1 to 4, inclusive. Denote the pairing 

number of two bit strings,A and B, as ),( BAp . For example we have 3)1011,0011( =p . 

Here are some more examples: 1)1111,0000( =p , 2)1000,0111( =p , and 

4)1010,0011( =p . Suppose we have two arbitrary bit strings of length m and we 

compute the pairing number for all possible pairs of bit strings. There are m2  bit strings 
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of length m and, consequently, m22  pairing numbers. Intuitively, given the simplicity of 

the definition one would expect the pairing number function to be reasonably well 

behaved and, perhaps, computable by known combinatorial functions, such as the 

binomial coefficients. However, we will show there is a fractal nature to this deceptively 

simple combinatorial problem that seems to defy our intuition, but at the same time 

contains far-reaching consequences. 

 

2.  CONSTRUCTION OF THE K2 FRACTAL 

Before defining and generating the fractal we note the pairing number function has a 

corresponding complementary function that will be used in the application (Section 4 

below). We define the complementary pairing number: ),(4),(~ BApBAp −= . This 

function ranges from 0 to 3 and counts the number of missing column types from the 4 

possible types, 00, 01, 10, and 11. For example, 0)1010,0011(~ =p , since the pairing 

number is 4 and there are no missing types; while 3)1111,0000(~ =p , since the pairing 

number is 1 and, thus, 3 column types are missing, namely, 00, 10, 11. Figure 1 depicts a 

1616×  square array consisting of 256 unit squares containing all possible complementary 

pairing numbers with two input bit strings A and B of length 4. This square array is 

known as the degrees of freedom space for m = 4 and K = 2. Observe that all pairs of bit 

strings having the maximum pairing number of 4 are shown in Fig. 1 with the 

complementary number 0. We will call the set of unit squares with complementary 

number 0 (or, equivalently, maximum pairing number) the control region. 

 The complementary pairing numbers can be interpreted as colors, denoted by 0,1, 

2, or 3 (also called degrees of freedom). The 4 corners of Fig. 1 have pairing number 1, so 
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color 3 is used. The pairing number of any bit string with itself (except the bit string of all 

0’s) is 2, so the color 4-2 = 2 is used. A similar argument applies to a bit string and its 

complement. Thus, the two diagonals in Fig. 1 will have color 2. Observe that if B is any 

non-trivial bit string (not all 0’s or all 1’s), then  

2),0000( =Bp , 2)0000,( =Bp , 2)1111,( =Bp , 2),1111( =Bp .  

So, the 4 sides of Fig. 1 except for the four corners will have color 2 as well. The 

remaining unit squares will be colored 1 or 0, depending on whether the paring number is 

3 or 4, respectively. We will call the set of unit squares with a non-zero coloring number 

the freedom region. Observe that the freedom region is just the set complement of the 

control region (unit squares with color 0). 

 We can repeat the combinatorial procedure for bit strings of any length m and 

construct a mm 22 ×  square array, compute the pairing numbers, and color the unit 

squares accordingly. Figure 2 depicts the resulting construction with bit strings of length 

m = 9 (known as the degrees of freedom space for m = 9 and K = 2). This complex 

geometrical structure exhibits symmetry, self-similarity, and a fractal structure 

reminiscent of the Sierpinski Gasket. Since our construction can be iterated as the length 

m of the two bit strings approaches infinity, what is the fractal dimension of the freedom 

region (non-triangular region) in the limiting geometrical structure? We will call the 

resulting fractal the “ K2 fractal.” Surprisingly, we now show the fractal dimension of the 

K2 fractal is identical to the Sierpinski Gasket, namely, 2ln/3ln .    

We can compute the fractal dimension of the freedom region by first computing 

the number of unit squares making up the control region (triangular components), and 

then subtracting from the total number of unit squares (22m). Suppose we have two input 
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bit strings of length m with pairing number  4, or color 0. This means that at least all 4 

column types (00, 01, 10, 11) must occur. How many ways can this happen? This 

problem is equivalent to the combinatorial question: How many ways are there to 

distribute m labeled balls into 4 labeled boxes (box labels are 00, 01, 10, 11) with no box 

empty? The answer is 4!S(m, 4), where S(m, 4) is the number of partitions of a set with m 

elements into 4 nonempty subsets. The general combinatorial numbers S(m, n) are called 

Stirling numbers of the second kind, and there are exact formulas expressed in terms of 

binomial coefficients.3  In fact, 
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Using the box counting method 4 and our exact formula for )4,(!4 mS , we 

compute the fractal dimension D of the freedom region: 
 

( )
2log

3log

)2log(

)4,(!42log
lim

2

=−=
∞→ m

m

m

mS
D .         (2) 

 

3. GENERALIZATION 

 Instead of just two bit strings of length m, we can generalize the combinatorial 

construction and fractal generation in K-dimensional space for  K  bit strings, where K is 

any positive integer. Thus, we have K input strings each of length m. The number of 

possible column types is K2 . There are Km2  pairing numbers with the coloring numbers 

ranging in value from 0 to 12 −K . The construction is applied in K-dimensional space 

with a hypercube of side length m2  consisting of Km2  unit hypercubes. The freedom 
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region consists of the unit hypercubes with a non-zero coloring number.  By the same 

combinatorial argument used for K = 2, the number of unit hypercubes making up the 

control region (coloring number 0) is )2,(!2 KK mS . Let KD  denote the fractal dimension 

of the freedom region in the limiting K-dimensional geometric structure. Then applying  

(1)  with Kn 2= , we obtain  

 

 
( )

)2log(

)2,()!2(2log
lim

m

KKKm

m
K

mS
D

−=
∞→ 2log

)12log( −=
K

.        (3)  

 
  Our combinatorial construction generates a sequence of higher-dimensional 

fractals with fractal dimension 2ln/)12ln( −K  for K bit strings. The first seven values are 

computed in Table 1. When K = 2, the fractal dimension reduces to 2ln/3ln  for the K2 

fractal discussed previously. 

4. APPLICATION TO BOOLEAN NETWORKS 

Boolean networks have been extensively used to model diverse discrete dynamical 

systems. The networks were originally studied by Kauffman5 for biological applications. 

During the past few decades Boolean nets have been widely applied in the physical and 

biological sciences, including in genetic regulatory networks, neural networks and signal 

transduction.6-14  

Boolean NK nets are discrete network models consisting of N binary variables 

(taking on values 0 or 1) denoting the nodes of the network The nodes can represent 

objects such as cells, genes, or automata. Each node is regulated by exactly K nodes in 

the network acting as inputs. Also, the output of each node is determined by a Boolean 

(0,1) function of the K input variables. Since each node can be represented as 0 (off) or 1 
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(on) and there are N nodes, the system can be in any one of N2  possible states (known as 

the state space) at any given discrete time interval. Given any state of the system, the next 

state is determined by applying the Boolean output functions in parallel to the current 

state of the nodes (see Appendix for more detailed information on Boolean nets). Despite 

their simplicity Boolean NK nets can exhibit very complex dynamics. For example, when 

K=1 and each node depends on exactly one node, the dynamics tend to be ordered with 

relatively short cycles, but when N=K the dynamics tend to be highly disordered with 

extremely long cycles. As the connectivity K decreases from N to 3, we still observe a 

large amount of disorder and long cycles. However, the dynamics dramatically change 

when K=2. Suddenly, we have moderate disorder and moderate cycle lengths. Thus, there 

appears to be a phase transition when K=2. Why there is a phase transition when K=2 is 

not clearly understood.6 We show how the K2 fractal and its generalization provide some 

interesting insights into this mystery. Also, we show the fractals and their corresponding 

fractal dimensions in K-dimensional space correlate nicely with the dynamical behaviors 

for NK Boolean networks as the connectivity K varies. 

Consider a generic Boolean net with N=3 and K=3 (Fig. 3A). Since K=N=3, each 

output function depends on the three input variables A, B, C and takes on some values, 

sayx
0
, x

1
, , x

7
.  We are free to assign a 0 or 1 to each of these output variables. In 

assigning values to the output variables we have a certain amount of freedom that 

depends on the connectivity K. We will refer to the number of free variables as degrees 

of freedom in the Boolean output function. Thus in Fig. 3A, initially, each output function 

has 8 degrees of freedom. Once an output variable is specified as a 0 or 1, the degrees of 

freedom will decrease by 1. Therefore, in the case of K=N, we have total freedom 
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(maximum disorder) to go from any given state to any other state since the output 

variables are completely independent of one another. Now consider a generic network 

with N=3 and K=1 (Fig. 3B). Since K=1, each output function depends on only one of the 

input variables and takes on some values, say x0, x1. In this case each output function has 

only 2 degrees of freedom. If, for example, we assign x0=0, x1=1, then the output function 

has zero degrees of freedom, since the remainder of the state space for that function has 

been completely determined or “forced.” The same argument for K=1 applies 

independent of the number of nodes N. Thus, there is very little freedom in the output 

function. In fact once an output variable is specified, half of the state space for that 

function has been forced. Between the two extremes of K=1 and K=N we find a different 

kind of behavior for K=2 (Fig. 3C). In this case each output function depends on two of 

the input variables and takes on values, say x0, x1, x2, x3.  Initially, we start with 4 degrees 

of freedom, and as we assign values to the output variables the degrees of freedom will 

decrease until they reach 0 and then force the remainder of the state space. In this case we 

have more of a balanced interaction of freedom and control (forcing). 

Our main objective is to define a complexity measure for each connectivity K that 

can discriminate between the different degrees of freedom and control for arbitrary 

subsets of the state space. A consequence of this process is the emergence of the K2 

fractal and its generalization discussed previously. Consider K=2 nets for large N. 

Initially, there are 4 degrees of freedom for each output function, say x0, x1, x2, x3. If we 

randomly choose one state from the state space and assign a value of 0 or 1 to one of 

these variables the output function will then have 3 degrees of freedom. However, if we 

randomly pick two states, the corresponding output function will have 2 or 3 degrees of 
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freedom depending on whether or not the output variables were different or the same, 

respectively. For example, in Fig. 3C if we choose states (0,0,0) and (0,0,1) and assign x0 

a value of 0 or 1, the output function fA will have 3 degrees of freedom since x1, x2, and x3 

are free, but if we choose states (0,0,0) and (0,1,0) and assign values to x0 and x1, then fA 

will have 2 degrees of freedom. The same argument applies to each output function. So 

after arbitrarily choosing, say m states, and assigning output values, each output function 

independently will have either 3, 2, 1, or 0 degrees of freedom. 

Now consider the ensemble of all possible degrees of freedom for an output 

function when choosing m states. For example, Fig. 1 depicts the ensemble of the degrees 

of freedom space for K=2 and m=4. The row and column labels are all possible values of 

any 2 input variables taken from the 4 states. The entries in the table are the 

corresponding degrees of freedom. They are computed as follows: for K=2, there are 4 

possible bit pairs 00, 01, 10, and 11. These pairings correspond to the output variables x0, 

x1, x2, x3, respectively. So if the input strings are 0000 and 0000 (row 1 and column 1 of 

Fig. 1), and we compare these strings bit by bit, then we essentially have one distinct pair 

00 (or just x0), and the output function will have 3 degrees of freedom. However, if the 

input strings are 0011 and 0101 and we compare them bit by bit (left to right) we obtain 

the pairs 00, 01, 10, 11, corresponding to the output variables x0, x1, x2, x3. Thus, in this 

case all the variables have been assigned values and we have zero degrees of freedom as 

indicated in Fig 1. In the degrees of freedom space, the non-zero degrees represent the 

freedom region and the zero degrees represent the control (forcing) region. This ensemble 

depicts the various degrees of disorder (freedom) and order (control) possible when m = 

4. Our next step is to quantify this observation and define an entropy measure for any 
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connectivity K and any number of states m. The basis for this procedure is the underlying 

emergent fractal. 

If for K=2 we construct the degrees of freedom space for each positive integer m, 

we obtain a 2m×2m square (consisting of 22m unit squares) partitioned into two major 

regions, the freedom region (dark area) and the control region (light area). Fig. 2 depicts 

the square with m=9. The light triangular areas correspond to the zero degrees of freedom 

(control region).  

 The fractal dimension computed in (2) can be interpreted as a global entropy 

measure of the amount of disorder (freedom) in K=2 nets. Also, the numerical value of 

the mth iterate can be interpreted as a local ensemble entropy measure for each m. For 

example, the dimension (D) of the K2 fractal is log3/log2, or about 1.58, and this number 

can be interpreted as a global entropy measure for Boolean nets with K=2, and is 

independent of the number of nodes N. Also, for each m the ratio of the above logarithms 

measures the local disorder for the freedom region with m states. We call this the 

ensemble entropy for the degrees of freedom space with m states. The ensemble entropy 

for m=4 in Fig. 1 is log(256-24)/log(16), or about 1.96, indicating very high entropy 

(freedom), since the maximum entropy is 2. Similarly, the fractal dimensions computed 

in (3) can be interpreted as a global entropy measure of the amount of disorder (freedom) 

in Boolean networks with connectivity K. 

 The fractal dimensions for Boolean networks with connectivity K from 1 to 7  are 

shown in Table 1. Observe when K=1 the dimension (entropy) is 0, implying negligible 

disorder and almost total order. Also, as K increases from 2, the entropy increases and 

approaches the maximum (total disorder) as K increases. However, for K=2 we have a 
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fractal dimension of log3/log2, or about 1.58, indicating moderate disorder (maximum 

entropy is 2). Thus, K=2 (and, to a lesser extent, K=3) networks are unique in that they 

are not near total order or total disorder. This highly fractal nature indicates at K=2 a 

phase transition exists.6 The phase transition between order and chaos at K=2 is 

illustrated in Fig. 4. 

 Note that as K increases the fractal dimensions are very close to the maximum 

entropy indicating potential for large-scale disorder but, importantly, not total disorder. 

Even with high K it is still possible to construct complex networks that are neither trivial 

nor chaotic, but the logic must be selected carefully in order for this to be achieved (see 

Appendix A.4).  

 

 

5. CONCLUSIONS 

In this paper we have shown how  “combinatorial fractal geometry” can help us gain a 

deeper understanding of the dynamical behaviors observed in NK Boolean network 

models of complex systems. Despite the application to a restricted class of discrete 

models, the results seem to accentuate the significance of the fractal nature of complex 

network dynamics.  One of the major challenges of contemporary science is to 

understand the nature of complex systems ranging from social networks to molecular 

networks. Extensive research on real complex networks has focused on static properties 

including degree distributions, scaling, clustering, and other structural features.15 The 

hope is that the architectural properties will yield some clues regarding the dynamics of 

the networks. Many of these networks are scale-free with the degrees of the nodes having 
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a power law distribution. Recently, it was shown that some of these networks possess 

self-similar structures.16 Thus, the existence of a power law and self-similarity suggests 

an underlying fractal structure may exist and, perhaps, provide some insights on the 

dynamics. The relationship between complex networks and fractals remains an enigma.17 

In many complex systems the competing forces of freedom and control tend to shape the 

dynamics. Too much freedom in a system can lead to chaotic, disordered behavior, while 

too much control can result in totally ordered dynamics. Complex systems seem to 

function effectively on the border of order and disorder where phase transitions occur and 

fractals emerge.  

 In conclusion, we have analyzed an extensively studied class of discrete networks 

and shown that the dynamics of these networks expressed in terms of their given logical 

functions are intimately linked to emergent fractals. Applying a combinatorial approach 

to the state space we defined a complexity (entropy) measure that can discriminate 

between the different degrees of freedom and control for arbitrary subsets of the state 

space. We demonstrated the existence of a global phase transition between order and 

disorder of these networks that provided some mathematical evidence for the fractal 

nature of complex network dynamics. The challenge for future research is to extend these 

results to real complex networks. The presence of power law distributions in real 

networks suggests the existence of underlying fractals that can provide useful global 

information for understanding the observed network dynamics. 
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APPENDIX 

 

A.  Background on NK Boolean networks and their dynamics. 

 NK Boolean (Kauffman) networks6 are a commonly used modeling system for the 

study of spontaneous emergence of nontrivial behavior. Although relatively simple, NK 

Boolean networks are able to capture the dynamics systems ranging from trivial to 

exceedingly complex, including those of living systems.8  

 A.1 The anatomy of NK Boolean networks.  

Consider the simple network shown in Figure 1 A. There are three elements in this 

network and each element is connected to each of the others. Therefore, the parameter N 

(the number of elements in the network) is  

3 and the parameter K (the number of connections feeding into each element) is 2. The 

logical connections, shown in the tables in Panel B, are OR and AND. These tables give 

the on/off state (shown as a 1 for on and a 0 for off) of each element as a function of the 

on/off state of the other two elements connecting to it. Thus the third table shows that 

element 3 will be on if either element 1 or 2 (or both) are on. The network exists at time 

T in some initial state, with each separate element either on or off. At the next time (T + 

A C1

32

T T + 1

B 2  3   1
0  0   0
0  1   0
1  0   0
1  1   1
AND

1  3   2
0  0   0
0  1   1
1  0   1
1  1   1

OR

1  2   3
0  0   0
0  1   1
1  0   1
1  1   1

OR

1  2  3   1  2  3
0  0  0   0  0  0
0  0  1   0  1  0
0  1  0   0  0  1
0  1  1   1  1  1
1  0  0   0  1  1
1  0  1   0  1  1
1  1  0   0  1  1
1  1  1   1  1  1

 
Fig. 1. A simple network and its logical connections. 
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1), the states of all three elements will change according to the tables shown. The 

evaluation of the entire system from time T to time T + 1 can be represented in a single 

table (shown in Figure 1C) where the column T contains all the possible initial states of 

the system and column T + 1 shows the result of application of the logic set to each initial 

condition. Continued iteration by the same method results in a trajectory of the system as 

the states change over time. The trajectory that a given initial condition follows depends 

on all of the variables and parameters described in this section, and variation of the 

parameters can radically alter the types of trajectories obtained as will be discussed 

below. 

 A.2  Attractors and basins of attraction.  

The network introduced in Figure 1 is simple enough to view all of the possible 

trajectories, which are shown in Figure 2 . In panel A, for example, the system is shown 

to be at an initial state of element 1 = 0, element 2 = 0 and element 3 = 0, or 000. 

According to the logic tables in Figure 1B (or, equivalently, the map shown in Figure 

1C), at the next time point the system will remain at 000. This trajectory is indicated by 

the arrow in Figure 2A. Similarly, Figures 2B and C show the trajectories for the other 

possible starting combinations. 

A

C

B

000 100

101

011110 111

001 010

Fig. 2. All possible trajectories and attractors for the 
network in Fig. 1. 



18 

 Because there are a finite number of elements in the system (N), there are a finite 

number (2N) of possible states of the system. Thus, as the system travels in time, it must 

(regardless of trajectory) reenter a state previously encountered. As shown in Figure 2A 

and B, when the system is at state 000 or 111, it remains there (encountering itself over 

and over), thus those two states are referred to as steady-states. Panel C shows that if the 

system is at state 001 or 010, it cycles between those two states, a trajectory that is 

referred to as a period 2 cycle. Finally, panel B shows that there are four other states of 

the system (110, 100, 011, and 101) that follow trajectories to the steady-state 111. In 

summary, Figure 2 shows that the network described in Figure 1 has three conditions 

(namely the two steady-states 000 and 111, and a period 2 cycle containing 001 and 010) 

called attractors into which the trajectories of all initial states eventually settle. 

 Basins of attraction are those states whose trajectories lead to a given attractor. 

For example, the basin of attraction for the steady-state attractor 000 consists only of the 

condition 000. The basin of attraction for the steady-state attractor 111 is larger, 

consisting of 110, 100, 011, and 101. The basin for the period 2 cycle consists only of its 

two states, 001 and 010. 

 The sizes and stability of attractors and basins of attraction are characteristic 

features of networks,13 and allow characterization of networks as ordered, chaotic, or 

complex as explained in the next section. 
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 A.3  Order, chaos, and complexity in NK Boolean networks.  

Boolean networks can have a wide variety of dynamics. For example, the network in Fig. 

3 has an attractor of period six (Panel D). This attractor is considered to be relatively 

large since the largest possible attractor for this network is period eight. When networks 

have attractors that are large (relative to the size of the network), they are considered to 

be minimally ordered . In other words, they are structured in such a way as to have a 

minimal number of re-encounters with previous states. Furthermore, any network with 

such a structure would have attractors whose sizes scaled exponentially (by a factor of 

2N) as the number of components in the system (N) is increased. Thus a minimally 

ordered system with N = 200 components could have an attractor of size 2200, or 

approximately 1.6x1060! An attractor of this magnitude means that the system would 

never repeat itself in any relevant time scale and could be considered effectively infinite. 

By definition, a trajectory of this type that is not periodic over (effectively) infinite 

iteration is called chaotic.  

A 1

32

C T T + 1

1  2  3   1  2  3
0  0  0   1  0  0
0  0  1   0  0  0
0  1  0   1  0  1
0  1  1   0  0  1
1  0  0   1  1  0
1  0  1   0  1  0
1  1  0   1  1  1
1  1  1   0  1  1

B
3   1
0   1
1   0

OFF

1   2
0   0
1   1

ON

2   3
0   0
1   1

ON

111

101

100

010

001 011

110

D

000

Fig. 3. An NK Boolean network with relatively 
chaotic dynamics. 
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 On the other hand, networks can be structured in such a way that the system 

always moves to small attractors, an example of which is shown in Fig. 4. In this 

network, all states (except 000) move to the period one (fixed point) attractor 111. Since 

this network always becomes frozen with all of the nodes on (111) or off (000), this 

network is considered to be highly ordered.  

 Between the extremes of order and chaos, some networks have dynamics that are 

neither fully ordered or fully chaotic. For example, the network shown in Fig. 1 has two 

fixed point attractors as well as a period two attractor (as shown in Fig. 2). Thus, this 

network is not clearly classified as ordered or chaotic and networks of this type are 

termed “complex.” Complex networks tend to have a moderate number of moderately-

sized attractors. This is strong evidence that complex, “edge of chaos” networks are 

where nontrivial behavior is expected because they are not frozen on small cycles or 

chaotically wandering on enormous, effectively infinite cycles.  

 The K=2 (Kauffman) conjecture states that networks with connectivity K=2 

naturally tend to be complex, while K=1 networks tend to be highly ordered and K>4 

A 1

32

B
2  3   1
0  0   0
0  1   1
1  0   1
1  1   1
OR

1  3   2
0  0   0
0  1   1
1  0   1
1  1   1

OR

1  2   3
0  0   0
0  1   1
1  0   1
1  1   1

OR

C T T + 1

1  2  3   1  2  3
0  0  0   0  0  0
0  0  1   1  1  0
0  1  0   1  0  1
0  1  1   1  1  1
1  0  0   0  1  1
1  0  1   1  1  1
1  1  0   1  1  1
1  1  1   1  1  1

111

101

100

010

001 011110

D
000

 
Fig. 4. An NK Boolean network with highly ordered 
dynamics. 
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networks tend to be highly chaotic. K=3 and K=4 networks are also considered to be 

chaotic and tend toward trivial dynamics, but they are less so than K>4 networks which 

appear to be very close to maximal disorder. According to this conjecture, by simple 

virtue of K=2 connectivity, a random network is likely to display nontrivial dynamics that 

would not be expected in random networks created with higher or lower K. The 

theoretical foundation for this phenomenon is the increase in the ratio of canalizing 

functions (see Appendix  A.4 below) as K decreases, therefore increasing the likelihood 

of orderly behavior in a “low-K” network when logic is randomly chosen for each node. 

Note that in this theory no connectivity is guaranteed to have any particular dynamics. 

For example, the network shown in Fig. 3 is relatively chaotic despite K=1, while the 

network in Fig. 4 is highly ordered despite the fact that K=2. This is because, regardless 

of the connectivity, logic can almost always be selected that can create any desired 

dynamics. However, while it is possible to contrive a network that has any connectivity 

and any dynamics, the choices of logic in such contrived networks are severely limited. 

So, while many different choices of logic are available to make a highly connected 

network chaotic, there are few logical choices that will make a low connected network 

chaotic. The amount of freedom to choose logic based on the connectivity is precisely the 

freedom/forcing ratio that is represented by the fractals in this paper.  
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A.4  Logic necessary for nontrivial dynamics in  K>2 networks. 

Even though there is much freedom (disorder) in K>2 networks, one can obtain ordered 

dynamics by introducing more forcing or canalizing functions. Canalizing functions are 

Boolean functions that include at least one input variable that can determine the output 

regardless of the values of the other variables. Recently, exact formulas for the number of 

canalizing functions have been obtained.12 If the number of input variables K is greater 

than 4, then there are relatively few canalizing functions. However, biological networks 

are dominated by canalizing (forcing) functions.14 Thus, the connectivity in biological 

networks can be greater than two, but with a correspondingly high number of canalizing 

functions, there can still be non-chaotic and nontrivial dynamics. 
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Table 1. Approximate fractal dimensions (entropies) for K=1 to 7. 

 

 

K Dimension 

1 0 

2 1.58 

3 2.81 

4 3.91 

5 4.95 

6 5.98 

7 6.99 
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  Input B 

 m=4 

0
0
0
0 

0
0
0
1 

0
0
1
0 

0
0
1
1 

0
1
0
0 

0
1
0
1 

0
1
1
0 

0
1
1
1 

1
0
0
0 

1
0
0
1 

1
0
1
0 

1
0
1
1 

1
1
0
0 

1
1
0
1 

1
1
1
0 

1
1
1
1 

0 0 0 0 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 

0 0 0 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 

0 0 1 0 2 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 

0 0 1 1 2 1 1 2 1 0 0 1 1 0 0 1 2 1 1 2 

0 1 0 0 2 1 1 1 2 1 1 1 1 1 1 2 1 1 1 2 

0 1 0 1 2 1 1 0 1 2 0 1 1 0 2 1 0 1 1 2 

0 1 1 0 2 1 1 0 1 0 2 1 1 2 0 1 0 1 1 2 

0 1 1 1 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 

1 0 0 0 2 1 1 1 1 1 1 2 2 1 1 1 1 1 1 2 

1 0 0 1 2 1 1 0 1 0 2 1 1 2 0 1 0 1 1 2 

1 0 1 0 2 1 1 0 1 2 0 1 1 0 2 1 0 1 1 2 

1 0 1 1 2 1 1 1 2 1 1 1 1 1 1 2 1 1 1 2 

1 1 0 0 2 1 1 2 1 0 0 1 1 0 0 1 2 1 1 2 

1 1 0 1 2 1 2 1 1 1 1 1 1 1 1 1 1 2 1 2 

1 1 1 0 2 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 

Input 

A 

1 1 1 1 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 

 

Fig. 1. Degrees of freedom space for m=4 and K=2. The row and column labels are all 

possible bit strings of length 4. The entries are the complementary pairing numbers with 

the 0’s indicating bit string pairs having maximum pairing number 4. 
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Fig. 2. Degrees of freedom space for m=9 and K=2. Yellow = zero degrees of freedom, 

blue = one degree of freedom, red = two degrees of freedom. The four corner points 

represent the only points with three degrees of freedom. Continued iteration results in the 

“K2” fractal as m approaches infinity. 
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A  K=N    B  K=1    C  K=2   

A B C fA fB fC  A B C fA fB fC  A B C fA fB fC 

0 0 0 x0 y0 z0  0 0 0 x0 y0 z0  0 0 0 x0 y0 z0 

0 0 1 x1 y1 z1  0 0 1 x0 y1 z0  0 0 1 x0 y1 z1 

0 1 0 x2 y2 z2  0 1 0 x0 y0 z1  0 1 0 x1 y0 z2 

0 1 1 x3 y3 z3  0 1 1 x0 y1 z1  0 1 1 x1 y1 z3 

1 0 0 x4 y4 z4  1 0 0 x1 y0 z0  1 0 0 x2 y2 z0 

1 0 1 x5 y5 z5  1 0 1 x1 y1 z0  1 0 1 x2 y3 z1 

1 1 0 x6 y6 z6  1 1 0 x1 y0 z1  1 1 0 x3 y2 z2 

1 1 1 x7 y7 z7  1 1 1 x1 y1 z1  1 1 1 x3 y3 z3 

 

Fig. 3. State space for Boolean networks with N = 3 and K from 1 to N. All variables are 

equal to either 0 or 1 (e.g., x0 = 0 or 1, etc.). (A) When K=N=3, each node is dependent on 

the values of all nodes in the network. With 23=8 possible initial configurations of the 

three nodes, there are eight possible values for each output function (degrees of freedom, 

labeled 0 to 7 for each function).  Each step through state space defines exactly one 

variable in each column, reducing the number of degrees of freedom by one. Since the 

number of initial states equals the number of degrees of freedom in the output function, 

there are no restrictions on the movement of the network through state space, so it is 

maximally disordered. (B) When K=1, each node is dependent on the value of only one 

node (In this case, A is dependent on A, B on C, and C on B). Because each node is 

dependent on only one node, there are only two possible values for each node (labeled 0 

and 1 for each variable). With only two degrees of freedom, each output function fA, fB, 

and fC is completely determined by any two steps in state space that define its two 

variables. Thus there is little freedom in choosing the logic for a particular cycle structure 

(i.e., the logic is “forced”). (C) In between the extremes of K=N and K=1, K=2 has 4 

degrees of freedom for each function. Thus, K=2 networks have a balance between 

freedom and force (control).
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A       K=1, D1 = 0 B      K=2, D2 = 1.58 C      K=3, D3 = 2.81 

 

  

 

Fig. 4. The phase transition from order to chaos at K=2. The figures for each K were 

generated by calculating the degrees of freedom space for m=9. Regions of the freedom 

space with zero degrees of freedom (“forced”) are colored black, while regions with one 

or more degrees of freedom (“free”) are white. The dimensions shown (D1, D2, and D3) 

are of the white areas at the limit as m approaches infinity. The dimensions of the black 

regions are one, two, and three, respectively, as m approaches infinity. (A) At K=1 the 

free region (the two points at the ends of the forced region line) has zero dimension (D1) 

and thus is not fractal. With such a low freedom/forcing ratio, K=1 systems would be 

expected to be highly ordered. (B) At K=2 there is near balance between the order and 

the free regions as indicated by the highly fractal dimension of the free area (D2). This 

fractal is neither highly ordered nor highly disordered, indicating that the system has 

potential for nontrivial behavior. (C) At K=3 there is more free region as indicated by the 

fact that the fractal dimension of the free area is closer to integer (D3). This fractal 

indicates that K=3 systems are likely to have chaotic dynamics. As K increases above 

three, the freedom spaces cannot be pictured because the dimension of the black area is 

more than three. However, the fractal dimension moves closer to integer as K increases 

(Table 1), indicating more and more freedom in the system. Since the freedom space of 

K=2 networks is the most fractal (balanced between freedom and forcing) of any K, it 

indicates that there is a phase transition from order to chaos at K=2.  


