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Abstract

The solution to a deceptively simple combinatorial problem on bit strings resuits in t
emergence of a fractal related to the Sierpinski Gasket. The result ialgeuketo higher
dimensions and applied to the study of global dynamics in Boolean network models of

complex biological systems.
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1. INTRODUCTION
The relationship between combinatorics and fractal geofristbeautifully illustrated by
construction of the Sierpinski Gasket from Pascal’s Triangle by reducing the Binomi
coefficients modulo twé.In this paper we show how a relatively simple combinatorial
problem on comparing two bit strings of lengtheads to the construction of a fractal
that is an interesting variant of the Sierpinski Gasket. Moreover, by gemaydhie
combinatorial problem to comparifkgit strings of lengthm, we construct a sequence of
higher-dimensional fractals. An unexpected consequence of this generalizdd fracta
construction is a direct link to the global dynamical behaviors arising in the study of
certain classes of Boolean network models of complex biological systems.

Consider the following simple combinatorial question: Given two bit strings of
length, say 4, written as rows of2za<4 matrix, how many distinct columns are there?
The columns are bit strings of length 2, and there are 4 possible column types, namely,

00, 01, 10, and 11. For example, the two bit strings, 0011 and 1011, written as rows in the
_ _ 00171 _ -
following 2x4 matrix: 1011 contain 3 distinct columns, denoted 8%, 00, and11

(the last columril is a duplicate). Now define thpairing number of any two bit strings
of lengthm as the number afistinct columns in the matrix representation of the bit
strings. Thus, the pairing number ranges from 1 to 4, inclusive. Denote the pairing
number of two bit string# andB, as p(A, B ). For example we have(0011101) = .3
Here are some more examplgg000Q111) = , [@01111000 = 2, and

p(00111010 =4. Suppose we have two arbitrary bit strings of lemgtnd we

compute the pairing number for all possible pairs of bit strings. Ther2 abé strings



of lengthm and, consequenth2®™ pairing numbers. Intuitively, given the simplicity of
the definition one would expect the pairing number function to be reasonably well
behaved and, perhaps, computable by known combinatorial functions, such as the
binomial coefficients. However, we will show there is a fractal nature taléusptively
simple combinatorial problem that seems to defy our intuition, but at the same time

contains far-reaching consequences.

2. CONSTRUCTION OF THE K2 FRACTAL

Before defining and generating the fractal we note the pairing number function has a
corresponding complementary function that will be used in the application (Section 4
below). We define theomplementary pairing number: p(A,B) =4- p(A B). This

function ranges from 0 to 3 and counts the number of missing column types from the 4

possible typed)0, 01, 10, and11. For example,p(00111010 = OQsince the pairing
number is 4 and there are no missing types; wp{@00Q111) = , sirke the pairing

number is 1 and, thus, 3 column types are missing, na6eliQ, 11. Figure 1 depicts a
16x16 square array consisting of 256 unit squares containing all possible complementary
pairing numbers with two input bit stringsandB of length 4. This square array is
known as the degrees of freedom spacenfer4 andK = 2. Observe that all pairs of bit
strings having the maximum pairing number of 4 are shown in Fig. 1 with the
complementary numb&: We will call the set of unit squares with complementary
number O (or, equivalently, maximum pairing number)abrgrol region.

The complementary pairing numbers can be interpreted as colors, denoted by 0,1,

2, or 3 (also calledegrees of freedom). The 4 corners of Fig. 1 have pairing number 1, so



color 3 is used. The pairing number of any bit string with itself (except the bit sfrailg
0’s) is 2, so the color 4-2 = 2 is used. A similar argument applies to a bit string and its
complement. Thus, the two diagonals in Fig. 1 will have color 2. Observe Bt @iny
non-trivial bit string (not all O’s or all 1's), then

p(000QB) =2, p(B,0000 =2, p(B,111) =2, p(1111B) = 2.
So, the 4 sides of Fig. 1 except for the four corners will have color 2 as well. The
remaining unit squares will be colored 1 or 0, depending on whether the paring number is
3 or 4, respectively. We will call the set of unit squares with a non-zero coloring number
thefreedomregion. Observe that the freedom region is just the set complement of the
control region (unit squares with color 0).

We can repeat the combinatorial procedure for bit strings of any lemaytia

construct a2™ x 2™ square array, compute the pairing numbers, and color the unit
squares accordingly. Figure 2 depicts the resulting construction with bit strilegeytf
m = 9 (known as the degrees of freedom spacefo9 andK = 2). This complex
geometrical structure exhibits symmetry, self-similarity, and ddratructure
reminiscent of the Sierpinski Gasket. Since our construction can be iteratedeagythe |
m of the two bit strings approaches infinity, what is the fractal dimension of tidofree
region (non-triangular region) in the limiting geometrical structure? Weall the
resulting fractal the “ K2 fractal.” Surprisingly, we now show the fractakdision of the
K2 fractal is identical to the Sierpinski Gasket, nam#&ig/In . 2

We can compute the fractal dimension of the freedom region by first computing
the number of unit squares making up the control region (triangular components), and

then subtracting from the total number of unit squar€y.(Suppose we have two input



bit strings of lengtim with pairing number 4, or color 0. This means that at least all 4
column types(Q, 01, 10, 11) must occur. How many ways can this happen? This
problem is equivalent to the combinatorial question: How many ways are there to
distributem labeled balls into 4 labeled boxes (box label08r®1, 10, 11) with no box
empty? The answer is 4¥§(4), where 3, 4) is the number of partitions of a set with
elements into 4 nonempty subsets. The general combinatorial numinerg &e called
Sirling numbers of the second kind, and there are exact formulas expressed in terms of

binomial coefficients. In fact,
nl S(m,n):i(—l)i(?](n— ", (1)

4 4 4
and, in our particular case: 41S(m )" _Ugm +(2]2m _(3}““'

Using the box counting methddand our exact formula fal S(m  4)we

compute the fractal dimensi@hof the freedom region:

2m _
o i log2?™ - 41S(m,4)) _ log3 |
m- eo log(2™) log2

(2)

3. GENERALIZATION
Instead of just two bit strings of length) we can generalize the combinatorial
construction and fractal generationkrdimensional space foK bit strings, wher& is

any positive integer. Thus, we hakenput strings each of length. The number of
possible column types B“. There are2™ pairing numbers with the coloring numbers
ranging in value from 0 t@" —-1. The construction is applied Kxdimensional space

with a hypercube of side leng@i" consisting of2“™ unit hypercubes. The freedom



region consists of the unit hypercubes with a non-zero coloring number. By the same

combinatorial argument used fidr= 2, the number of unit hypercubes making up the
control region (coloring number 0) &!1S(m,2" . let D, denote the fractal dimension
of the freedom region in the limiting-dimensional geometric structure. Then applying

(1) with n=2", we obtain

D = lim log2" - (2)S(m,2%)) _ log(@* -1) .

M- log(2™) log2 (3)

Our combinatorial construction generates a sequence of higher-dimensional
fractals with fractal dimensiom(2 -1)/In  for K bit strings. The first seven values are

computed in Table 1. Whdf= 2, the fractal dimension reducesing/In  fo? the K2

fractal discussed previously.

4. APPLICATION TO BOOLEAN NETWORKS

Boolean networks have been extensively used to model diverse discrete dynamical
systems. The networks were originally studied by Kauffhi@anbiological applications.
During the past few decades Boolean nets have been widely applied in the physical and
biological sciences, including in genetic regulatory networks, neural networkgyaad si
transductior?.**

Boolean NK nets are discrete network models consisting of N binary variables
(taking on values 0 or 1) denoting the nodes of the network The nodes can represent
objects such as cells, genes, or automata. Each node is regulated by exactly K nodes in
the network acting as inputs. Also, the output of each node is determined by a Boolean

(0,1) function of the K input variables. Since each node can be represented as 0 (off) or 1



(on) and there are N nodes, the system can be in any @ie pdssible states (known as
the state space) at any given discrete time interval. Given any sthéesystem, the next
state is determined by applying the Boolean output functions in parallel to the current
state of the nodes (see Appendix for more detailed information on Boolean nets). Despite
their simplicity Boolean NK nets can exhibit very complex dynamics. For example, whe
K=1 and each node depends on exactly one node, the dynamics tend to be ordered with
relatively short cycles, but when N=K the dynamics tend to be highly disordered with
extremely long cycles. As the connectivity K decreases from N to 3, we sglivebs
large amount of disorder and long cycles. However, the dynamics dramaticallg chang
when K=2. Suddenly, we have moderate disorder and moderate cycle lengths. Thus, there
appears to be a phase transition when K=2. Why there is a phase transition when K=2 is
not clearly understootiwe show how the K2 fractal and its generalization provide some
interesting insights into this mystery. Also, we show the fractals and theésponding
fractal dimensions iK-dimensional space correlate nicely with the dynamical behaviors
for NK Boolean networks as the connectivity K varies.

Consider a generic Boolean net wNh3 andK=3 (Fig. 3A). Sinc&K=N=3, each

output function depends on the three input variaB)ds C and takes on some values,

sayXy1 X;s---» X, We are free to assign a 0 or 1 to each of these output variables. In
assigning values to the output variables we have a certain amount of freedom that
depends on the connectivity K. We will refer to the number of free variabbegress

of freedom in the Boolean output function. Thus in Fig. 3A, initially, each output function
has 8 degrees of freedom. Once an output variable is specified as a 0 or 1, the degrees of

freedom will decrease by 1. Therefore, in the casé=df, we have total freedom



(maximum disorder) to go from any given state to any other state since the output
variables are completely independent of one another. Now consider a generic network
with N=3 andK=1 (Fig. 3B). Sinc&k=1, each output function depends on only one of the
input variables and takes on some valuesxgay. In this case each output function has
only 2 degrees of freedom. If, for example, we asgigf, x;=1, then the output function
has zero degrees of freedom, since the remainder of the state space for thoat farscti
been completely determined or “forced.” The same argume#i=fbrapplies
independent of the number of nodésThus, there is very little freedom in the output
function. In fact once an output variable is specified, half of the state space for that
function has been forced. Between the two extrem&s-bfandK=N we find a different
kind of behavior foK=2 (Fig. 3C). In this case each output function depends on two of
the input variables and takes on valuesgax, Xz, X3, Initially, we start with 4 degrees
of freedom, and as we assign values to the output variables the degrees of freédom wil
decrease until they reach 0 and then force the remainder of the state spasealethie
have more of a balanced interaction of freedom and control (forcing).

Our main objective is to define a complexity measure for each conneétithigt
can discriminate between the different degrees of freedom and control fomrgrbitra
subsets of the state space. A consequence of this process is the emergence of the K2
fractal and its generalization discussed previously. Conkr2mets for largé\.
Initially, there are 4 degrees of freedom for each output functiongsay xo, Xs. If we
randomly choose one state from the state space and assign a value of 0 or 1 to one of
these variables the output function will then have 3 degrees of freedom. However, if we

randomly pick two states, the corresponding output function will have 2 or 3 degrees of



freedom depending on whether or not the output variables were different or the same,
respectively. For example, in Fig. 3C if we choose states (0,0,0) and (0,0,1) ancgassign
a value of 0 or 1, the output functiqwill have 3 degrees of freedom singex,, andx;

are free, but if we choose states (0,0,0) and (0,1,0) and assign vatyasad®;, thenfa

will have 2 degrees of freedom. The same argument applies to each output function. So
after arbitrarily choosing, say states, and assigning output values, each output function
independently will have either 3, 2, 1, or O degrees of freedom.

Now consider the ensemble of all possible degrees of freedom for an output
function when choosing states. For example, Fig. 1 depicts the ensemble of the degrees
of freedom space fd€=2 andm=4. The row and column labels are all possible values of
any 2 input variables taken from the 4 states. The entries in the table are the
corresponding degrees of freedom. They are computed as follows:Zpthere are 4
possible bit pairs 00, 01, 10, and 11. These pairings correspond to the output vajyiables
X1, X2, X3, respectively. So if the input strings are 0000 and 0000 (row 1 and column 1 of
Fig. 1), and we compare these strings bit by bit, then we essentially have one pistinct
00 (or justxg), and the output function will have 3 degrees of freedom. However, if the
input strings are 0011 and 0101 and we compare them bit by bit (left to right) we obtain
the pairs 00, 01, 10, 11, corresponding to the output varighbes X, x3. Thus, in this
case all the variables have been assigned values and we have zero degrederafds
indicated in Fig 1. In the degrees of freedom space, the non-zero degrees represent the
freedom region and the zero degrees represent the control (forcing) regicengénsole
depicts the various degrees of disorder (freedom) and order (control) possiblewhen

4. Our next step is to quantify this observation and define an entropy measure for any

10



connectivityK and any number of states The basis for this procedure is the underlying
emergent fractal.

If for K=2 we construct the degrees of freedom space for each positive imieger
we obtain a #x2™ square (consisting of2 unit squares) partitioned into two major
regions, the freedom region (dark area) and the control region (light area). Fig.t& depic
the square witlm=9. The light triangular areas correspond to the zero degrees of freedom
(control region).

The fractal dimension computed in (2) can be interpreted as a global entropy
measure of the amount of disorder (freedon#2 nets. Also, the numerical value of
themth iterate can be interpreted as a local ensemble entropy measure far Each
example, the dimensioj of the K2 fractal is log3/log2, or about 1.58, and this number
can be interpreted as a global entropy measure for Boolean net&aitand is
independent of the number of nodésAlso, for eachm the ratio of the above logarithms
measures the local disorder for the freedom regionmwihates. We call this the
ensemble entropy for the degrees of freedom space witstates. The ensemble entropy
for m=4 in Fig. 1 is log(256-24)/log(16), or about 1.96, indicating very high entropy
(freedom), since the maximum entropy is 2. Similarly, the fractal dimensions caput
in (3) can be interpreted as a global entropy measure of the amount of disorder (freedom)
in Boolean networks with connectivity K.

The fractal dimensions for Boolean networks with connectivity K from 1 to 7 are
shown in Table 1. Observe whEr1 the dimension (entropy) is 0, implying negligible
disorder and almost total order. Also kKagicreases from 2, the entropy increases and

approaches the maximum (total disorderKascreases. However, f&=2 we have a
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fractal dimension of log3/log2, or about 1.58, indicating moderate disorder (maximum
entropy is 2). ThuK=2 (and, to a lesser extet=3) networks are unique in that they
are not near total order or total disorder. This highly fractal nature indicdfe® at
phase transition existsThe phase transition between order and chakis2is
illustrated in Fig. 4.

Note that aK increases the fractal dimensions are very close to the maximum
entropy indicating potential for large-scale disorder but, importantiytoradtdisorder.
Even with highK it is still possible to construct complex networks that are neither trivial
nor chaotic, but the logic must be selected carefully in order for this to be achiesed (s

Appendix A.4).

5. CONCLUSIONS

In this paper we have shown how “combinatorial fractal geometry” can help us gain a
deeper understanding of the dynamical behaviors observed in NK Boolean network
models of complex systems. Despite the application to a restricted clasgetedisc

models, the results seem to accentuate the significance of the fractalohaimglex

network dynamics. One of the major challenges of contemporary science is to
understand the nature of complex systems ranging from social networks to molecular
networks. Extensive research on real complex networks has focused on static properties
including degree distributions, scaling, clustering, and other structural fe&tiites

hope is that the architectural properties will yield some clues regardingrtamutg of

the networks. Many of these networks are scale-free with the degrees of the naugs hav
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a power law distribution. Recently, it was shown that some of these networks possess
self-similar structure¥’ Thus, the existence of a power law and self-similarity suggests

an underlying fractal structure may exist and, perhaps, provide some insights on the
dynamics. The relationship between complex networks and fractals remains an€nigma
In many complex systems the competing forces of freealmaicontrol tend to shape the
dynamics. Too much freedom in a system can lead to chaotic, disordered behavior, while
too much control can result in totally ordered dynamics. Complex systems seem to
function effectively on the border of order and disorder where phase transitions occur and
fractals emerge.

In conclusion, we have analyzed an extensively studied class of discrete networks
and shown that the dynamics of these networks expressed in terms of their given logical
functions are intimately linked to emergent fractals. Applying a combinatpbach
to the state space we defined a complexity (entropy) measure that can diserimina
between the different degrees of freedom and control for arbitrary subsets at¢he st
space. We demonstrated the existence of a global phase transition between order and
disorder of these networks that provided some mathematical evidence for take fract
nature of complex network dynamics. The challenge for future research is to extend these
results to real complex networks. The presence of power law distributions in real
networks suggests the existence of underlying fractals that can provide usiedll gl

information for understanding the observed network dynamics.
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APPENDI X

A. Background on NK Boolean networ ks and their dynamics.

NK Boolean (Kauffman) networksre a commonly used modeling system for the
study of spontaneous emergence of nontrivial behavior. Although relatively siikple,
Boolean networks are able to capture the dynamics systems ranging fromdrivial
exceedingly complex, including those of living systéms.

A.1 The anatomy of NK Boolean networks.

Consider the simple network shown in Figure 1 A. There are three elements in this

network and each element is connected to each of the others. Therefore, the p&rameter

A @ C
/ \ T T+1
/ \ 1231123
@ —=0) 000|000
oo1lo10
o10[0o01
011[111
B 100[011
oolo oofo oolo 101011
o1fo o1f1 o011 110011
1olo 101 10|21 111111
11'1 11'1 111
AND OR OR

Fin. 1. A smnle network and its lonical connections.

(the number of elements in the network) is

3 and the paramet&r (the number of connections feeding into each element) is 2. The
logical connections, shown in the tables in Panel B, are OR and AND. These tables give
the on/off state (shown as a 1 for on and a O for off) of each element as a function of the
on/off state of the other two elements connecting to it. Thus the third table shows that
element 3 will be on if either element 1 or 2 (or both) are on. The network exists at time

T in some initial state, with each separate element either on or off. At themexXflti+
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1), the states of all three elements will change according to the tables shown. The
evaluation of the entire system from time T to time T + 1 can be representedgtea si
table (shown in Figure 1C) where the column T contains all the possible initial ctate
the system and column T + 1 shows the result of application of the logic set toigalch
condition. Continued iteration by the same method results in a trajectory of the agstem
the states change over time. The trajectory that a given initial conditiow$ollepends
on all of the variables and parameters described in this section, and variation of the
parameters can radically alter the types of trajectories obtained &g wikcussed
below.

A.2 Attractorsand basins of attraction.

The network introduced in Figure 1 is simple enough to view all of the possible

A B
000 100
110— 011— 111
c JN 101
001 010
N~

Fig. 2 All possible trajectories and attractors for the
network in Fig. 1.

trajectories, which are shown in Figure 2 . In panel A, for example, the system is shown
to be at an initial state of element 1 = 0, element 2 = 0 and element 3 = 0, or 000.
According to the logic tables in Figure 1B (or, equivalently, the map shown in Figure
1C), at the next time point the system will remain at 000. This trajectory is tedliog

the arrow in Figure 2A. Similarly, Figures 2B and C show the trajectories foritbe ot

possible starting combinations.
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Because there are a finite number of elements in the syjethére are a finite
number (?) of possible states of the system. Thus, as the system travels in time, it must
(regardless of trajectory) reenter a state previously encountered. As sheigare 2A
and B, when the system is at state 000 or 111, it remains there (encountering itself over
and over), thus those two states are referred to as steady-states. Panel tGaghbthe
system is at state 001 or 010, it cycles between those two states, a traj@ttisry t
referred to as a period 2 cycle. Finally, panel B shows that there are four ot obtat
the system (110, 100, 011, and 101) that follow trajectories to the steady-state 111. In
summary, Figure 2 shows that the network described in Figure 1 has three conditions
(namely the two steady-states 000 and 111, and a period 2 cycle containing 001 and 010)
called attractors into which the trajectories of all initial stateatexadly settle.

Basins of attraction are those states whose trajectoedstdea given attractor.

For example, the basin of attraction for the steady-state tatti@@0 consists only of the
condition 000. The basin of attraction for the steady-state attrddtbris larger,
consisting of 110, 100, 011, and 101. The basin for the period 2 cycle consistsigly of
two states, 001 and 010.

The sizes and stability of attractors and basins of attraetiencharacteristic
features of networkS and allow characterization of networks as ordered, chaotic, or

complex as explained in the next section.
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A.3 Order, chaos, and complexity in NK Boolean networks.

Boolean networks can have a wide variety of dynamics. For example, the network in Fig.

T T+1
1231123

©,
/ ‘\ 0o00f100

001f0o00
C)‘__'() o10|101
011fo01

100/110

5 101/010
110f111

112 2|3 111f011

o[t Tolo Tolo {—\
1lo 11 1l1 D 010 101

OFF ON ON

000 — 100— 110

t

001« 011 «— 111

Fig. 3 An NK Boolean network with relatively
chaotic dynamics.

3 has an attractor of period six (Panel D). This attractor is considered to beshelati
large since the largest possible attractor for this network is period eight. Mgheorks
have attractors that are large (relative to the size of the network) réhegresidered to

be minimally ordered . In other words, they are structured in such a way as to have a
minimal number of re-encounters with previous states. Furthermore, any network with
such a structure would have attractors whose sizes scaled exponentially oy affac
2V) as the number of components in the syst&)rigincreased. Thus a minimally
ordered system witN = 200 components could have an attractor of %t &
approximately 1.6x18! An attractor of this magnitude means that the system would
never repeat itself in any relevant time scale and could be consideredreljeafinite.

By definition, a trajectory of this type that is not periodic over (effect)iafnite

iteration is called chaotic.
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On the other hand, networks can be structured in such a way that the system
always moves to small attractors, an example of which is shown in Fig. 4. In this
network, all states (except 000) move to the period one (fixed point) attractor 111. Since
this network always becomes frozen with all of the nodes on (111) or off (000), this

network is considered to be highly ordered.

T T+1
A ® ¢
1231123
‘//‘ \ 000[000
001|110
@===@ 010101
011|111
100/011
101|111
B 110|111
1111111
oolo oo|o oo|o 010
01|t o1|1 o011 D {)
10/1 10]|1 10]|1 ' 000
111 11'1 111 101
OR OR OR k)
001— 110—> 111%—011+—100
Fig. 4. An NK Boolean network with highly ordered
dynamics.

Between the extremes of order and chaos, some networks have dynamics that are
neither fully ordered or fully chaotic. For example, the network shown in Fig. 1 has two
fixed point attractors as well as a period two attractor (as shown in Fig. 2). Thus, this
network is not clearly classified as ordered or chaotic and networks of this type are
termed “complex.” Complex networks tend to have a moderate number of moderately-
sized attractors. This is strong evidence that complex, “edge of chaos” netveorks ar
where nontrivial behavior is expected because they are not frozen on small cycles or
chaotically wandering on enormous, effectively infinite cycles.

TheK=2 (Kauffman) conjecture states that networks with connect#g/

naturally tend to be complex, whike=1 networks tend to be highly ordered el
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networks tend to be highly chaotk=3 andK=4 networks are also considered to be
chaotic and tend toward trivial dynamics, but they are less sKthnetworks which
appear to be very close to maximal disorder. According to this conjecture, by simple
virtue of K=2 connectivity, a random network is likely to display nontrivial dynamics that
would not be expected in random networks created with higher or Kwildre

theoretical foundation for this phenomenon is the increase in the ratio of canalizing
functions (see Appendix A.4 below) Kslecreases, therefore increasing the likelihood
of orderly behavior in a “lowk” network when logic is randomly chosen for each node.
Note that in this theory no connectivitygsaranteed to have any particular dynamics.

For example, the network shown in Fig. 3 is relatively chaotic despite while the
network in Fig. 4 is highly ordered despite the fact K. This is because, regardless

of the connectivity, logic can almost always be selected that can createsaay de
dynamics. However, while it is possible to contrive a network that has any cortgectivi
and any dynamics, the choices of logic in such contrived networks are severelg.limit
So, while many different choices of logic are available to make a highly connected
network chaotic, there are few logical choices that will make a low connecteorketw
chaotic. The amount of freedom to choose logic based on the connectivity is precisely the

freedom/forcing ratio that is represented by the fractals in this paper.
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A.4 Logic necessary for nontrivial dynamicsin K>2 networks.
Even though there is much freedom (disordeR#2 networks, one can obtain ordered
dynamics by introducing more forcing or canalizing functions. Canalizing functions are
Boolean functions that include at least one input variable that can determine the output
regardless of the values of the other variables. Recently, exact formulas fambber of
canalizing functions have been obtairiétf.the number of input variablééis greater
than 4, then there are relatively few canalizing functions. However, biologivabnke
are dominated by canalizing (forcing) functidf&hus, the connectivity in biological
networks can be greater than two, but with a correspondingly high number of canalizing

functions, there can still be non-chaotic and nontrivial dynamics.
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Table 1. Approximate fractal dimensions (entropies) Karl to 7.

Dimension

0
1.58
2.81
3.91
4.95
5.98

~N~ o o B~ w N P AN

6.99

23



Input B

0O 000O0OOOO1TI1II1II1II1IT1T11

m=4 0 0001111000011 11
00110011001 10011
010101010101 0101

0000|3 2 2 2 2 2 2 2 2 2 2 2 2 2 23
00012 211111 11111122
oo010/2 1 2 1111111111212
0oo11j]2 112 1001100121172
o100(2 111 2111111211172
010112 1 1 0120110210112
01102 1 1 0102112010112
Input o111j]2 1 1111122111111 72
A 1000|2111 1112211111172
1001(2 1 1 0102112010112
1010(2 1 1 01 20110210112
1011]12 111 211111121112
11002 11 21 00110012112
11021(2 1 2 1111111111212
111012 21 1111111111122
11113 2 2 2 2 2 2 2 2 2 2 2 2 2 23

Fig. 1. Degrees of freedom space for4 andK=2. The row and column labels are all
possible bit strings of length 4. The entries are the complementary pairing nuritbers w

theO’s indicating bit string pairs having maximum pairing number 4.
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Fig. 2. Degrees of freedom space for9 andK

two degrees of freedom. The four corner points

one degree of freedom, red =

blue

represent the only points with three degrees of freedom. Continued iteration rethats i

“K2” fractal asm approaches infinity.
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A K=N B K=1 C K=2

A B C|fa fg fc A B C|fa fg fc A B C|fa fg fc
0 O Ofx Yo 2 O 0 O|xX Yo 0 O Ofx Yo 2
0 0 1|xx vi 7z 0O 0 1|x W 0O 0 1| v1 z
0O 1 0|Ix Y 2 O 1 O|X Yo z 0O 1 0|lxx Yo 2
0 1 1|x3 Vys 2z 0O 1 1|x Y1 7 0O 1 1|xx 1 z
1 0 O|Xs Va zg 1 0 O(xxs Yo 2 1 0 0O|x Y 2
1 0 1|x5 V5 2z 1 0 1(xs Y1 2 1 0 1|{x Vys 7
1 1 O0|Xs Ve 2z 1 1 Of(x1s Yo z 1 1 O0|x3 V2 2
1 1 1|x v7 z 1 1 1(xs Y1 zg 1 1 1|X3 Y3 Z3

Fig. 3. State space for Boolean networks witls 3 andK from 1 toN. All variables are

equal to either 0 or 1 (e.go= 0 or 1, etc.).A) WhenK=N=3, each node is dependent on

the values of all nodes in the network. Witk possible initial configurations of the

three nodes, there are eight possible values for each output function (degrees of, freedom
labeled 0O to 7 for each function). Each step through state space defines exactly one
variable in each column, reducing the number of degrees of freedom by one. Since the
number of initial states equals the number of degrees of freedom in the output function,
there are no restrictions on the movement of the network through state space, so it is
maximally disordered B) WhenK=1, each node is dependent on the value of only one
node (In this casd is dependent oA, B onC, andC onB). Because each node is
dependent on only one node, there are only two possible values for each node (labeled O
and 1 for each variable). With only two degrees of freedom, each output fuiacfipn

andfc is completely determined by any two steps in state space that define its two
variables. Thus there is little freedom in choosing the logic for a particuder styucture

(i.e., the logic is “forced”).@) In between the extremeskEN andK=1,K=2 has 4

degrees of freedom for each function. THGs2 networks have a balance between

freedom and force (control).
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A K=1,D;=0 B K=2, D,=1.58 C K=3, D;=2.81

Fig. 4. The phase transition from order to chaok=2. The figures for eack were
generated by calculating the degrees of freedom spaoe=fbrRegions of the freedom
space with zero degrees of freedom (“forced”) are colored black, while regitnsnei

or more degrees of freedom (“free”) are white. The dimensions sHowb4, andD3)

are of the white areas at the limitragspproaches infinity. The dimensions of the black
regions are one, two, and three, respectivelyn approaches infinity X) At K=1 the

free region (the two points at the ends of the forced region line) has zero diménion (
and thus is not fractal. With such a low freedom/forcing ratio, K=1 systems would be
expected to be highly ordere®)(At K=2 there is near balance between the order and

the free regions as indicated by the highly fractal dimension of the freeDgjedl{is

fractal is neither highly ordered nor highly disordered, indicating that the siistem
potential for nontrivial behaviorQ) At K=3 there is more free region as indicated by the
fact that the fractal dimension of the free area is closer to intBgerThis fractal

indicates thakK=3 systems are likely to have chaotic dynamicsKAscreases above

three, the freedom spaces cannot be pictured because the dimension of the black area is
more than three. However, the fractal dimension moves closer to inté§enasases

(Table 1), indicating more and more freedom in the system. Since the freedom space of
K=2 networks is the most fractal (balanced between freedom and forcing) Kf iany
indicates that there is a phase transition from order to ch&s=2at
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