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A Mean Paradox 
 
 
 
 
 
In our department we have a mathematical biology group that includes  student 
researchers studying mathematical models ( known  as Boolean networks) of complex 
biological systems [4]. Some of these models can be represented as permutations on a 
finite set whose size grows exponentially. One objective is to compute cycle structure 
statistics of the permutations, since these often have  some biological relevance. The 
important  cycle statistics include the average or mean number of cycles in a set of 
permutation and the mean cycle length. Since the space of permutations  is so large, one 
must often resort to simulations and sampling, including  randomly generating 
permutations and studying their cycles. It is well known from group theory that every 
permutation on a  finite set can be written as a cycle or a product of disjoint cycles [2].  A 
classical result from combinatorics and  discrete probabilit y is that the mean cycle length 
of  permutations on n  symbols is approximately  nn log/ . However, if we randomly 
generate a permutation of  degree n, perform the decomposition and average the cycle 
lengths, and repeat this process  many  times, we find that the overall average or  mean 
cycle length  differs nontrivially  from the classical result. Why should the mean cycle 
length arising from random permutation generation of an applied modeling problem 
differ from the classical mean cycle length?  In this note we will show there is a 
surprisingly nontrivial resolution of this mean paradox. 

First, we prove the classical result that the mean cycle length is approximately  
nn log/ . The origin of this proof can be traced back at least 50 years to a paper that 

appeared in this Monthly by R.E. Greenwood [3]. Let nc  denote the mean cycle length in 

permutations of size n. The Stirling numbers of the first kind, denoted by 





k

n ,  arise as 

coeff icients of the following  polynomial : 
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The Stirling number 





k

n  has a combinatorial interpretation as the number of 

permutations of the numbers 1 to n with exactly k cycles in the cycle decomposition [5]. 
Thus, summing over k  yields the  total number of cycles. But this is  just the derivative 
of (1) evaluated at .1=x That is,  
 

  ∑
=





=′

n

k
k

n
kF

1

)1( .  

 



 3 

If we divide  )1(F ′   by  !)1( nF = , the total number of permutations, we obtain the mean 
number of cycles in a permutation :  
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where nH   is the nth Harmonic number. It is well known that nH n log~ . Thus, the total 

number of  cycles over all permutations is nHn! . The total of all cycle lengths is nn!  

since the sum of the lengths of the cycles in a given permutation is n. So the mean cycle 
length  is 
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Observe that the mean cycle length in the classical case was actually obtained by 

averaging over all the cycles. But, in our simulations we randomly generate permutations 
and then averaged the resulting cycle lengths. What is the mean cycle length  when 
averaging over all permutations ?  Let  np  denote the mean cycle length over all 

permutations. There are 





k

n  permutations with exactly k cycles in the cycle 

decomposition. The average cycle length for these permutations is kn /  since the total 
number of elements is n and there are k cycles. Thus, summing over k and dividing by the 
total number of permutations, we have 
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Using (1) we obtain an integral representation for the mean cycle length: 
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Or, using the gamma function :)(xΓ  
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 Next, we will derive a recurrence relation for .np  Observe that  
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To evaluate the integral we use a classical result from the Calculus of Finite Differences 
([6] pp.130, 182): 
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where B
n

n

)(
 is the  nth Bernoulli number of order n. The exponential generating function 

for these numbers is ([6] p.135): 
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So the recurrence relation for np  is 
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with 1,0
)0(

00 == Bp . Using the generating function (2) together with (3) we obtain the  

generating function )(tG  for np : 
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A generalization of the generating function (4) was studied by Flajolet and  Odlyzko [1]. 
Using Cauchy’s integral formula and  Hankel type contours , they derived asymptotic 
expansions for the coeff icients. Applying their Theorem 3A  we obtain the following 
asymptotic expansion for the mean cycle lengths over the permutations: 
 

  





+ ∑

≥
+

1
1 log

1
log

~
k

k
k

n n

a

n

n
p  

 
 
 

where  
2

)(

1

−=






−Γ

=
x

k

k

k xdx

d
a . 

 
 
 So the resolution of the mean paradox has led us to a nontrivial asymptotic 
expansion of the mean cycle length np  from a closed-form expression of the associated 

generating function . 
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