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A Mean Paradox

In ou department we have amathematicd biology groupthat includes gudent
reseachers gudying mathematicd models ( known as Boolean networks) of complex
biologicd systems[4]. Some of these models can be represented as permutations on a
finite set whose size grows exporentially. One objedive is to compute g/cle structure
statistics of the permutations, sincethese often have some biologicd relevance The
important cycle statistics include the average or mean number of cyclesin a set of
permutation and the mean cycle length. Sincethe spaceof permutations is © large, ore
must often resort to simulations and sampling, including randomly generating
permutations and studying their cycles. It iswell known from grouptheory that every
permutation ona finite set can be written as a g/cle or aproduct of digoint cycles[2]. A
clasgcd result from combinatoricsand dscrete probability isthat the mean cycle length
of permutationsonn symbolsisapproximately n/logn. However, if we randamly
generate apermutation d degreen, perform the decompasition and average the o/cle
lengths, and reped this process many times, we find that the overall average or mean
cyclelength dffersnortrivialy from the dasdcd result. Why shoud the mean cycle
length arising from randam permutation generation d an applied modeling problem
differ from the dasscd mean cycle length? In this note we will show thereisa
surprisingly nontrivial resolution d this mean paradox.

First, we prove the dasscd result that the mean cycle length is approximately
n/logn. The origin o this proof can betracel bad at least 50 yeas to a paper that

appeaed in this Monthly by R.E. Greenwood[3]. Let ¢, denote the mean cycle length in
permutations of size n. The Sirling numbers of the first kind, denated by %E arise &
coefficients of the following padynomial :

F(x) = x(x+1)(x+2) (I{x +n -1) = ggx" (1)
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permutations of the numbers 1 to n with exadly k cyclesin the g/cle decmpasition[5].
Thus, summing over k yieldsthe total number of cycles. But thisis just the derivative
of (1) evaluated at x =1.That is,
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The Stirling number has a combinatorial interpretation as the number of



If wedivide F'(Q) by F(1) =nl,thetotal number of permutations, we obtain the mean
number of cyclesin a permutation :
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where H, isthe nth Harmonic number. It iswell knownthat H, ~logn. Thus, the total
number of cyclesover all permutationsis niH .. Thetota of al cyclelengthsis nin

sincethe sum of the lengths of the g/clesin agiven permutationisn. So the mean cycle
length is

Observe that the mean cycle length in the dasdcd case was adually obtained by
averaging over al the cycles. But, in ou simulations we randamly generate permutations
and then averaged the resulting cycle lengths. What is the mean cycle length when
averaging over all permutations? Let p, denote the mean cycle length over all

permutations. There ae (oL
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decompasition. The average gycle length for these permutationsis n/k sincethe total
number of elementsis n andthere aek cycles. Thus, summing over k and dviding by the
total number of permutations, we have
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permutations with exadly k cyclesin the gycle
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Using (1) we obtain an integral representation for the mean cycle length:
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Or, using the gamma function I (X) :

F(x+n)
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Next, we will derive areaurrencerelationfor p,. Observe that

j’ (x+2)(x+2) I{x + n—=1)(x + n)dx

Pra = nl =
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j’ X(X+D(x+ 2) dI{x + n-1)dx

0

=p +
P, Al

To evaluate the integral we use a dasscd result from the Calculus of Finite Differences
([6] pp-130, 18P
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I X(X+2)(x+2) OI{x +n-1)dx = ij“) (n) = (-1)" Bf]n)
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where Bﬁ”) isthe nth Bernodli number of order n. The exporentia generating function
for these numbersis ([6] p.139:
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So the reaurrencerelationfor p, is

pn+1 = pn e (3)
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with p, =0, Bgo) = 1. Using the generating function (2) together with (3) we obtain the
generating function G(t) for p,:

— - n _ _tz
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A generdlization d the generating function (4) was sudied by Flgolet and Odlyzko [1].
Using Cauchy’sintegral formula and Hankel type contours, they derived asymptotic
expansions for the wefficients. Applying their Theorem 3A we obtain the foll owing
asymptotic expansion for the mean cycle lengths over the permutations:

:
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So theresolution d the mean paradox has led usto anortrivia asymptotic
expansion d the mean cycle length p, from a dosed-form expresson d the asciated
generating function .
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