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SUMMARY

One way of coping with the complexity of biological systems is to use
the simplest possible models which are able to reproduce at least some non-
trivial features of reality.

Although two value Boolean models have a long history in technology
(Boole, 1854), it is perhaps a little bit surprising that they can also represent
important features of living organisms. In this paper, the scalar equation
approach (Heidel et al., 2003) to Boolean network models is further devel-
oped and then applied to two interesting biological models. In particular,
a linear reduced scalar equation is derived from a more rudimentary non-
linear scalar equation. This simpler, but higher order, two term equation
gives immediate information about both cycle and transient structure of the

network.

INTRODUCTION

Boolean networks are proving to be quite useful in modeling cell regulation

(Albert and Othmer, 2002; Huang, 2001; Huang 2002b; Huang & Ingber,
1
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2000). The present authors are developing this approach in a long term
project to understand the complexities of intra-cellular signal transduction
(Heidel et al., 2003). Describing a large biochemical reaction network with
on-off Boolean variables is the simplest way to formalize large scale com-
plexity in a realistic manner. The above mentioned papers, each with many
references, give extensive motivation and both biological and mathematical
detail. Here is presented a brief review of the essentials.

A Boolean network is a set of nodes (proteins or other molecules) A, B,
C, ..., D which interact with each other in a synchronous manner. At each
given time ¢ = 0,1,2,... a node has only one of two different values: 1 (on)

or 0 (off). Thus, the network can be described by a set of equations:
At+1 = fA(Ata By, Cy, ... aDt)

Bii1 = fB(A4, By, Ct, ..., Dy)
Ct_|_1 - CA(At, Bt7 Ct7 “ee ,Dt)

Dt+1 - fD(At, Bt’ Ct, “ .. ,Dt).
Each function of f has only constant, linear, or product terms and is de-

termined from the logical table for the behavior of a particular node. For

example, the logical table for OR

B C|A
0 0|0
1 01
0 1|1
1 11

describes the behavior of node A in terms of B and C. This relationship
can be expressed by the equation

A1 = By + Cy + BiCy
in mod 2 algebra, also referred to as AND/ExOR Boolean algebra (Warren-
Smith, 2002).
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Since each node has two possible values, 0 or 1, an n node network has 2"
different states. The three equivalent formulations of the network: logical
tables, directed graph of states, or network equations are all useful. For

example, the network

QEe——0 A‘B B‘C B Cla
01 010 0 00

110 1)1 0 1]0

@® OFF ON 1 00

1 11

AND

has the state space graph

110 — 001 —> 010

N

100 —> 000 011
101<—111
and the network equations
A1 = BiCy
Bii1=1+4;
Ci4+1 = By.

The network has a single cycle of period five with three transient states.
This example clearly illustrates several important features of any Boolean
network. Since there are only a finite number of states, every state eventually
ends up on a cycle which may, of course, be a fixed point. Since the logic
can be arbitrarily specified, in general, any state can move to any other
state and there can be many different cycles in the same network. The
most important feature of a Boolean network is this cycle structure. For

any particular network, most likely defined by n logical tables which can
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then be converted into n equations, the main task is to find all of the cycles.
Because of the exponential growth in the number of states, this is a nontrivial
task as soon as n becomes large.

It is a simple, intuitive observation that the behavior of any node A on a
cycle of length k£ can be described by the equation A;,; = A; for sufficiently
large t (after all transients are traversed). If there are two cycles of length
k1 and ko then for £ = least common multiple(k;, ko) again A;x = Ay
for sufficiently large ¢. What is interesting and nontrivial, however, is that
such a “reduced scalar equation” can be found analytically from the network
equations. Having such an equation A;, = A; for even one node A then
shows that the length of all cycles in the network is a factor of k or a
multiple of k. In fact, the reduced scalar equations found in this paper
also provide information on the maximal transient length before a cycle is
reached. Such information suggests a method for finding the actual cycles
of a large network: iterate a random state beyond the maximal transient
length and the resulting state will be a cycle point.

The reduced scalar equation, which has a simple linear form, is derived
from a smaller order, often non-linear, scalar equation (or set of equations).
The original scalar equation, itself, can be used to actually find the k states of
any cycle of length k. However, the procedure for doing this may be “size 2"”
(Heidel et al., 2003), and, therefore, practically not feasible. Thus, the scalar
equation and reduced scalar equation have different, complimentary, uses
even though the latter is derived from the former. These general concepts
are illustrated in the many examples which follow.

Although synchronous Boolean networks can model very complicated sys-
tems, they do not, strictly speaking, exhibit chaos because they are of finite

size. However if time intervals can be arbitrary, i.e. asynchronous, then
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chaos may appear (Darby & Mysak, 1993; Robert, 1995; Thomas & Kauf-
man, 2001) . But how does one introduce asynchrony in a simple, natural
way? This issue is now being successfully addressed for random Boolean
networks (Harvey and Bossomaier, 1997; DiPaolo, 2000; DiPaolo, 2001).
But until it can be resolved for the specific, deterministic networks we are
interested in, it seems preferable to avoid this extra complication. Many of
the results of this paper were developed in a recent thesis (Farrow, 2002).
Boolean networks are a highly specialized class of the more general neural
networks. Feedback, or recurrent, neural networks may have cycles which
can be found in particular cases (Zurada, 1992). Very little is known in gen-
eral about cycles in neural networks. The one exception is fuzzy cognitive
maps (Kosko, 1997). Here the signal or activation function is binary thresh-
old or sigmoidal with an integer valued linearly computed input. This is the
natural direction in which to extend the general cycle theory for Boolean
networks discussed here. An intriguing possibility is to use three-valued

logic (Adamatzky, 2003) to include uncertainty as well as true and false.

SCALAR EQUATION(S)

A scalar equation is an ordinary recurrence equation for a particular node
of a Boolean network. Where the logic equations of a network completely
determine the exact structure of a network, a scalar equation may be better
suited for analytically finding the general cyclic structure of the network.

Consider the following three node network

A1 =1+ C
By = Ay
Ci+1 = By.

With a small network like this, one can easily determine the exact structure
from these equations by plugging in each possible system state (22 = 8

of them) and mapping out their trajectories. However, this procedure is
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practically impossible for large networks since an n node network has 2"
states. Scalar equations can sometimes be used to determine the cyclic
structure of the network without determining the trajectories of all 2" states
in the state space.

By progressing the first of the above equations forward in time two steps
(shifting by two) and making substitutions one finds A;y3 = 1 + Cpyo =
14 Biy1 = 1+ A;. The other nodes have identical scalar equations. From
this scalar equation it follows immediately that all elements of the state
space lie on an orbit of period six. It also follows that there are no period
three cycles and no fixed points. Thus, the only possibility besides a full
period six cycle is a period two cycle. It is easily verified that this network
has a period two and a period six cycle (Heidel et al., 2003).

As is generally the case with recurrence relations, linear examples such as
the one above are easy to handle. And linear Boolean networks will produce
linear scalar equations. There are also matrix methods available for analyz-
ing linear Boolean networks (Cull, 1971; Milligan & Wilson, 1993; Wilson
& Milligan, 1992). Systems with more nodes and non-linear logic equations,
have more complex scalar equations. Take for example the following four

node network with one non-linear term

A1 = By Dy
By =1+ 4
Ci+1 = By
Dyiy = G

The scalar equation for node A of this network is Ay14 = (14 A¢y2) (14 Ay).
Unlike the linear case, this nonlinear scalar equation does not immediately
reveal anything about the cycle structure of the network. Furthermore, the
other three nodes share a different scalar equation. Since A4 is a function of
Ag, A1, As, A3, the structure of this network could be determined by speci-

fying all possible binary sequences of length four (16 of them) and inserting
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them into the scalar equations, but this does not save any work. It turns
out that for this example a simple analysis finds both a period three and a
period six orbit (Heidel et al., 2003).

Note that the scalar equations for the above two networks are of order
three and four respectively, the same as the number of nodes in the networks.

But this simple relationship may not always hold. For example the network

A1 =B+ Cy
By = ACy
Ciy1 = A+ By

has a fixed point and also orbits of period two and three. It does not
(apparently) have a scalar equation of order three. However, it is easy to

derive the relationship
Ao = A + Cr + ACr + Ap
and then, noting the symmetry between nodes A and C,
Cir2 = A+ Ci + ACr + Chyar.
Thus, specifying all of Ay, A¢y1,Ct, Cyi1, completely determines the trajec-

tories. For example if Ag = 0 and A; = 1 then all of the possibilities for
Ay’s and Cy’s are

Ay Cy

t=0| 0 0011

t=1 1 0101

t=2]1 0 1110

t=3|0 1 0011

t=4]1 0 1000
t=5|1 1 0111

which exhibits the periodicity for A; and C;. Other initial values of A; and
A¢i1, give the same cycles. It turns out to be the symmetry of the network
equations which allows two cycles to exist instead of one and thereby makes

the scalar equations more complicated. But the symmetry also provides a



8 CHRISTOPHER FARROW, JACK HEIDEL, JOHN MALONEY, AND JIM ROGERS

simplification in deriving a reduced scalar equation, which is described in the
next section. The question of the trade off between symmetry and simplicity
of scalar equations is interesting in its own right and will be examined in a

future paper.

THE REDUCED SCALAR EQUATION

Even though the scalar equations for a synchronous Boolean network can
be found in many cases, they may not prove to be useful if they take a
complex form. The reduced scalar equation is a simplified form of the scalar
equation that readily reveals information about the cyclic and transient
structure of a network. An example will help introduce this technique.

Consider the scalar equation A;y3 = 1 + A; from above. This equation
is used to show that the associated network has a cycle of length two and
a cycle of length six. Shifting this equation by three yields the equation
A6 = 14+ Aps. Substituting this into the original scalar equation (mod 2)
gives a new equation A;yg = A;. This simplified but higher order equation
is referred to as the reduced scalar equation. It only has two terms, and
the order of the equation gives information about the cyclic structure of the
network. The equation reveals that all states of node A lie on an orbit of
period six, as did the original scalar equation. More specifically, the equation
indicates that the length of any cycle must be a divisor of 6. So, node A can
have a period of one, two, three, or six. In this example, the information
gathered from the reduced scalar equation is less helpful than that of the
original scalar equation. Indeed, the reduced scalar equation introduces the
possibility of cycles of length one and three where cycles of these lengths
are prohibited by the scalar equation. However, the reduced scalar equation
proves very useful when a network has more complicated scalar equations.

Consider the network
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App1 = BiCy
By =1+ 4;
Cit1 =By

with non-linear scalar equations

Apyz =1+ Appr + Ap + App1 A = (1 + A (1 + Arya)

Bii3 =1+ By 1By

Ciyz3 =1+ Cp1Cy.
Finding the structure of the network with these equations would require
finding the output for all eight initial binary sequences of length three (Heidel
et al., 2003).

As an alternative to examining cycle structure directly from a third order
scalar equation, iterate the equation for B (which appears simpler than the
equation for A) to get

Bii3 =1+ BBy

Bii4s =14 B11Biyo

Biys5 =1+ Byia(1+ ByByy1)

Byye = ByBi11 + (1 + By)Byy1 B2

Biy7 = Biia.
Each of the other two nodes A and C have the exact same reduced scalar
equations. We learn two things from these equations. First, all cycles of this
network have period five. In addition, the equation shows that the longest
possible transient trajectory of the network has length two. That is, given
any point in the state space, after two iterations it will be on a cycle. A
simple check shows that this network has no fixed points, so there must be
a single cycle of length five and three transients. These simple and exact
(see the example in the introduction) observations do not define the actual
cycle, but they nonetheless give useful information about the structure of

the network.
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BioLoGIicAL EXAMPLES

The next example is a Boolean equation model of coupled oscillations in
the cell cycle (Goodwin 1963; Heidel et al., 2003). The connectivity graph,

logic tables, and network equations are given below

/ @\M X

| — QD] @2_. 82

X1 M| Cy Ch ‘ M, M, ‘ X1
0 0 1 0] 0 0 0
0 1 0 1 1 1 1
1 010 ON ON
1 1 0

NOR
Xo M| Cy Cy | My M; | Xo
0 0|1 0] 0 010
0 1 0 1 1 1 1
1 010 ON ON
1 1 0

NOR

Crit11) = 1+ X1y + Moy + X1y Mo
M1y = Cip

Xit+1) = My

Cogt1) = 1+ Xog) + My +Xowy M)
My 1) = Cy

Xo(t+1) = May).
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Noting the symmetry of the system, the network equations can easily be

reduced to two equations
Ci43) = (1 + Ci)) (1 + Cop41y)

Coe43) = (1 + Co)) (L + Crpy1)
from which the period five and period ten orbits can be found directly (Heidel

et al., 2003). Alternatively, the reduced scalar equation can be found as
follows. To simplify the equations make the substitution A; = 1+ C)(;) and

By =1+ Cqy) to get the new equations
Apys = AtBry1 +1

B3 = A1 By + 1.
Iterating and substituting we obtain in turn
Atya = A1 B +1

Aprs = Apro + A1 Ao By + 1

Apre = (Ap + Agpo + AyAgyo) By

Ay = [Appr + (A1 + 1) (A4 Big1 +1)| By
Aprs = [Ap1(Ars2 + 1) Bryg +1](A1 By + 1)

Atyg = At12Bii1 + 1 = By
Converting back to Ci and Cy we have Cy;19) = Cytqq)- By symmetry

in the logic equations, this implies Cy(;19) = C1(444)- Thus, the network is
characterized by the reduced scalar equations Cy(;414) = Cy(44) and simi-
larly for C. The network can contain fixed points or cycles of length two,
five or ten. The longest transient chain is four system states in length, which
is exact. It is easy to show that there are no fixed points. Again, the reduced
scalar equations yield less information by themselves than the pair of order
three nonlinear equations. But they show that no transient chain is longer
than three, i. e. that any initial state will be moved to somewhere on a cycle
by the fourth iteration.

Another example is the Boolean model of cell growth, differentiation, and
apoptosis (programmed cell death) introduced by Huang and Ingber (2000).
For simplicity, the 11 nodes of the network are represented by the letters
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A through J. The connectivity graph, logic tables, and network equations
are given below (NIF = “not if”, IMP = “implication”, NAND = “not
and”).

‘B\) e . C&
\’@ ~“.'.’
l'k "‘ §“
I C
/,@ v
o 0s06
K H|A A C|B D I|C J K |D
0 010 0 010 0 0|1 0 010
0 110 0 110 0 1|1 0 1|0
1 0|1 1 0|1 1 0]0 1 010
1 110 1 110 1 1)1 1 1|1

NIF NIF IMP AND
C F|E E G|F B E |G F G| H
0 01 0 010 0 01 0 00
0 1|1 0 1|1 0 1]1 0 1|0

IMP NIF NAND NIF
H I\H J ‘ J K ‘ K

0 00 00 010

0 110 111 111

1 01 ON ON

1 110
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A1 = Ky + K Hy
Biy1 = Ay + ACy
Cir1 =1+ Dy + Dy,
Dy = Ji Ky

By =1+ Cy + CF,
Fiy1 = By + E4Gy
Gir1 =1+ BBy
Hiy = Fy + Gy
Iiyy = Hy + Hily
Jiy1 = J

Kii1 = K.

In that article it is shown that a non-trivial growth attractor exists, as-
suming that the growth factor (node K) and cell spreading (node J) are
both on. Iterating and substituting in the usual way we obtain (letting
J=K=D=1)

Iiio = F(1+ Ge)(1 + I111)

Iiy3 = Fip1(1 + I 0) BLE;

Ii—y = Fy19(1 + Iiy3)Bey1 B

Iiys = Fyos(1+ Ipa) (14 Iy + Iiya)

FH-? = BtEt(l + Ct + CtFt)
Fiy3 =By 1By (14 I + It Fiyv)
Fira= 1+ L+ L) (1 + L1 + L1 Fryo).
This gives two equations for F; and I; but we further notice that

Itve = (L+ I) (1 + Liy1) (1 + Tpp0) (1 + Ipys),

a single scalar equation for I;. From the simple multiplicative symmetry of
this equation it is seen that any initial binary sequence for I must lead to

the sequence (0,0,0,0,0,0,1,0,1) and then repeat. Furthermore, it is easy
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to see that all nodes have the same periodicity as I; and therefore the overall

period nine cycle is
(0,0,1,1,1,0,1,0,0,1,1) — (1,0,0,1,0,0,1,0,0,1,1) —
(1,1,0,1,1,0,0,0,0,1,1) — (1,1,0,1,1,1,0,0,0,1,1) — (1,1,0,1,1,1,0,1,0,1,1) —
_)

(0,1,0,1,1,1,0,1,1,1,1) — (0,0,1,1,1,1,0,1,0,1,1) — (0,0,0,1,1,1,1,1,1,1,1).
This agrees with the corrected form (Huang, 2002a) of the cycle found in

(1,1,0,1,1,0,1,0,0,1,1) —

Huang and Ingber (2000).
A reduced scalar equation can also be derived, proceeding in the following

way
Iive =0+ L)+ L)1+ Ti2) (1 + Iiys)

I = (14 L) (1 + Do) (1 + Tiy3) (1 + Tiye)

=1+ Ti41) (X + Lep2) (1 4 Lig3) + (1 + Lpa ) (1 4 Liq2) (1 + Tiqs) (1 + Tiys)
(recall that A2 = A in mod 2 algebra)

Iips = (14 Tiya) (14 Trys) (1 + Tppa)+
(L4 Teq) (1 + Teq2) (1 + Ty3) (1 + L)+
(1 + 1)+ D) (1 + Do) (14 Trgs) (1 + Tpa) (1 + Tpy5)
Tivo = (1+ Teqs)(1 + Te4a) (1 + Tiy5)+
(L4 Lig2) (1 + Teq3) (1 + Tepa) (1 + Tegs)+
(L4 1) (1 + Teq2) (1 + Teg3) (1 + Lega) (L + Tiqs) +
(L4 L) (1 + L1 ) (L + Teq2) (T+e43) (1 + Teqa) (1 + Ti45)
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Tivro = (L4 Lipa) (1 + Tys)+
1+ L) (14 L) (T + L) (L4 Tipa) (1 4+ Tiys)+
(L4 Li3) (1 + Tia) (1 + Lrys)+
(L4 1) (1 + L1 ) (L + Tig2) (1 4 Tiys) (1 + Teqa) (1 + Ligs)+

(L4 Ti41) (1 + Tiq2) (1 + Tiq3) (1 + Tiqa) (1 + Ty5)
(recall that A + A = 0 in mod 2 algebra)

Liin =1+ Lys)+ QA+ L)A+ L)1+ Tii0)(1 + Iiys)+
(L4 Li1) (1 + Teq2) (1 + Ty3) (1 + Tigs)+
(L+ 1) (1 + L) (1 + Tig2) (L + Tiy3) (1 + Tigs)+
(L+ Tiya) (X + Tiq5)+
(L4+ 1) (1 + L) (1 + Tig2) (L + Tia) (1 + Tiys)+
(L4+ 1) (1 + L1 ) (L + Tog2) (14 Tiq3) (1 4 Teqa) (X + Legs)+
(L4 Tt3) (1 + Tiqa) (1 + Tpy5)+
(L+ Leg2) (X + Tiq3) (1 + Lppa) (1 + Lys)
Livio =14+ 1+ L)+ Ligo) (1 + Liys) + (L4 Lig2) (1 4+ Lig3) (1 + Ligq)+
14+ L)X+ Lipo) (1 + Tip3) (1 + Tipa) + (1 + Ligs)+
(14 Li1) (1 + Teq2) (1 + Ty3) (1 + Tigs)+
(1 + Tiq2) (1 + T3) (1 4 Tega) (1 + Tpy5)+
L+ L)1+ L)X+ L) (L + Liy3) (1 + Ty g) (1 + Iigs)+
(L+ Lya) (X + Tegs) + (14 L) (1 + L1 ) (T 4 Leg2) (T + Lia) (1 + Tess)+
(L4 Ti41) (1 + Tiq2) (1 + Teqes) (1 + Tpqea) (1 + Tpps)+
(1 + Toq3) (1 + Topa) (1 + Tiys)
Iz = (L4 Tipa) (1 + Teq2) (1 + Tiq3) (1 + Tpa) (1 4 Tys)+
1+ Iigs) + (L4 Tpr)(X + L) (1 + Tigs) (1 4 Tigs)+
(L4 L) (1 + L) (1 + Teq2) (1 + Te3) (1 + Tys)+
(L4 Tipa) (1 A+ Toys) + (L4 L) (14 Tig1) (1 + Tpg2) (1 + Teqa) (1 + Tigs)
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I = (14 Te2) (1 + Tey3) (1 + Tepa) (1 + Teys) + 1+
(1+ Tiq2) (1 + Ts) (1 4 Trya)+
(L + L) (1 + L) (X + Liq2) (1 4 Tpq3) (1 4 Lyga) (1 + Liys)+
(L4 1) (1 + Teq2) (1 + Ty3) (1 + Tipa)+
(L+Tiys5) + (14 L)X+ Liyo) (L + Iy 3) (1 + Iigs)+
1+ L)1+ L)1+ L) (1 4+ Li3)(1 + Lig5)
Iiyis = (L4 L) (U4 Diq2) (1 + Tiy3) (1 + Lipa) (1 + Liy5)+
1+ Tio) (1 + Ts) (L 4 Teya) (1 + Tpy5)+

(
(L4 L) (1 + L1 ) (1 + Teq2) (1 + Tey5)+
(14 Tpy2) (1 + Tpy3) (1 + Lipa)+

(L4 T41) (1 + Tiq2) (1 + Teq3) (1 + Ttqa)
Lipyie = (1+ Dip1) (1 + Tppo) (1 + Liyg)+

(L4 T) (1 + Ty ) (1 + Tiq2) (1 A+ Ty3) (1 + Tiys)

= Ii47.
The value of this reduced scalar equation is considerable. It says that

not only is I; (and hence every other node) on a cycle of period nine but
that, starting from any initial condition, after at most seven transient states,
the cycle is attained. Since there are 28 = 256 initial states, this is a non-
trivial conclusion. In fact, the initial trajectory (0,1,0,0,0,1) for I gives a
transient of length seven. The reduced scalar equation means that iterating
any randomly selected initial value 16 times, at most, will reveal the entire
cycle structure.

We are currently working to create a computer algorithm to systematically
find any and all possible types of scalar equations, nonlinear and reduced,
of Boolean network equations. If an algorithm can be found, then the next
question will be: Can it be implemented for "large” networks and how large

do we really mean?
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We also mention a paper (Poncet and Robert, 1999)which considers suc-
cessive mappings of a whole Boolean network, not just a single node, to
other, related networks. This mapping eventually returns the original net-
work to itself while preserving fixed points at each step. The mapping has
the simple form of a reduced scalar equation but its relation to the cycle

structure of the original network is not clear.
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