Operations research is a scientific approach to decision making that seeks to best design and operate a system, usually under conditions requiring the allocation of scarce resources. Operations research saves lives, saves money, and solves problems. Operations research models are used daily to optimize systems from several industries:

- Logistics, transportation, and supply chain
- Financial systems
- Manufacturing
- Health care, medicine, and public health
- Oil, chemical, and mining industries
- Food and energy systems
- Agriculture
- Military and defense.

This course will study modeling and solution methods of some classical operations research models such as linear, integer, and network programming.

Modeling

- Model and solve complex systems using commercial and open-source software (e.g. CPLEX, Gurobi, COIN-OR, etc.)
 - Blending and production process problems
 - Inventory and multi-period decision problems
 - Transportation and transshipment problems
 - Traveling salesman and vehicle routing problems
 - Knapsack and multiple knapsack problems
 - Assignment and matching problems
 - Covering, node packing, and bin packing problems
 - Facility location, fixed charge, and network problems

Solution Methods

- The simplex method for linear programming
 - Understand the mechanisms and theory of the simplex method to solve linear programs
 - Evaluate the sensitivity of linear programs
 - Understand and apply duality theory to solve linear programs
- The branch and bound algorithm for integer programming

Do you want to learn more about the impact of operations research? Visit https://youtu.be/9-MITCoka-Q