
Working Backwards: Solution

We can represent the state of the game with three numbers (a, b, c), which
means there are a, b, and c marbles of each color left. Say (a, b, c) is a winning
position if perfect play starting from that position has a guaranteed win, and
a losing position otherwise. (Order doesn’t matter to whether the game state
is a winning or losing position, so we might as well assume a ≤ b ≤ c so that
we don’t have to write as many triples.)

A position is winning if (and only if) either you can win the game on that
turn or else it is possible to make a move which leaves your friend with a
losing position. Conversely, a position is losing if (and only if) no matter
what move you make you leave your friend with a winning position.

The game states where you can win on your turn are those where all marbles
have only one color left, i.e. when two of the numbers a, b, c are zero:

Win: (0,0,1), (0,0,2), (0,0,3).

The losing position with fewest marbles is (0, 1, 1), since no matter which
marble you take you leave your friend with the winning game position (0, 0, 1);
this means any state that can reach (0, 1, 1) on the next turn is winning:

Win: (0,1,2), (0,1,3),

(1,1,1), (1,1,2), (1,1,3).

This means (0,2,2) must be a losing position, because it can only leave your
friend with one of the winning positions (0,1,2) or (0,0,2), which also means

Win: (1,2,2), (0,2,3).

Finally, (1,2,3) is a losing position because it too can only leave your friend
one of the winning positions (0,2,3), (1,1,3), (1,2,2), (1,1,2), (1,1,1), (0,1,2).

In conclusion, if you believe your friend is banking on this fact, or else can
recognize and capitalize on it immediately, you should decline her offer.



This is the game of Nim. The game can starts with any number of “heaps,”
each heap having any number of items, and you take turns with your opponent
removing any number of items from one heap per turn. Games can be added:

+ =

In game theory terms, the combined game is the disjunctive sum of the
smaller games. The sum A+B of two games A and B has players playing the
games A and B “in parallel,” meaning each turn a player performs a move
in either game A or game B (until one of them is concluded, after which the
players finish the remaining game), and the sum game is finished when both
A and B are, with the final outcome the same as that of the final game.

Compare with simultaneous exhibitions where a high-ranking player plays
multiple other players (in chess or Go, for example) at the same time. The
disjunctive sum is like this, but played 1v1 instead of against multiple other
players, and only the last-concluded game’s outcome counts.

Maybe we can determine if the A + B is a winning or losing position based
on the positions of Nim games A and B? Consider the possibilities:

• L + L = L. If A and B are both losing positions, your opponent can
play perfectly in both games and win both, hence the sum.

• L+W = W . If (say) A is a winning position and B is a losing position,
then you can play a correct move in A to leave your opponent with two
games in losing position, which we just said is a losing position.

• W + W is indeterminate, as our previous work reveals - for example
(1) + (1) = (1, 2) is a losing position but (1) + (2) = (1, 2) is winning.

Perhaps we can study some special cases and generalize? The simple game
(1, 1, · · · , 1) with n one-item heaps is winning or losing based on n’s parity,
i.e. it is a winning position for odd n and a losing position for even n.



If we analyze the two-heap game (a, b) for small values of a and b we will find
it is only a losing position when a = b. What makes equal-size pairs of heaps
so special? For the game (a, a), you cannot take all of one heap because then
your opponent can win next turn. But then whatever number of items you
take from one heap, your opponent can mirror your move by taking an equal
number of items from the other heap! This generalizes: given any game A,
the game A + A must be a losing position, since whatever move you do in
one of the A games, your oppononent can copy it in the other A game.

If we analyze the three-heap game (a, b, c) for small values of a, b, c, no ob-
vious pattern emerges. (We will find out in a bit that the three-heap games
are the key to solving the full game with any number of heaps.)

Consider the effect of adding one heap to a game. For any game A, there is
at most one number a for which A + (a) is in a losing position. Indeed, if
there were two such numbers a < b, then faced with A+(b) you could remove
items from (b) to leave your opponent with the losing position A+(a), which
means A + (b) was a winning position for you, a contradiction. The value a
(which will turn out to always exist) is called the nim sum of A.

To anyone familiar with computer science, this may feel like a parity bit,
or more generally a checksum. Computers deal in bits, or 1s and 0s (cor-
responding to the presence or absence of electrical signals in circuits, or to
magnetic poles in physical media, or to True and False respectively in gen-
eral). Computers often append a parity bit to the end of a code (string of
bits) which is the XOR (exclusive or) of previous bits. In practice this means
the parity bit has the same parity as the number of 1s in the code (parity
means whether a number is even or odd).

A checksum is a larger block of data that functions the same way. Parity bits
and checksums are examples of error-detection systems. More sophisticated
coding schemes can be used to not only detect but also correct reasonable
levels of errors in signals travelling over noisy channels on-the-fly. Modern
computers and the internet as we know it wouldn’t be possible without error
correction fixing flipped bits caused by interference like stray particles.



Just as a parity bit is the unique bit added to the end of a code to make the
total XOR equal 0, the nim-sum of a game is the unique heap size (possibly
zero) to add to make it a losing position, hence the analogy.

Let’s use the notation ΣA for the nim sum of a game A. By definition,
A + (ΣA) and B + (ΣB) are losing positions, as is A + B + (ΣA+B). That
means the sum of all three of them is also a losing position:

A+ (ΣA) +B + (ΣB) + A+B + (ΣA+B).

We said earlier L + L = L and L + W = W , which means subtracting
any losing game (if possible) from a sum does not change winning or losing
position. As A+B+A+B is a losing position, we can subtract it to conclude

(ΣA) + (ΣB) + (ΣA+B)

is also a losing position, which means not only is ΣA+B the nim-sum of A
and B, it is also the nim-sum of (ΣA) + (ΣB)! This means we can replace
the last two heaps of a game (a1, · · · , an−1, an) with their nim-sum as a single
heap and the overall nim-sum is unaffected. Thus, finding the nim-sum of
any game is reduced to finding the nim-sum of two-heap games!

Let’s pick notation that indicates we’re considering a binary operation: let
a⊕ b denote the nim sum of (a)+(b). We’ve found 1⊕2 = 3 in this problem,
for instance. It takes quite a bit of legwork (working out case after case by
hand) before we can observe any patterns in a nim-sum table:

0 1 2 3 4 5 6 7
1 0 3 2 5 4 7 6
2 3 0 1 6 7 4 5
3 2 1 0 7 6 5 4
4 5 6 7 0 1 2 3
5 4 7 6 1 0 3 2
6 7 4 5 2 3 0 1
7 6 5 4 3 2 1 0

Every entry in the table is the nim-sum of its

row’s first number and its column’s top number.



The diagonal is filled with 0s (as we said earlier, A + A is always a losing
position, which implies a ⊕ a = 0). Also notice there are many runs of con-
secutive numbers within rows and columns of different sizes.

There also seems to be interlacing and reversing effects - for example, in the
row beginning with 1, the numbers after 0 are just the same numbers above
them but every consecutive pair is swapped. The effect is more pronounced if
we subdivide the 8×8 array into a 2×2 array of 4×4 arrays: each 4×4 array
is identical to the catercorner 4 × 4 array. The same is true if we subdivide
the 4× 4 arrays into 2× 2 arrays, and this pattern continues if we zoom out
to look at 8× 8 arrays within a 16× 16 or beyond.

This fractal-like structure (self-similarity at different scales) is reminiscent of
numbers represented in binary. In our decimal (i.e. base-10) number system
(chosen because we have ten fingers), each digit represents higher powers of
ten, so for instance 100 = 102 and 1000 = 103. In binary, the digits represent
powers of two, so 111 in binary is 4 + 2 + 1 = 7 in decimal for example.

binary decimal
000 0
001 1
010 2
011 3
100 4
101 5
110 6
111 7

000 001 010 011 100 101 110 111

001 000 011 010 101 100 111 110

010 011 000 001 110 111 100 101

011 010 001 000 111 110 101 100

100 101 110 111 000 001 010 011

101 100 111 110 001 000 011 010

110 111 100 101 010 011 000 001

111 110 101 100 011 010 001 000

In the left table of binary representations, notice the units digit alternates
between 0 and 1, the twos digit alternates between two 0s and two 1s, the
fours digit alternates between four 0s and four 1s, and this pattern continues.

On a hunch, let’s rewrite the nim-sum table in binary. It may not be obvious,
but this is also the table for bitwise XOR! That is, a binary digit of a⊕ b is 0
if the corresponding binary digits of a and b match, and is 1 otherwise.

This completely solves the game of Nim. For example, consider the game
(1, 2, 3, 4). The nim-sum is the bitwise XOR of the numbers 1, 2, 3, 4:



0001

0010

0011

⊕ 0100

0100

The nim-sum is 1⊕ 2⊕ 3⊕ 4 = 4. Since the nim-sum is not
zero, we conclude (1, 2, 3, 4) is a winning position. In fact,
this gives us the strategy for perfect play: always leave your
opponent with a nim-sum of zero for the start of their turn.

The earliest European references to Nim are from the 1500s, but it’s possible
the game originated in China, and some of its many variations have been
played since ancient times. The first published mathematical solution was in
1901, for comparison, so a lot of time went by before the solution was finally
found. Don’t get hung up if you didn’t see it; almost nobody does!


