
Versorial Validation: Solution

Setting p = a+ u and q = b+ v, we begin by expanding |pq|2:

|(a+ u)(b+ v)|2 = |(ab− u · v) + (av + bu+ u× v)|2

= (ab− u · v)2 + ∥av + bu+ u× v∥2.

We can FOIL (ab−u · v)2, and additionally using the relation ∥w∥2 = w ·w
we can distribute the vector norm above and combine like terms to get

= a2b2 − 2ab(u · v) + (u · v)2

+ a2∥v∥2 + b2∥u∥2 + ∥u× v∥2

+ 2ab(u · v) + 2av · (u× v) + 2bu · (u× v).

The ±2ab(u · v) terms cancel. The cross product u × v is orthogonal to u
and v, which makes the dot products v · (u× v) and u · (u× v) zero, so the
magenta terms vanish. For the orange terms, we can use the facts{

u · v = ∥u∥∥v∥ cos θ,
∥u× v∥ = ∥u∥∥v∥ sin θ.

Using cos2 θ+sin2 θ = 1, the orange terms combine to ∥u∥2∥v∥2. So we have

a2b2 + a2∥v∥2 + b2∥u∥2 + ∥u∥2∥v∥2

= (a2 + ∥u∥2)(b2 + ∥v∥2) = |a+ u|2|b+ v|2.
In conclusion, we have shown |pq|2 = |p|2|q|2.

Hamilton spent about a decade searching for a 3D number system that would
model rotations similar to how complex numbers model 2D rotations:

Every morning in the early part of October 1843, on my coming
down to breakfast, your brother William Edwin and yourself used
to ask me: “Well, Papa, can you multiply triples?” Whereto I was
always obliged to reply, with a sad shake of the head, “No, I can
only add and subtract them.”



Orthogonality (the assumption that 1 and i point in orthogonal directions)
and multiplicativity are the key properties that let phasors (unit-norm com-
plex numbers of the form eiθ) act as rotations of the complex plane. Hamilton
sought a similar system with triples a + bi + cj, but to no avail, until one
day he realized making i and j anticommute (ij = −ji) and ij jut out into
a fourth dimension made all the algebra work out:

An electric circuit seemed to close; and a spark flashed forth, the
herald (as I foresaw, immediately) of many long years to come of
definitely directed thought and work, by myself if spared, and at
all events on the part of others, if I should even be allowed to live
long enough distinctly to communicate the discovery. Nor could
I resist the impulse - unphilosophical as it may have been - to cut
with a knife on a stone of Brougham Bridge, as we passed it, the
fundamental formula with the symbols, i, j, k; namely,

i2 = j2 = k2 = ijk = −1.

(It is a quick exercise to verify this very symmetric equation is equivalent to
the usual relations i2 = j2 = k2 = −1 and k = ij = −ji.) In hindsight, it
makes sense three imaginaries are necessary: there are three perpendicular
planes of rotation possible in 3D, unlike only one plane of rotation in 2D.

Hamilton may have spent the rest of his life evangelizing quaternions, but
they eventually fell out of favor - imagining four dimensions is a hard ask -
but Gibbs came along later and cut out the real and imaginary parts of the
product of two pure imaginary quaternions and gave us what we now call
the dot product and cross product, now standard curriculum today. This
story is but a subplot in a larger ‘war’ waged over various kinds of algebras -
other notable names include Gibbs and Heaviside on the side of vectors, and
Clifford and Grassman with a multivector generalization of quaternions.

The quaternion is denoted H in honor of Hamilton. The real and imaginary
parts of quaternions are also called the scalar and vector parts. Two quater-
nions commute (xy = yx) if and only if their vector parts are parallel, and
they anticommute (yx = −xy) if and only if they are perpendicular vectors.



In H, the only square roots of +1 form a ‘zero-sphere’ S0 = {±1}, the only
square roots of −1 are 3D unit vectors forming the two-sphere S2, and the
versors (unit quaternions) form a hypersphere S3. All nonzero quaternions
have a polar form r exp(θu), where r is the norm, u is a unit vector, θ is a
convex angle 0 ≤ θ ≤ π, and Euler’s formula applies to exp(θu).

Any unit vector u can be extended to an orthonormal basis {u,v,w} for
3D space (oriented according to the right-hand rule), which extends to a ba-
sis {1,u,v,w} for H. If p = exp(θu) then the left-multiplication function
Lp(x) = px acts as a rotation by θ in a pair of 2D subspaces, the 1u-plane
and the vw-plane. The right-multiplication map Rp(x) = xp is the same,
but rotates the opposite direction in the vw-plane.

The composition Lp ◦ Rp−1 is conjugation x 7→ pxp−1. These left and right
multiplications cancel out in the 1u-plane, so when restricted to 3D vectors
the effect is rotation around the u-axis by the double angle 2θ. This is
how quaternions model 3D rotations. Indeed, they also model 4D rotations:
any rotation of four-dimensional space is equivalent to the “bimultiplication”
Lp ◦Rq−1 for some pair of versors p and q.


