Trees and Wreaths: Solution

For each of the seven (1 + 2+ 4 = 7) vertices above the last row, we have
a binary choice of whether or not to swivel the subtree below it. Thus, the
number of swivellable permutations of the last row of vertices is 27 = 128.

It may not be obvious why this exhausts all possibilities; what about the
order in which we swivel subtrees, or the option to swivel multiple times at
a vertex (just not in a row), why don’t these lead to more permutations?

Consider the general problem of counting the number W, of permutations
possible if our tree has n levels (our situation is n = 3). The permutations
are of two kinds: those where the left half of the numbers remain on the left
and the right half of numbers remain on the right, or those where the opposite
is true. There are an equal number of each, because swivelling below the top
vertex converts permutations of the one kind to the other and then back.

The number of permutations of the first kind is W,,_1 x W,,_1, because there
are W, _1 permutations possible for the first half of numbers and W,,_; also
for the second half. Therefore, we have the recursion

W, =2W?2 .

The first couple values are W, = 1 and W; = 2 by inspection, which leads to
Wy =23 =8 and W3 = 27 = 128. The general formula we then guess is

W, — 21+2+---+2”—1 _ 921
n h— h— .

We can verify this is true by induction: this satisfies Wy = 1 and W,, = 2W2_,.

This means swivelling in different orders or multiple times at vertices achieves
no more permutations than if we always swivel the vertices in the same order
at most once each. Indeed, each permutation can be interpreted as a function
of {1,2,3,4,5,6,7,8} which means we have a permutation group: a set of
invertible functions on a set which is closed under composition and inverses.



To understand the structure of this permutation group, it’s necessary to un-
derstand wreath products. One way to understand the wreath products
(and direct products) of permutation groups is with the product action. Sup-
pose GG is a permutation group acting on the set {1,--- ,m} and H is a
permutation group acting on the set {1,--- ,n}. Make a table with m rows
and n columns, filling the entries with the numbers 1 through m x n:

1 2 3 -+ n
1 |1
2
3
m mn

m

The direct product H™ = H x --- x H (in some contexts called a direct sum,
for which we will use the shorthand mH = H @ --- & H) is a permutation
group acting on {1,--- ,mn}, the set of labels in the table. The elements of
H™ are attained by using permutations from H on each row individually.

The wreath product H ! G is a larger permutation group, containing H" as
a subgroup, acting on {1,--- ,mn}. The functions of H ! G are attained by
using row-permutations from H™ followed by using a permutation from G to

shuffle the rows amongst each other. This means the order (cardinality) of
the wreath product is |H ! G| = |H|™|G].

The permutation group which cycles the elements {1,2,--- ,p} around in a
circle we can denote Z,. The permutation group of order 27 we found acting
on {1,---,8} is actually a wreath power Z} = Z; 1 Zy Zy (we don’t need
to distinguish between Zs ! (Zo ! Zs) and (Zs ! Zs) ! Zs because the wreath
product, as an operation on permutation groups, is associative).

Wreath powers yield Sylow subgroups of symmetric groups. The first Sy-
low theorem asserts that if a finite group G has order n and p* is the largest
power of a prime p dividing n, then G has a subgroup of order p*, called a Sy-
low subgroup (this is a partial converse to Lagrange’s theorem, which says the
order of any subgroup H is a divisor of n; the full converse is false in general).



In particular, our 2223 is a Sylow subgroup of Sss. In general, a Sylow subgroup
P of S,, can be constructed as a direct sum of wreath powers analogous to rep-
resenting n in base-p. Specifically, if n = > npp* (with digits n; taken from
{0,1,--- ,p—1}) is n’s base-p representation, then P = @nkzgf. This can
be verified a Sylow subgroup with Legendre’s formula from number theory.



