Projector Junction

For a line ℓ , the projector p_{ℓ} sends any point x to the nearest one $p_{\ell}(x)$ on ℓ :

The composition $p_k p_\ell$ of two projectors (as functions) is generally not a projector. However, the **symmetrization** $\frac{1}{2}(p_k p_\ell + p_\ell p_k)$ is a sum of orthogonal projectors, corresponding to the two bisectors m and n of k and ℓ :

Problem. Express $a(\theta)$ and $b(\theta)$ in terms of trigonometric functions of θ :

$$\frac{1}{2}(p_k p_\ell + p_\ell p_k) = a(\theta)p_m + b(\theta)p_n$$

Hint. For lines through an origin, projectors are linear operators.