Polarization: Solution

First we extend the vanishing condition. Substitute a = a; + ay into the
vanishing condition, and then distribute (aka “FOIL”) with multlinearity for

gb(al, b,ag, b) + ¢(ag,b, ai, b) =0

The terms ¢(aj, b, a;, b) and ¢(as, b, as, b) are zero so do not appear. By the
symmetry condition, the two remaining terms are equal, so ¢(aj, b, as,b) = 0.

Similarly, substituting b = by + by into ¢(a;, b, as, b) = 0 gives

¢(ai, be,az,by) = —¢(as, by, az, be)

Thus, swapping the second and fourth arguments changes the sign. If we had
instead substituted b = b; + b first and a = a; + a, second we would have
found swapping the first and third arguments also changes the sign.

In conclusion, ¢ is fully antisymmetric: swapping any two of its arguments
changes its sign. This also forces ¢ to be alternating: if any two of its
arguments are equal, ¢ vanishes (equals 0). This is because if two arguments
are equal, then swapping them changes the sign but also does nothing, and
the only scalar value ¢ satisfying ¢ = —¢ is ¢ = 0.

Finally, for ¢(a, b, c,d), we can use basis vectors eq, ey, €3 to write

(a = aje] + ases + ases
< b = bie; + byey + bses
C = c1€e1 + €y + c3€e3
| d = die; + dyey + dses
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which means ¢(a, b, c,d) Z Z Z Zaibjckdg o(ei, e, er, er).

i=1 j=1 k=1 (=1

Two of i, 5, k, ¢ must be equal by the pigeonhole principle, which means all
of the summands above are 0, forcing ¢(a, b, c,d) = 0 for all a, b, c,d.




This solution shows how the two-vector Lagrange identity
lax b||* = (a-a)(b-b) — (a-b)’
in three dimensions implies the four-vector Binet-Cauchy identity

(axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c)
(]

a-c a-d
:det<b-c b_d>:det Tl‘) T(|l

of which the Lagrange identity is a special case: set ¢(a,b,c,d) to be the
difference between the left and right sides of Binet-Cauchy, then show ¢ = 0.

The situation is different in higher dimensions - in four dimensions, for in-
stance, there is a nonzero alternating form satisfying all four properties:

.
¢(a,b,c,d)=det {a b ¢ d
|

Even more generally, in n dimensions the set of all multilinear alternating
forms of k£ variables forms an (Z) -dimensional vector space called the exte-
rior power A*R" (or technically its dual, depending on definitions).

Besides the pigeonhole principle, this solution uses polarization, a technique
for converting between homogeneous multivariable polynomials of degree d
and multilinear forms of d variables. The simplest nontrivial case is con-
verting between quadratic and bilinear forms, as seen in any of the many
polarization identities relating squared norms and inner products:

la+b]* = [lal|* +2(a- b) + ||b|.

The relation ||v||? = v-v tells us how to write norms in terms of dot products
and leads to this identity by substituting v = a + b, and conversely this
identity tells us how to rewrite dot products in terms of norms.



Another equivalent polarization identity does the same trick,
a-b=j(la+bl*~lla-b[),
and is the antisymmetrized sibling of the parallelogram law
2 (llall® + [[blI*) = fla+b[* + la — b]|*.

Exercise 3.7 of The Cauchy-Schwarz Master Class challenges the reader to
upgrade the n-dimensional version of the two-vector Lagrange identity to the
n-dimensional version of the four-vector Binet-Cauchy identity,
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(a-c)b-d)—(a-d)(b-c)=

k<t

(The text is a dedicated compendium of applications and offshoots of the
Cauchy-Schwarz inequality |a - b| < ||a]|||b||, which itself follows from
polarizing the positivity condition |la — bl]* > 0.)

Surprisingly, the text’s hint to use polarization seems erroneous, since the
difference between the left and right sides of Binet-Cauchy satisfy the four
properties given in the problem (which are the algebraic features of the form
that allow for polarization) but we saw for n > 4 there are nonzero forms.



