
Noncommutative Calculus: Solution

We can work “mod t4,” meaning ignore any powers of t higher than t3.

The left-hand side exp(tX) exp(tY ) is(
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On the other hand, the right-hand side exp(tZ1 + t2Z2 + t3Z3 + · · · ) is
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Equating coefficients of t gives Z1 = X + Y , and equating coefficients of 1
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gives Z2
1 + 2Z2 = X2 + 2XY + Y 2: substituting Z1 into the latter we can
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Distributing, subtracting, cancelling, and dividing by 6 gives
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The noncommutative polynomials Zk(X, Y ) may be expressed much more
compactly using the commutator operation [X, Y ] := XY − Y X:
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A formula of Dynkin says that in Zn(X, Y ) the coefficient of

[X, [X, · · · [X︸ ︷︷ ︸
r1

, [Y, [Y, · · · [Y︸ ︷︷ ︸
s1

, · · · [X, [X, · · · [X︸ ︷︷ ︸
rn

, [Y, [Y, · · ·Y︸ ︷︷ ︸
sn

] · · · · · · ]

is (−1)n−1

n times the reciprocal of (r1+ · · ·+rn+s1+ · · ·+sn)r1! · · · rn!s1! · · · sn!.

The full solution Z(X, Y ) =
∑∞

n=0 Zn(X, Y ) to exp(X) exp(Y ) = expZ (so,
when t = 1) is known as the Baker-Campbell-Hausdorff formula.

Beginning with Klein’s Erlangen Program at the turn of the 20th century,
mathematicians began studying the geometry of homogeneous spaces from
the perspective of symmetry groups. (“Homogeneous,” here, means no point
in space is more special than any other point in space.) The symmetry of a
sphere, for example, is the matrix group SO(3) of 3D rotation matrices.

Born from this was an interest in the action of continuous symmetry groups,
called Lie groups, particularly when it came to solving differential equations
describing motion and dynamics. Lie’s idea was to think about so-called in-
finitessimal symmetries, or in other words the derivatives of animations of
symmetry (imagine, for instance, an animation of a sphere rotating around
an axis). The infinitessimal symmetries form a Lie algebra.

The BCH formula implies it is possible to reconstruct the composition oper-
ation of the Lie group from the bracket operation of the Lie algebra. This is
one of many results of a larger Lie-group−Lie-algebra correspondence. More
generally, the composition, conjugation, and commutator operations of a Lie
group correspond respectively (via differentiation) to the addition, adjoint,
and bracket operations in the corresponding Lie algebra.


