
Interesting Asymptotic: Solution

By repeatedly differentiating ln(1 + x) we can reasonably guess, and then
prove, a formula for its nth derivative, and then determine the coefficients
of its Taylor-Maclaurin power series. Alternatively, we can find the definite
integral of the geometric series for 1/(1 + t) from 0 to x.

Either way, we arrive at the so-called Newton-Mercator series:
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