Anharmonic Asymmetry: Solution

In **cycle notation**, $(a_1a_2\cdots a_k)$ represents the permutation which cycles the elements a_1, \cdots, a_k of a set (in that order). For example, for a set $\{1, 2, 3, 4\}$, the permutation (123) is the function ρ defined by the input/output pairs

$$\rho(1) = 2, \quad \rho(2) = 3, \quad \rho(3) = 1, \quad \rho(4) = 4.$$

(Any element x not listed in the cycle notation is fixed, i.e. f(x) = x.)

There are six permutations of $\{1, 2, 3\}$, listed below with probabilities:

When drawing a permutation from S_3 , the probability it sends $i \mapsto j$ is the sum of the probabilities associated with every permutation that sends $i \mapsto j$. This gives us a 3×3 table of probabilities:

$$\nearrow$$
 1
 2
 3

 1
 $A + Z$
 $C + Y$
 $B + X$

 2
 $C + X$
 $B + Z$
 $A + Y$

 3
 $B + Y$
 $A + X$
 $C + Z$

The ij entry is the probability of $i \mapsto j$. Since there is a 100% chance 1 is sent to one of 1, 2, 3 we may conclude the first row sums to 1; similarly there is a 100% chance one of 1, 2, 3 is sent to 1 so the first column also sums to 1. The same is true for all rows and columns, so the table is a so-called **doubly** stochastic matrix. In particular, all its entries ought to be 1/3.

Setting the entries equal to each other results in many of the variables being equal. For instance A + X = A + Y = A + Z implies X = Y = Zand A + X = B + X = C + X implies A = B = C. Conversely, so long as A, B, C are equal and X, Y, Z are equal, the table's entries are all the same.

Thus, to get a nonuniform distribution on S_3 for which $i \mapsto j$ is equally likely for all pairs i, j it suffices to pick any solution of $A + X = \frac{1}{3}$ for which $A, X \ge 0$ and $A \ne X$, so such a distribution is possible.