abcs in the Margin: Solution

Note that the degree is multiplicative: if f(¢) and g(¢) are polynomials, then

deg [f(t)g(t)] = deg f(t) + deg g(t).
This means if f(t) is a factor of g(t) then deg f(t) < degg(t).

Assume for the sake of contradiction a(t)” + b(t)" = ¢(t)" for nonconstant
polynomials a(t),b(t),c(t). If any two of them shared a nonconstant fac-
tor f(t), then so would the third. For example, if a(t) = f(¢)u(t) and
c(t) = f(t)u(t) then b(t)" = f(¢)"|v(t) — u(t)] implies f(¢)" is a factor of
b(t)™ so f(t) must be a factor of b(t). We could divide a(t)” 4+ b(t)" = c(t)"
by f(t)" to get another solution with smaller-degree polynomials. Without
loss of generality, then, we may assume the polynomials are pairwise coprime.

Then the abc theorem applies to the polynomials a(t)™, b(t)"™, c¢(t)™:
max{deg a(t)", degb(t)", deg c(t)"} < degrad [a(t)"b(t)"c(t)"].

Since f(t)" has the same irreducible factors as f(t), the radical on the right-
hand side is unaffected by the power n. By multiplicativity, however, the
left-hand side is affected, since deg f(t)" = ndeg f(t) for each polynomial:

nmax{deg a(t), degb(t),deg c(t)} < degrad [a(t)b(t)c(t)]
The assumption n > 2 implies
nmax{dega(t),degb(t),degc(t)}
3max{dega(t),degb(t),degc(t)}
dega(t) + degb(t) + degc(t)
deg [a(t)b(t)c(t)].

But putting this inequality together with the last one yields

AVARAY,

deg [a(t)b(t)c(t)] < degrad [a(t)b(t)c(t)],

which is impossible because rad [a(¢)b(t)c(t)] is a factor of a(t)b(t)c(t).




The abc conjecture is actually about integers, not polynomials. It says,
effectively, that for positive coprime integers (a, b, ¢) satisfying a + b = ¢, the
value ¢ rarely exceeds the radical rad(abc) by much. (The radical of an integer
is the product of its prime factors, for example rad 24 = 6.) More precisely,
it says no matter how small € > 0 is, there are only finitely many exceptions
to the inequality ¢ < rad(abc)'™. The version of abc for polynomials instead
of integers is called the Mason-Stothers theorem and has a quick, (relatively)
simple proof using Wronskians.

The abc conjecture has numerous implications in number theory, one being
an alternate proof Fermat’s Last Theorem, which says for n > 2 there are
no nontrivial integer solutions (a, b, ¢) to a" + b" = ¢". This was written by
Fermat (found by his son in the margin of his copy of Arithmetic, a 3rd cen-
tury book by Diophantus about exactly these kinds of equations, now called
Diophantine equations), famously adding “I have a truly marvelous demon-
stration of this proposition which this margin is too narrow to contain.”

While it’s doubtful Fermat really had a proof, nonetheless, the mathemat-
ical community’s subsequent quest for a proof is oft-touted as the birth of
algebraic number theory. The first valid proof appeared three-and-a-half
centuries later in the mid-90s by Andrew Wiles, by linking it to and then
proving (a narrow version of) the Taniyama-Shimura conjecture, now called
the modularity theorem, which asserts a rational correspondence between
rational elliptic curves and classical modular curves.

This problem highlights similarities between integers and polynomials. Both
admit factorizations into primes/irreducibles. Long division with quotients
and remainders is possible for both. Relative size can be measured by abso-
lute value or degrees. Even partial fraction decompositions are possible for
rational numbers just as they are for rational functions. And as we’ve seen,
both contexts have versions of the abc theorem, Fermat’s Last Theorem, and
many other theorems. When we use finite fields for polynomial coefficients
this observation is called the function field analogy.



